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ABSTRACT: Skeletal muscle loss is associated with aging as well as pathological conditions. Satellite cells (SCs) play an important role in muscle

regeneration. Omega-3 fatty acids are widely studied in a variety of muscle wasting diseases; however, little is known about their impact on skeletal

muscle regeneration. The aim of this review is to evaluate studies examining the effect of omega-3 fatty acids, o-linolenic acid, eicosapentaenoic acid,

and docosahexaenoic acid on the regulation of SC proliferation and differentiation. This review highlights mechanisms by which omega-3 fatty acids may

modulate the myogenic program of the stem cell population within skeletal muscles and identifies considerations for future studies. It is proposed that

minimally three myogenic transcriptional regulatory factors, paired box 7 (Pax7), myogenic differentiation 1 protein, and myogenin, should be measured to

confirm the stage of SCs within the myogenic program affected by omega-3 fatty acids.
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Introduction

Skeletal muscles comprise 40%—50% of the total body mass
in an adult human being and include a broad range of muscle
types. Skeletal muscle mass and muscle fiber size change in
response to physiological and pathological conditions. Muscle
loss occurs as a normal process due to aging, and is also a char-
acteristic of catabolic hormonal stimulation or diseases, such
as cancer cachexia, diabetes, renal failure, denervation, motor
neuron disease, and heart failure. Skeletal muscle depletion is
associated with reduced muscle function and performance,’
decreased quality of life, and shorter length of survival in older
adults and in people with cancer.>™* Poor clinical outcomes
associated with muscle loss present compelling reasons to
develop strategies to reverse or slow down muscle loss. The
development of effective therapies requires an understanding
of contributing mechanisms and factors required to reverse
or prevent muscle loss. An emerging area of research is the
potential dysregulation of myogenic stem cells as contributors
to muscle loss.

'The importance of nutritional status in regulating muscle
protein synthesis and muscle mass is well accepted, but limited
literature exists regarding the role of nutrients, specifically on
satellite cells (SCs).” Dietary proteins and amino acids of suffi-
cient quality and quantity are key nutrients required for muscle

health. Recent studies have provided evidence that protein
supplementation combined with exercise may accelerate SC
proliferation.®® In the last decade, nutritional compounds,
such as resveratrol, epigallocatechin gallate (catechins in
green tea), B-hydroxy-fB-methylbutyrate (leucine metabolite)
have been reported to improve SC proliferation, especially in
fast muscles in experimental models.”! It is suggested that
resveratrol and epigallocatechin gallate buffer high levels of
reactive oxygen species and reduce oxidative stress in aging
muscles, thus favoring SC differentiation and proliferation.!
HMB reduces protein catabolism and muscle loss during
disease and/or disuse.™

Polyunsaturated omega-3 fatty acids are a family of
essential fatty acids with many biological activities. There are
three major dietary n-3 fatty acids: o-linolenic acid (ALA;
18:3n-3), eicosapentaenoic acid (EPA; 20:5n-3), and docosa-
hexaenoic acid (DHA; 22:6n-3). Omega-3 fatty acids comprise
cell membrane phospholipids, contributing to structural and
functional characteristics by altering signaling platforms for
membrane proteins and lipids.'*” In obese adolescents, sup-
plementation with omega-3 fatty acids increased proportions
of EPA and DHA in the muscle, while improving glucose
tolerance and insulin sensitivity.!® Providing EPA and DHA
in the form of fish oils in human diets has been reported to
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enhance anabolic potential and reduce muscle loss (reviewed
by Ewaschuk et al?). While several mechanisms may be con-
tributing to disease-associated muscle atrophy, little is known
about the impact of omega-3 fatty acids on the differen-
tiation and proliferation of SCs. This article reviews studies
examining the effect of ALA, EPA, and DHA on myogenic
regulation of SC proliferation and differentiation. Possible
mechanisms by which omega-3 fatty acids modulate the myo-
genic lineage of SCs are also explored. Currently, there are no
studies exploring these questions in humans, and therefore,
emphasis is on studies performed in experimental systems.

Role of SCs in Myogenesis

SCs are a heterogeneous collection of quiescent muscle stem
cells that reside within adult myofibers, between the basement
membrane and sarcolemma.?’ Normally, in adult muscles, SCs
are in a quiescent state and express Pax7.%2:22 These mesoder-
mally derived multipotent stem cells are capable of self-renewing
proliferation, and are responsible for muscle growth and regen-
eration. In response to muscle damage, SCs are activated to pro-
liferate, differentiate, and fuse with the existing muscle fibers.
Pax7-positive daughter cells either differentiate by migrating
through the sarcolemma and fusing with existing muscle fibers

during the growth of the existing muscle fiber or have the capac-
ity to fully regenerate new myotubes (Fig. 1).232* Commitment
of SCs to a myogenic lineage is indicated by the expression of
specific myogenic transcriptional regulatory factors (MRFs),
which include, but are not limited to, myogenic differentia-
tion 1 protein (MyoD), myogenic factor 5 (Myf5), and myo-
genic regulatory factor 4 (MRF4).2
SCs upregulate MyoD and enter the cell cycle to proliferate as

On activation, committed

myoblasts and differentiate by downregulating Pax7 and upreg-
ulating myogenin and MRF4 (Fig. 1).26 Thus, the expression
of Pax7, MyoD, and myogenin identifies whether SCs are in a
quiescent or committed state (Pax7*/MyoD~/myogenin~), pro-
liferation state (Pax7*/MyoD*/myogenin”), or differentiation
state (Pax7/MyoD*/myogenin®).?’ Measuring three MRFs
concurrently enables the status of SCs to be determined as acti-
vated, proliferating, or differentiating.

MREF expression is also affected by extracellular matrix
molecules, such as heparan sulfate proteoglycans (HSPGs).
Syndecan-4 and glypican-1 are the most studied HSPGs in
relation to myogenesis. Syndecan-4 is required for activation
and proliferation of SCs and regulates MyoD and MRF4
expressions.?® Syndecan-4 also serves as a marker for qui-
escent and activated SCs and subsets of SCs.?° In contrast,
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Figure 1. Model for changes in expression of myogenic regulatory factors through the myogenic program. In quiescence, satellite cells reside between
basal lamina and sarcolemma as satellite stem cells (Pax7*/Myf5-) and/or as committed satellite cells (Pax7*/Myf5+). On activation, committed satellite
cells upregulate myoblast determination protein (MyoD). Satellite progeny then follow one of two fates. They either enter the cell cycle to proliferate as
myoblast and differentiate by down regulating Pax7 and up regulating myogenin and MRF4 or down regulate MyoD and self renew to give rise to Pax7*
satellite cells. Syndecan-4 and glypican-1 are regulators of expression of myogenic regulatory factors during satellite cell proliferation and differentiation.
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knockdown of glypican-1 inhibited mouse muscle cell dif-
ferentiation and delayed or decreased myogenin expression.*°
Glypican-1 plays a primary role in SC differentiation by
sequestering fibroblast growth factor 2, a potent inhibitor
of differentiation.3*3! These data suggest a regulatory role of
syndecan-4 and glypican-1 in SC function and expression of

transcriptional regulatory factors during SC myogenesis.

Effect of Omega-3 Fatty Acids on SC Function
Low plasma levels of EPA and DHA have been associated
with skeletal muscle depletion and impaired muscle function
in older adults and in people with type-2 diabetes, obesity,
and cancer.’?3* A cross-sectional and retrospective cohort
study reported an increase in the grip strength of men and
women with each additional portion of fatty fish per week,
independent of their height and age.?? The low level of plasma
omega-3 fatty acids was related to a decline in physical perfor-
mance in middle-aged and older adults in the large InCHI-
ANTT cohort study.?> Supplementation with EPA has been
reported to enhance muscle protein synthesis, increase muscle
mass, and improve function in elderly individuals.** Human
studies have reported a relationship between EPA and DHA
supplementation and the preservation or gain of muscle mass
in patients with cancer, who would otherwise experience
muscle loss.3”3® EPA and DHA can reduce contributing fac-
tors, such as acute-phase response, proinflammatory cyto-
kines, and insulin resistance, which mediate muscle loss.?’
Few studies have examined the effect of EPA and DHA on
the myogenic potential of SCs. The studies that do exist have
been performed in a variety of experimental models (Table 1).
Omega-3 fatty acids can affectinflammatory pathways.
Inflammation plays a significant role in muscle damage and
loss. Inflammatory processes that disrupt muscle homeostasis
and promote injury have been an area of intense research. Cel-
lular mediators, such as interleukin-6 (IL-6), tumor necrosis
factor-o. (TNF-0r), and transforming growth factor-f (TGF-
B) are key regulators of skeletal muscle cell responses to injury.
Disruption of TGF-B by introducing the dominant-nega-
tive mutant receptor (ie, truncated type II TGF-B receptor
transfected into C2C12 cells) results in inhibition of myo-
genic differentiation and suppression of MyoD expression.*’
Low physiological concentrations of TNF-a appear to acti-
vate myogenesis, whereas sustained high levels of TNF-o
in chronic inflammatory disease have been associated with
impaired myogenic differentiation.* TNF-ot induces muscle
loss by inhibiting myogenic differentiation and by stimulat-
ing apoptosis of differentiated myotubes.*>* Also, TNF-o. is
associated with increased activation of nuclear factor-kappaB
(NF-xB), proinflammatory signaling pathway, and high
expression of atrogenes, such as atrogin-1 and muscle
RING-finger protein-1 (MuRF-1), leading to protein degra-
dation.** In response to various stimuli, immune cells secrete
lipid mediators, prostaglandins (PGs) and leukotrienes, that
may influence myogenesis and are potent mediators of pain

and inflammation.* Resolvins, maresins, and protectins are
eicosanoids derived from EPA and DHA that act as anti-
inflammatory agents; however, their impact on myogenic pro-
genitors requires further investigation.*®

C2C12 is a well-established murine skeletal muscle
cell line extensively used in SC research. It is a subclone of
the murine myoblast cell line established by Yaffe and Saxel
and produced by Blau et al.#?*# C2C12 myoblasts exhibit the
majority of features and proteins as SC-derived myoblasts.*>°
C2C12 has been extensively used as a model for skeletal muscle
proliferation, differentiation, cell-based therapies, and other
research related to muscle development. The effects of TNF-o
and EPA treatment on skeletal muscle cells during their dif-
ferentiation from myoblasts to myotubes have been studied in
C2C12 cells (Table 1).°* C2C12 cells were differentiated in
the presence or absence of TNF-a (20 ng/mL) with or with-
out EPA (50 uM). EPA was added concurrently with TNF-a
either as a co-treatment or as a pretreatment (two hours) after
which EPA was withdrawn and replaced by TNF-o alone in
Dulbecco’s modified eagle medium. The inhibitory effect of
TNF-o on myotube differentiation and the modified pattern
of myosin heavy chain expression was prevented by both pre-
and co-treatment with EPA. TNF-o treatment significantly
reduced myotube size and myoblast fusion index and induced
cellular necrosis compared to their respective untreated con-
trols. These deleterious effects of TNF-o were inhibited by
EPA treatment.’! In addition, the activation of apoptosis
by caspase-8 induced by TNF-o was completely blocked by
EPA co-treatment.”! Pax7 and MyoD levels were not mea-
sured in the study, limiting the understanding of how EPA
affects the myogenic program. Other studies have reported
TNF-o to enhance proliferation and aggregation of myoblast
cells, while inhibiting chief regulatory molecules of myo-
genic differentiation, MyoD and myogenin in C2C12 myo-
blasts (Fig. 2).°>°% A subsequent study evaluated the effects
of EPA treatment on TNF-o-induced NF-kB activation in
the C2C12 myoblast line (Table 1).°* It set out to determine
whether EPA anti-inflammatory activity was dependent on
the altered expression and activation of peroxisome prolifer-
ator-activated receptors (PPARs).”* Impairment of skeletal
muscle cell differentiation induced by TNF-o was associ-
ated with increased NF-kB transcriptional activity as well as
inhibition of PPAR-y expression. On the other hand, EPA
co-treatment or pretreatment was associated with the inhibi-
tion of NF-kB and upregulation of PPAR-y expression. IL-6
expression was also significantly inhibited when EPA was
administered either as a co-treatment or pretreatment with
TNF-o.. The inhibitory effect on NF-kB and IL-6 was spe-
cific to EPA and DHA as disrupted morphology was observed
in control cell lines with omega-6 and omega-9 fatty acids.
Experimental and human studies have suggested that fish oil-
derived omega-3 fatty acids exhibit an anti-inflammatory effect
by inhibiting the activation of NK-kB, either by decreasing
phosphorylation of its inhibitory subunit, IkB, or by binding
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Figure 2. Possible mechanisms by which omega-3 fatty acids promote myogenesis. Omega-3 fatty acids inhibit NF-xB activation and decrease release
of inflammatory cytokines and proteins, including IL-6, TNF-o. and TGF-B, by activating PPAR-y, decreasing |kB phosphorylation or/and increasing
PGC-1a. expression in skeletal muscle. PGC-1 co activators and inflammatory processes in skeletal muscle are linked in reciprocal manner. Decrease
in inflammatory proteins promotes proliferation and differentiation of satellite cells. Omega-3 fatty acids may increase syndecan-4 and glypican-1
expression which in turn increase myoD and myogenin expression. Dashed arrows indicate that effects may be indirect with involvement of other

metabolites and signaling molecules.

to PPAR-v, which in turn interacts with NF-xB to prevent
translocation to the nucleus (Fig. 2).1” A recent study explored
the long-term (five months) effect of omega-3 fatty acid sup-
plementation on muscle regeneration and inflammation in the
mdx mouse model of Duchenne muscular dystrophy (Table
1).5 Mdx mice receiving omega-3 (60 mg/kg) capsules exhib-
ited increase in muscle regeneration and higher expression of
MyoD as compared to the control group. Long-term omega-3
supplementation resulted in lower expression of inflammatory
markers, NF-xB and TNF-o. Measures of Pax7, MyoD, and
myogenin protein expression in this model would determine
which phase of the myogenic program of SCs is most aftected
by omega-3 fatty acids.

There are three members of the PPAR-y coactivator 1
(PGC-1) family, namely PGC-1a,, PGC-1f, and PGC-1-re-
lated coactivator. PGC-1low is a transcriptional coactivator
that is a central inducer of mitochondrial biogenesis in cells.*®
The results from several studies suggest that PGC-1a targets
the NF-xB pathway and favors an anti-inflammatory environ-
ment in skeletal muscles (Fig. 2).°® Muscle loss under patho-
logical conditions, such as diabetes, cancer, obesity, uremia,

and denervation-induced atrophy, has been associated with low
levels of PGC-1o. and/or PGC-1 and high levels of TNF-o
and IL-1B.57-%! High PGC-10. levels could prevent the progres-
sion of muscle wasting by suppressing atrogenes in vitro and
in vivo.”»%%62 A recent study revealed a positive relationship
between PGC-lol expression and myogenic differentiation.
Transcriptional factors critical for differentiation of skeletal
muscle cells, such as MyoD and myogenin, were enhanced
by PGC-1a in C2C12 cells.®® DHA and EPA treatment for
24 and 48 hours was reported to induce PGC-1a. expression
in human rhabdomyosarcoma cells.®* In another study, DHA
treatment maintained the myotube morphology, diameter,
and intramyocellular lipid content similar to control levels and
retained PGC-1a near control levels.®> Also, DHA treatment
caused myotube hypertrophy and showed a protective effect
against palmitate-induced muscle atrophy.®> A high concen-
tration of palmitate has been associated with insulin resistance
and contributes to muscle atrophy.®® Peng et al reported that
C2C12 myoblast proliferation was significantly reduced by
EPA and DHA in a concentration-dependent manner, whereas
ALA did not show any inhibitory effect (Table 1).%
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Omega-3 fatty acids affect glucocorticoid-induced
muscle degradation. Glucocorticoids are released as a com-
ponent of the stress response and evoke catabolism by increas-
ing protein degradation and decreasing protein synthesis.®
Synthetic glucocorticoids, such as dexamethasone, are used to
model muscle atrophy. The effects of dietary EPA and DHA
on dexamethasone-induced muscle atrophy were evaluated
by measuring expression of genes involved in protein syn-
thesis and degradation and myogenic proliferation and dif-
ferentiation (MyoD, myogenin, atrogin-1, and MuRF-1),
which was concurrent with histological analysis in rat muscles
(Table 1). Four experimental groups consisted of control,
dexamethasone alone, omega-3 supplement alone, and dexa-
methasone groups with an omega-3 supplement (EPA 180 mg
and DHA 120 mg capsules). The group supplemented with
omega-3 showed higher levels of MyoD compared to controls
who were not sustained when dexamethasone was added. In
contrast, myogenin levels were lower in both omega-3-sup-
plemented and dexamethasone plus omega-3-supplemented
groups compared to controls. The dexamethasone group with
omega-3 supplementation showed higher activation of atro-
genes, such as atrogin-1 and MuRF-1, indicating increased
protein degradation and decreased protein synthesis. Ex
vivo fatty acid analysis of muscles showed incorporation of
omega-3 fatty acids; however, the DHA and EPA contents
of muscles were not reported for any experimental group.
Diets provided in this study were not matched for calories,
and no data regarding food intake were presented, limiting
the ability to interpret the results from this study.®” In a model
of arthritis-induced muscle atrophy, dietary EPA decreased
proteolysis as observed by lower gene expressions of TNF-a
and atrogin-1 (Table 1).7° Arthritis increased gene and protein
expressions of MyoD and myogenin, and EPA administration
did not modify this effect. No change in the expression of
these proteins was seen in the gastrocnemius muscle of pair-
fed and control rats (Fig. 2).

Omega-3 fatty acids induces myogenesis in cancer-
induced muscle atrophy. Muscle wasting is an important
component of pathophysiology of cancer. A recent study eval-
uated the effect of EPA and endurance exercise training on
muscle depletion in lung carcinoma-bearing mice (Table 1).”!
Control (n = 15) and tumor-bearing (7 = 24) mice were ran-
domized into three groups (n = 5 for controls and 7 = 8 for
tumor-bearing mice): untreated, treated with EPA, or treated
with EPA and subjected to treadmill running. All groups
had free access to food and water during the experimental
period. The EPA-treated groups received daily administra-
tion of 0.5 g/kg EPA in corn oil starting from the fourth
day of tumor growth, and the untreated groups received
corn oil alone. Tumor-bearing mice were killed 14 days after
tumor injection. EPA did not prevent muscle wasting when
administered alone but was able to improve both muscle mass
and strength when coupled with exercise. Untreated tumor-
bearing mice showed higher Pax7 protein expression, whereas

endurance exercise combined with EPA had lower levels of
Pax7. A single measure of Pax7 does not enable interpreta-
tion with regard to alterations in myogenic proliferation or
differentiation potential, as Pax7 is expressed by SCs at dif-
ferent stages within the myogenic program. Measuring other
MRFs, MyoD and myogenin, would determine the step of
SC-derived myogenesis affected by treatment. Food intake
was partially corrected in the group receiving EPA plus
exercise, and no pair-fed group was available for comparison.
No effect of EPA alone was observed, potentially because
the dose of EPA (0.5 g/kg) administered might not be suf-
ficient to see desired effects. When a 1 g/kg dose was applied,
a five-fold increase in the ratio of protein synthesis to pro-
tein degradation was reported in the gastrocnemius muscle of
cachectic mice bearing the MAC16 tumor.”

Effect of omega-3 fatty acids on proteoglycans needed
for myogenesis. A spectrum of polyunsaturated fatty acids
on proliferation and differentiation, as well as on the expres-
sion of syndecan-4 and glypican-1 in avian myogenic SCs,
has been recently studied (Table 1).”* SCs were isolated from
the pectoralis major and biceps femoris muscles of 13-week
old turkeys and 5-week old chickens and cultivated with lin-
oleic acid, a-linolenic acid, arachidonic acid, DHA, or EPA.
Decreases in proliferation and differentiation were reported in
turkey cells treated with EPA and DHA. Evaluation of cell
morphology suggested a toxic effect of EPA and DHA on
turkey SCs. However, the proliferation of chicken SCs was
not depressed by EPA and DHA, and a microscopic exami-
nation revealed that chicken cells receiving these treatments
maintained normal morphology. The differences in SCs from
turkeys and chickens in response to EPA and DHA may be
attributed to differences in the composition of muscle mem-
brane lipid in turkeys and chickens.”® After treating with
spectrum of fatty acids, glypican-1 and syndecan-4 gene
expressions were measured in proliferating and differentiat-
ing SCs from turkey and chicken muscles. Expressions of
glypican-1 and syndecan-4 were increased during prolifera-
tion in all treatments compared to control serum in turkey and
chicken SCs. Both glypican-1 and syndecan-4 differentially
regulate expressions of myogenic regulatory transcriptional
factors during proliferation and differentiation of SCs. The
knockdown of glypican-1 in turkey SCs has been associated
with decreased gene expression of MyoD and myogenin,
whereas the knockdown of syndecan-4 has been associated
primarily with increased MyoD and MRF4 expressions dur-
ing proliferation and differentiation (Fig. 2).”* Single fatty
acids as opposed to physiological fatty acid mixtures are likely
to evoke different metabolic effects.”

Incorporation of omega-3 fatty acids into membrane
lipids can affect muscle atrophy in dystrophic muscles.
In dystrophic hamsters, the effect of flaxseed-enriched diet
on myocyte membrane composition, conformation, and
intracellular signaling has been investigated (Table 1).7¢ The
hamster model of dystrophy (UM-X7.1 Syrian hamster) used
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for this study is a model for human limb-girdle muscular
dystrophy. The experiment tested four groups in total, the first
and second groups (7 = 50 each) were fed either a chow diet or
a flaxseed-enriched diet from weaning to death. To determine
if ALA reverses a well-established muscular dystrophy, a third
group of dystrophic hamsters (7 = 30) were fed standard chow
from weaning to 100 days (until development of dystrophy)
tollowed by a flaxseed-rich diet for the next 50 days before
death. Healthy animals were fed only chow and were used as
a control. The histological analysis of muscles from dystrophic
hamsters fed a flaxseed-enriched diet showed preservation of
the typical skeletal muscle morphology compared to those fed
the control diet. A significant reduction of Pax7 expression was
evident, whereas myogenin was highly expressed in ALA-fed
hamsters versus control, suggesting the occurrence of SC dif-
ferentiation. However, no effect was seen in those fed a chow
diet for 100 days followed by ALA for 50 days, suggesting an
inability of ALA to reverse the established injury. Biochemi-
cal analysis revealed that ALA and EPA levels in muscles
from ALA-fed hamsters were almost 2.5-fold higher than
controls. Cytoplasmic accumulation of membrane proteins,
caveolin-3 and P-catenin, involved in cell adhesion, mem-
brane repair, and plasma membrane integrity was observed
in the muscles of chow-fed dystrophic hamsters, whereas the
normal morphological sarcolemmal pattern of these proteins
was maintained in the muscles of dystrophic hamsters fed
ALA. The diets (chow and ALA-rich) used in this study were
not isocaloric, and their macronutrient composition was not
reported. Also, the amounts of omega-6 and omega-3 fatty
acids in the diets were not reported. The study may have pro-
duced different results if a higher amount of ALA was pro-
vided in the treatment arm. Providing longer chain fatty acids
(ie, DHA, EPA, and DPA) derived from ALA may have pro-
duced different effects.”” An animal study showed that it is the
provision of DHA and not the ratio of n-3/n-6 that is critical
for skeletal muscle membrane change.”® Also, supplementa-
tion with EPA, but not DHA, partially improves skeletal

muscle oxidative capacity.”’

Limitations of the Studies Reviewed

The findings based on cell lines using omega-3 fatty acid treat-
ment or supplementation may not necessarily correspond with
physiologic responses in vivo. Although C2C12 cells express
proteins necessary for myogenic differentiation and display
the morphology of individual fiber units, there are striking
differences between these cells and human adult muscles, par-
ticularly in their degree of maturation and mode of glucose
transport.3%8 Nevertheless, this in vitro model is widely used
to study the role of ALA, EPA, and DHA in activation, pro-
liferation, and differentiation of SCs. In reviewed studies
using C2C12 cell lines, the effect of omega-3 fatty acids on
myogenic regulatory factors (ie, Pax7, MyoD, Myf5, and
myogenin) has not been reported. These transcriptional factors
are expressed in distinct expression patterns in fusing cells and

influence skeletal muscle development.®? Also, studies dem-
onstrate an inconsistent effect of ALA, EPA, and DHA on
myoblast proliferation and myotube morphology.”»¢%¢” Bovine
serum, commonly used in cell culture experiments, is an ill-
defined mixture of components in culture media of varied
fatty acid compositions from batch to batch.®38 The fatty
acid composition of the medium can significantly influence
the fatty acid composition of cell lines and potentially alter
actions of SCs.® Chemically designed, serum-free media can
be used to ensure the consistency of experimental conditions
and results.

Animal models are an invaluable component of biomedi-
cal research, and many factors, such as genetic background
and environmental factors, that can introduce variability
need to be considered.?¢ However, most studies overlook the
factors of dietary design, diet composition, and intake.”86758
Velleman et al reported an association between feed restric-
tion and MyoD/myogenin expression of broiler pectoralis
muscles, and decrease in SC proliferation and differentiation
have been observed in methionine- and cysteine-restricted
cell culture medium.?%%° Of the studies reviewed, two studies
used standard chow diet and another used standard com-
mercial diet (Nuvilab CR1), each of which has undefined
macronutrient composition.69’70’76 The treatment groups were
not exposed to isocaloric and isonitrogenous diets, which
introduces variation in results as measures of muscle anabo-
lism are highly responsive to anabolic effects of protein and
insulin response. Individual omega-3 fatty acids have different
therapeutic potentials, and so it is important to know the fat
composition of diets used in the study, as dietary fat alters the
fatty acid composition of the membrane, which in turn can
affect the membrane and cell function.'*16:21.92 Of the studies
reviewed, only two studies determined the fatty acid compo-
sition of muscles to confirm incorporation of omega-3 fatty
acids in cell membranes after treatment or supplementation;
however, in one study, DHA and EPA fatty acid levels were
not presented.®’® In addition to the fat composition of the
diet, dosages of EPA and DHA should also be considered to
determine if they are dietary achievable or therapeutic. Most
studies that showed a systemic effect of EPA and DHA used
intakes >0.03 g/kg.”® All animal studies reviewed employed
higher dosages of EPA and DHA (0.06-1 g/kg); a wide varia-
tion in dosages makes it difficult to compare between studies.
Studies should employ pair-fed controls to determine the
extent to which the effect of a treatment on muscle wasting
occurred independently of changes of energy intake and dif-
ferentiate reduced feeding from other causes of muscle loss.
The use of undefined or ill-matched dietary designs limits
comparison between studies of results within the same study,
translation across different study designs, as well as applica-
tion to clinical studies.

While our understanding of murine SC biology is rap-
idly expanding, little is known about alterations in activa-
tion, proliferation, and differentiation of SCs in relation to
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various nutrient interventions. There are a few studies in
C2C12 cells and five animal studies evaluating the effect
of omega-3 fatty acids on the myogenic program. In con-
trast, there is no study exploring effects of omega-3 fatty
acids on human SCs. This is primarily because of difficulty
in obtaining human muscle biopsy, particularly from vulner-
able populations like older adults and those with existing
musculoskeletal disorders. Additionally, there are chal-
lenges to isolate SCs, such as scarcity, location under the
basal lamina of muscle fibers, and separation from other cells
within skeletal muscles. However, studies can be designed
using commercially available human cell lines. There is need
to conduct experiments using human SCs to explore the
effects of omega-3 fatty acids, as it is difficult to determine
if the phenotypes and functions of human and murine SCs
are equivalent.

Future Perspectives

Omega-3 fatty acids show an inconsistent effect on SC
proliferation, differentiation, and muscle regeneration in
the experimental systems. Future studies should attend to
dietary design (ie, isocaloric, isonitrogenous, and similar
fatty acid composition), and food intake in animal studies
needs to be recorded to control dietary intake as a variable
in these studies.’¢ There are several inherent limitations of
the experimental studies exploring this question to date, and
a few studies have shown mechanisms by which omega-3
fatty acids induce their anabolic effect. There is a need to
clarify the nature and mechanisms by which omega-3 fatty
acids affect the myogenic potential of SCs. In C2C12 cell
line studies, the effect of omega-3 fatty acids on myogenic
regulatory factors (eg, Pax7, MyoD, myogenin, and Myf5)
needs to be explored and at least three factors need to be
measured to determine which part of the myogenic program
is being affected. Also, it is important to consider differ-
ences between human SCs and experimental models. The
effect of omega-3 fatty acids on human SCs has not been
studied directly because of practical and methodological
issues. However, to use omega-3 fatty acids as a potential
therapeutic agent to prevent or treat muscle loss in chronic
disease population, it is important to design clinical studies
and investigate effects of these essential fatty acids on the
myogenic program of human SCs.
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