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Motor sequence learning is associated with increasing and decreas-
ing motor system activity. Here, we ask whether sequence-specific
activity is contingent upon the time interval and absolute amount of
training over which the skill is acquired. We hypothesize that within
each motor region, the strength of any sequence representation is a
non-linear function that can be characterized by 3 timescales. We
had subjects train for 6 weeks and measured brain activity with
functional magnetic resonance imaging. We used repetition suppres-
sion (RS) to isolate sequence-specific representations while control-
ling for effects related to kinematics and general task familiarity.
Following a baseline training session, primary and secondary motor
regions demonstrated rapidly increasing RS. With continued training,
there was evidence for skill-specific efficiency, characterized by a
dramatic decrease in motor system RS. In contrast, after perform-
ance had reached a plateau, further training led to a pattern of
slowly increasing RS in the contralateral sensorimotor cortex, sup-
plementary motor area, ventral premotor cortex, and anterior cere-
bellum consistent with skill-specific specialization. Importantly,
many motor areas show changes involving more than 1 of these 3
timescales, underscoring the capacity of the motor system to flexibly
represent a sequence based on the amount of prior experience.

Keywords: motor learning, repetition suppression, sensorimotor, skill
learning, SMA

Introduction

Motor learning is characterized by rapid gains followed by
slow incremental improvement in performance (Bryan and
Harter 1897; Crossman 1959). This pattern has been taken as
evidence in support of a model that suggests sequence learn-
ing can be broken down into distinct fast and slow stages
(Doyon et al. 2003; Doyon and Benali 2005). While a number
of imaging studies present a role for specific and distinct brain
regions at putative learning stages (Doyon et al. 2002; Penhune
and Doyon 2002, 2005), evidence also suggests that learning-
dependent changes might be more complex, with a given
region showing a decrease in one stage and an increase in a
later stage (Hlustík et al. 2004; Floyer-Lea and Matthews 2005;
Xiong et al. 2009).

Upward and downward shifts in motor cortex metabolic ac-
tivity over several days to weeks of training have generated
seemingly conflicting accounts. For instance, one set of obser-
vations has shown that practice leads to decreases in activation
extent (Xiong et al. 2009) and magnitude (Steele and Penhune
2010) in primary and secondary motor cortices. This pattern of
decreasing activation with learning is suggestive of efficiency,
such that with longer bouts of training, fewer neural resources
are needed to express motor skills. This account is consistent

with recent evidence showing that after several months to
years of practice, regional metabolic activity is substantially
reduced in the motor cortex of non-human primates (Picard
et al. 2013). However, in contrast to these findings, there is a
different set of observations that report an expansion in the
extent (Karni et al. 1995; Hlustík et al. 2004) and magnitude
(Floyer-Lea and Matthews 2005) of motor cortex activation.
This is thought to belie a neural specialization of skilled repre-
sentations, or focal expansion of task-specific neural resources,
which can develop through years of physical practice (Elbert
et al. 1995; Classen et al. 1998; Rosenkranz et al. 2007). Thus,
within a given motor area, it is possible that these two pro-
cesses (efficiency and specialization) could occur simultan-
eously, but over different timescales.

Previous functional imaging studies have commonly studied
learning through the repeated practice of a single sequence.
Thus, it is unclear whether changes of brain activity in either
magnitude or extent reflect information processing that is spe-
cific to the given sequence (i.e., a representational change), or
rather, a more general effect that could be due to time spent on
a novel and repetitive task. To address this potential ambiguity,
experimenters have typically employed random or unlearned
sequence controls. However, contrasts between a random
or rare control and the learned sequence can introduce add-
itional uncertainties that are related to differences in strategy,
awareness, difficulty, and kinematics (Poldrack 2000). Novel
methods are therefore needed to identify sequence-specific
changes of brain activity. To do this, a recent study used
machine learning to classify 4 sequences learned in parallel
(Wiestler and Diedrichsen 2013). After a single training
session, two key observations were noted. Compared with un-
learned sequences, there was a general decrease of BOLD
amplitude in motor areas, irrespective of the sequence that
was tested. This fits with the observation that practice leads to
neural efficiency, which is reflected by decreasing blood flow
or metabolism during learning. Critically, the authors also
found that across a number of motor areas, the ability of the
classifier to distinguish each sequence increased over time.
Thus, specialization emerges even if there is an overall decline
in activity. Over this short training period, it was therefore pos-
sible to observe both a general process of declining levels of
brain activity and the appearance of sequence-specific patterns
of activity.

In the current study, we extend these observations over a
longer time horizon, highlighting the sequence-specific
involvement of motor regions across 3 timescales of learning,
ultimately to identify regions that express sequence-specific
representations over multiple timescales. To do so, subjects
learned a set of 6, visually cued, 10-element sequences, analo-
gous to piano arpeggios, using a daily behavioral training
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regimen that lasted approximately 6 weeks. We manipulated
the intensity of training in order to control for non-specific fa-
miliarity effects due to the amount of time spent performing
the experiment. Thus, 2 sequences were practiced extensively,
2 occasionally, and 2 rarely throughout the training regimen.
This was guided by the basic prediction that the total amount
of prior practice, rather than chronologic time, is the primary
determinant of the magnitude and location of sequence-
specific representations.

To characterize brain activity during learning, functional
magnetic resonance imaging (fMRI) was acquired at 4 time
points over the course of training. In order to identify
sequence-specific brain activity, we used a repetition suppres-
sion (RS) design whereby BOLD signal change due to se-
quence repetition determines the strength to which a given
sequence is represented in a given brain region. We character-
ized 3 learning-related patterns of RS magnitude, operationally
defined as initial recruitment, skill-specific efficiency, and skill-
specific specialization. These correspond to rapid increasing
RS magnitude early in training, followed by slow decreasing or
increasing RS magnitude with continued training. These pat-
terns were then used to evaluate the involvement of motor
regions over 3 corresponding timescales, such that any given
region could show sequence-specific sensitivity for any com-
bination of the 3 learning-related patterns.

The standard RS effect is interpreted as an overall fatigue of
a population or sharpening of response due to reduction of
non-essential neurons, such that in either case, the larger the
difference between new and repeated events, the stronger the
representational strength (Grill-Spector et al. 2006). Here, we
apply RS to quantify representational strength over several
time points during learning. We operationally define decreas-
ing RS with continued training as evidence of “skill-specific”
efficiency. With fewer non-essential neurons recruited over
time, decreasing RS is reflective of a smaller difference
between repeated events, and thus, an increasingly efficient
population governing the representation of a particular se-
quence. We further tested whether there would be brain areas
showing a slow increase of RS following extensive practice,
suggestive of regional specialization. Note that “skill-specific”
specialization is not simply due to a general increase in BOLD.
Instead, it reflects a gradual increase in the relative difference
between repeated trials, which is assumed to occur because of
a stronger representation. We use the term “skill-specific” to
distinguish our measurement of changing RS magnitude from
that of general increases or decreases of BOLD signal that are
observed whenever a task is repeated over time. Thus, our
focus is on sequence-specific changes that occur with learning,
rather than general changes of BOLD magnitude or extent.

In using RS, any change in activation is the relative differ-
ence between successive trials of the same sequence, so that
performance between repeated trials is nearly identical. This is
particularly advantageous because any change in RS over the
course of learning can be disassociated from changes of BOLD
magnitude related to kinematics or general task familiarity.
This approach provides a novel method whereby subjects can
perform at their highest possible performance level through-
out training and imaging, ensuring strong test validity between
how sequences were produced during training and their ex-
pression during scanning. An additional feature of the experi-
ment was that subjects practiced the sequences under 3
different training intensities throughout the training regimen.

This provided a means to examine functional contributions as
defined by amount of practice independent from the overall
amount of time spent on the task.

Motivated by previous imaging studies that relate learning to
changes in BOLD activity, we hypothesized that at the onset of
learning, many brain regions are needed to represent an un-
familiar motor sequence. With sufficient familiarity for a given
sequence, this expansive recruitment is no longer needed.
Finally, extensive practice should lead to an enduring re-
presentation that can be localized to motor output areas. Re-
framing these 3 patterns in terms of RS, there should be an
initial and rapid expansion of RS throughout sensorimotor-
associated cortices. Continued training should result in a
pattern of skill-specific efficiency with contraction of RS mag-
nitude occurring on a relatively moderate timescale (hundreds
of trials). Further, the emergence of skill-specific specializa-
tion, denoted by an increase in RS magnitude, would occur
within motor output regions and emerge over a slower time-
scale (thousands of trials). Finally, we predicted that any given
motor region could support a skill-specific representation
across more than 1 of these 3 timescales. Therefore, we tested
whether skill-specific functional change within a given motor
region might span any combination of the 3 proposed RS
patterns.

Materials and Methods

Experiment Setup and Procedure
Twenty-two right-handed subjects (13 female, average age 24 years)
volunteered with informed consent in accordance with the Institutional
Review Board/Human Subjects Committee, University of California,
Santa Barbara. All subjects had normal/corrected vision and no history
of neurological disease or psychiatric disorders. Two subjects were ex-
cluded from the analysis: one did not complete the experiment, and
the other had persistent head motion greater than 5 mm during MRI
scanning.

Subjects performed a training regimen that involved the simultan-
eous acquisition of 6 different 10-element sequences using a discrete
sequence production (DSP) task (Abrahamse et al. 2013). Subjects
trained both at home on their personal laptop computers and inside an
MRI scanner during the collection of event-related BOLD. Subjects
began the experiment with an initial pre-training session inside the
MRI scanner. Afterwards, they completed a minimum of 10 home train-
ing sessions (1 session/day) during a 14-day interval and then returned
to the MRI scanner for a training scan. This pattern between home and
scanner training was repeated 3 times, so that by the end of the training
regimen, subjects completed at least 30 home training sessions and 3
training scan sessions.

Subjects practiced the DSP sequences with their right hand using
either a laptop keyboard (home training) or a button box (scanner
training) (Fig. 1). Each trial started with the presentation of a sequence
identity cue, followed 2 s later by the first DSP target, which also
served as the “go cue”. Sequence targets were displayed with 5 hori-
zontally presented stimuli, and responses to these followed a spatially
compatible left to right mapping, such that the thumb corresponded to
the leftmost stimulus and the pinky finger corresponded to the right-
most stimulus. A target highlighted in red served as the instruction for
which key to press. Once the correct response was made, the next
target in the sequence was immediately highlighted in red. Unlike the
serial reaction time (SRT) task, there was no inter-stimulus interval
between successive target instructions, allowing subjects to generate
rapid, arpeggio-like motor sequences. In the event of an error, subjects
were given visual feedback (“Incorrect”), and the target remained high-
lighted until the correct response was made. Subjects had an unlimited
amount of time to produce a sequence but were instructed to produce
the sequences as quickly and accurately as possible. The presentation
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of a fixation cross “+” signified the end of a trial and remained on the
screen until the onset of the next sequence identity cue. Sequences
were constructed so that each stimulus–response location and corre-
sponding finger was used twice per 10-element sequence. Sequences
with repetition (e.g., “2–2”), and regularities such as trills (e.g., “3–2–
3”) and runs (e.g., “2–3–4”) were excluded.

Sequence familiarity was manipulated during home training by pre-
senting the 6 sequences at 3 exposure levels. During each home train-
ing session, subjects practiced 150 randomly ordered trials so that 2
sequences were extensively practiced (EXT, 64 trials/sequence), 2
were moderately practiced (MOD, 10 trials/sequence), and 2 were min-
imally practiced (MIN, 1 trial/sequence). The same sequence pairs
were used for EXT, MOD, and MIN trials on all days and for all subjects.
There was no counterbalancing of the sequences across the different
exposure conditions. The sequences were of comparable difficulty, as
reflected by performance during the pre-training scan session done
prior to any home training (see Results).

The degree of RS was assessed separately for MIN, MOD, and EXT
sequences. This was done by having subjects practice the sequences in
groups of 10 trials from the same exposure level (MIN, MOD, or EXT).
Within each 10 trial group (5 trials/sequence), sequence presentation
order was pseudorandom so that there could be, on successive trials,
the repeated presentation of the same sequence, or a non-repeat (we
refer to this as a new sequence). At the end of each 10 trial group, sub-
jects received performance feedback that reported the number of error-
free sequences as well as the average time needed to complete a
correct sequence. Each scan session contained a total of 300 trials,
which was divided up into 5 scan runs with each run containing 6 trial
groups. Because sequence production was self-paced, the number of
scanned TRs varied between subject and session. In order to collect
event-related fMRI data, the inter-trial interval ranged between 0 and 6
s (average of ∼5 s). The number of sequence trials performed during
each scan session was the same for all subjects with the exception of 2
abbreviated sessions due to technical problems. In each of these 2
cases, the scanning protocol was stopped short, so that 4 out of the
normally acquired 5 runs were completed. Data from these sessions
are included in the presented analysis.

During scanning, subject comfort was improved by placing padding
under the knees and right arm. Head motion was minimized by insert-
ing padded wedges between the subject and head coil of the MRI
scanner. Subjects made responses using a fiber-optic response box de-
signed with a similar configuration of buttons as those found on the
typical laptop used during training (Fig. 1b). The center-to-center
spacing between the top row of buttons was 20 mm, and the spacing

between the top row and lower left thumb button was 32 mm. The re-
sponse box was stabilized using a board so that positioning was adjust-
able with respect to reach and hand size.

Behavioral Apparatus
Stimulus presentation during home training was controlled via each
subject’s laptop computer using PsychtoolBox Version 3 (http://www.
psychtoolbox.org) in conjunction with Octave 3.2.4 (an open source
version similar to MATLAB). Keyboard sampling rate was set to 200
Hz. Scan sessions were controlled using a laptop computer running
MATLAB version 7.1 (Mathworks). A custom fiber-optic button box
and transducer handled key-press responses and response times (RTs)
via a serial port (200 Hz polling latency; button box: HHSC-1 × 4-L;
transducer: fORP932; Current Designs).

Imaging Procedures
A 3.0 T Siemens Trio with a 12-channel phased-array head coil was
used for the acquisition of BOLD. A single-shot echo planar imaging
sequence that is sensitive to BOLD contrast was used to acquire 37
slices per repetition time (TR = 2000 ms, 3 mm thickness, and 0.5 mm
gap), echo time (TE) of 30 ms, flip angle of 90°, field of view (FOV) of
192 mm, and 64 × 64 acquisition matrix. Prior to the acquisition of
BOLD, a high-resolution T1-weighted sagittal sequence image of the
whole brain was obtained (TR = 15.0 ms; TE = 4.2 ms; flip angle = 9°,
3D acquisition, FOV = 256 mm; slice thickness = 0.89 mm, acquisition
matrix = 256 × 256).

Data Analysis: Behavior
Three behavioral variables of interest were collected during scanning
1) the time elapsed from the presentation of the first DSP target and
the first button press, or RT; 2) the time needed to complete the entire
sequence of 10 button presses starting with the first key press, or
movement time (MT); 3) error trials that included any incorrect re-
sponse. For each scan session, RT and MT were grouped, preserving
temporal order, into 5 bins of 10 trials. For each of these variables,
effects of learning were tested by using a three-way repeated-
measures ANOVA (session, trial bin, and exposure condition), so that
subject was treated as a random factor. Error was grouped according
to exposure condition and session and then evaluated using a
two-way repeated-measures ANOVA. Because RS was used to measure
systematic changes in BOLD amplitude through sequence repetition,
it was also important to test whether there were any performance
effects due to behavioral priming. A three-way repeated-measures
ANOVA was used to measure effects due to priming, with the factors
being session, exposure condition, and repetition (either new or re-
peated trial).

The training regimen required subjects to learn the sequences sim-
ultaneously at 3 different exposure levels (MIN, MOD, and EXT). As
result, 30 training days were needed to complete approximately 200
MIN sequence trials, but only 3 days were needed to complete the
same amount of EXT sequence trials. These differences in training in-
tensity enabled the dissociation of effects related to the depth of train-
ing, measured as the actual number of practice trials performed for a
given sequence, from effects related to the overall amount of time
spent on task. To test whether learning is determined by training
depth, performance during scanning was compared between the dif-
ferent exposure conditions that were matched in terms of physical
practice. This allowed for direct comparisons between MIN and MOD
after 140, 150, and 190 trials during scanning. For a more expanded
scope, we extended this analysis to include all home and scanner train-
ing data points (see Supplementary Material).

The expression of a motor skill was characterized by 1) the appear-
ance of predictive, rather than cued, movements and (2) the emergence
of a relative plateau in MT-based performance. In order to conclude
that a given finger movement is predictive, the duration between suc-
cessive key presses, or inter-key interval (IKI), should be faster than a
reactive movement to an unknown DSP stimulus. In this respect, pre-
dictive movements are generated using the memory of practiced motor
patterns rather than being directed by the sequence stimuli. This

Figure 1. Trial structure and stimulus–response (S-R) mapping. (a) A trial began with
the visual presentation of a sequence identity cue (2 s), which was followed by the
initial DSP stimulus (go cue). A correct key press led to the immediate succession of
DSP target stimuli. Subjects received feedback “+” signaling sequence completion
and waited (0–6 s) for the next trial. (b) Direct S-R mapping between response device,
either MRI-compatible button box (shown) or keyboard, and the right hand.
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method is similar to generative tests for sequence knowledge common-
ly employed in studies using a SRT task but is different in that re-
presentation strength is quantified over the course of learning rather
than as a test after training is complete. We adopted the criterion for
predictive responses as follows. Using only correct sequence trials, we
chose the 75th percentile of the IKIs (220 ± 65 ms) within the MIN
trials from the last training scan as a threshold for labeling an IKI as
predictive. This is a conservative estimate, because at this point in train-
ing, subjects had already practiced each MIN sequence for approxi-
mately 150 trials. Of note, a similar proportion of the above threshold
IKIs were obtained across a range of other percentiles used as the
cutoff (98–50%). The number of IKIs per trial that were faster than the
threshold was then compared across exposure condition and session
using a two-way repeated-measures ANOVA.

In order to estimate a time in training when a subject’s performance
reached a virtual plateau, we fit each subject’s MT data to a double-
exponential model using all correct trials collected both at home and
during scanner training sessions from the EXT sequences. Using the
model estimate, the MT plateau was defined as the point on the slope
where the estimated MT changed less than 0.25 ms over a sliding
5-trial window. The midpoint of this window was then labeled as the
time when a subject reached a relative plateau in MT performance. A
similar approach was used to test whether MOD and MIN sequences
had reached performance plateau.

Data Analysis: fMRI
Functional imaging data were processed and analyzed using Statistical
Parametric Mapping (SPM8, Wellcome Department of Cognitive Neur-
ology). Raw functional data were realigned, co-registered to the native
T1 (using the first mean image as the base image for all functional
scans), normalized to the MNI-152 template with a re-sliced resolution
of 3 × 3 × 3 mm, and then smoothed with a kernel of 8 mm full-width at
half-maximum.

For each subject, the BOLD response was modeled using a single
design matrix with parameters estimated using the general linear
model (GLM). An event-related design was used to model the expres-
sion of sequence-specific representations, with trial onset correspond-
ing to the presentation of the sequence identity cue, 2 s prior to the
presentation of the initial DSP target stimulus. It should be noted that
this approach includes both the preparation and production of learned
sequences. The design matrix for each subject was constructed using
separate factors for each scan session (pre-training, training sessions
1–3), exposure condition (MIN, MOD, and EXT), and repetition (new
or repeated trial). In order for a trial to be coded as a repeated event,
the previous trial must have been the exact same sequence, and the
previous trial must have been performed correctly. Those repeated
trials that followed error trials, as well as the error trials themselves,
were modeled using a separate column in the design matrix. In order
to account for non-specific effects of session, blocking variables were
included for each scan run.

Potential differences in BOLD due to MT-related kinematics were ac-
counted for by using the MT from each trial as the trial duration for
modeled events. This approach has been shown to produce an accur-
ate estimation of the BOLD response in relationship to task duration
using the GLM (Grinband et al. 2008). In a previous unreported ana-
lysis, this approach was combined with an additional column in the
design matrix that also included the trial-wise MT as a covariate of non-
interest. Because no appreciable differences were found between the 2
models, we report results pertaining to the former model that corrects
for MT in terms of stimulus duration. Note that as MTs shorten with
training, there is a greater time interval without movement between
trials in later scan sessions. This in turn could interact with the esti-
mates of RS, which compare new and repeated events. In order to
control for the potential influence of the time elapsed between trials,
each event was weighted by the time elapsed from the previous trial.
Following center mean normalization, this column was added to the
model as a covariate of non-interest. Events were convolved using the
canonical hemodynamic response function and temporal derivative in
SPM8. Using freely available software (Steffener et al. 2010), corre-
sponding beta image pairs for each event type (HRF and temporal

derivative) were then combined at the voxel level to form a magnitude
image (Calhoun et al. 2004):

H ¼ sign ðB̂1Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B̂2
1 þ B̂2

2

q
;

where H is the combined amplitude of the estimation of BOLD ðB̂1Þ
and temporal derivative ðB̂2Þ: RS magnitude images were calculated by
subtracting the image for repeated trials from the image for new trials.
This was done separately for each exposure condition (MIN, MOD, and
EXT) and scan session. The resulting RS magnitude images were then
entered into the group analysis.

Higher-level mixed-effects group analysis was performed using the
full-factorial design option in SPM. A single factor (12 levels: 1 for each
session and exposure condition) was used to model skill-specific longi-
tudinal effects. Model factor levels were entered according to the cu-
mulative amount of training trials performed rather than chronological
time: pre-training (MIN/MOD/EXT), MIN during training scans 1–3,
MOD during training scans 1–3, and EXT during training scans 1–3.

The main objective of the experiment was to test for the presence of
temporal dynamics in the BOLD RS that might change at multiple time-
scales across extensive practice. To do this, contrasts for 1 main effect
and 3 main temporal interactions were evaluated at the group level.

1. The main effect of RS, collapsed across all sequences, scanning ses-
sions, and types of training intensity, was calculated using a t-test
and corrected for multiple comparisons using family-wise error
(FWE) correction (P < 0.05). A less conservative version of this con-
trast (P < 0.001, uncorrected) was used as a mask to constrain the
search volume for the remaining contrasts.

2. To investigate the effects related to the initial formation of
sequence-specific knowledge, we applied a linear subtraction of RS
effects for trials performed during the pre-training scan (i.e., when
the sequences are unknown or weakly known) from MRI training
scan 1, when the MIN sequences were weakly known. We predicted
that a broad set of motor areas would show increasing RS due to the
initial formation of MIN sequence representations.

3. Efficiency models predict that motor areas will show a progressive
reduction in BOLD activation with the continuation of training. This
general compression of activation will lead to a decrease in RS mag-
nitude. In order to test for potential changes of RS magnitude sug-
gestive of skill-specific efficiency, a linear model was used to
measure longitudinal decreases in RS magnitude as a function of
the total number of practice trials performed. RS magnitudes for
each type of sequence from training scan sessions 1–3 were
weighted by the amount of prior training experience.

4. Specialization models predict that with extensive training, task-
sensitive motor regions, some of which that might show efficiency
effects earlier in training, will show a pattern of slowly increasing
RS. In order to test for the expansion of sequence-specific represen-
tations, herein referred to as skill-specific specialization, a quadratic
interaction was applied over all MIN, MOD, and EXT sequences
from training scan sessions 1–3, ordered by prior exposure.

5. Evidence for more than 1 timescale within any given brain region
was evaluated using a standard conjunction approach on the
second-level group contrasts specified earlier (Contrasts 2–4). Using
the logical “and” approach as specified by Nichols et al. (2005), any
voxels identified through conjunction were required to be individu-
ally significant. Commonalities were assessed using 3 separate tests
1) between initial learning, efficiency, and specialization; 2)
between initial learning and efficiency; 3) between efficiency and
specialization.

Contrasts 2–4 were tested using an initial liberal threshold of P < 0.005,
with a minimum cluster size of 10 voxels, and restricted using the
mask image corresponding to the main RS effect of task obtained in
Contrast 1. These were then corrected for false-positives using topo-
logical false discovery rate (FDR) correction. Only clusters surviving
correction for multiple comparisons are reported in table form. Clus-
ters larger than 100 voxels were further inspected for additional sub-
maxima, and those surviving FDR correction are reported in table
form. In order to reduce the possibility of redundant sub-maxima, we
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selected only those peaks that did not share any voxels when applied
with a spherical region of interest (ROI, 6 mm radius) centered on each
peak. Significance was similarly measured for the conjunction analysis
except that clusters containing more than 20 voxels were inspected for
sub-maxima.

To generate unbiased effect size plots from the different contrasts,
the linear and quadratic temporal interactions were repeatedly gener-
ated using a leave-one-subject-out approach. That is, the estimation of
the higher-level group mixed-effects model was done using all but 1
subject (i.e., 19 instead of 20 subjects), and from this, the identified
local maxima were used to extract mean beta weights from the remain-
ing subject. Mean beta weights were extracted using a spherical ROI
(6 mm radius) centered on each local maxima coordinate. This proced-
ure iterated over each of the 20 subjects, so that the displayed ampli-
tudes for each interaction correspond to the overall mean and SEM of
the left out subjects’ beta weights.

Results

Behavior Effects: Baseline Performance during
Pre-training
In order to determine whether the sequences were equally
challenging at the start of training, performance during the
pre-training session was evaluated using repeated-measure
ANOVA. There was no significant effect of condition (MIN,
MOD, and EXT) for MT; however, main effects of condition
were found for both RT [F2,19 = 4.06, P < 0.05] and error
[F2,19 = 6.9, P < 0.005]. The effect of RT was driven by small,
but significantly slower RT for the MIN sequences with respect
to either MOD or EXT (MIN vs. MOD: t = 2.44, P < 0.05; MIN
vs. EXT: t = 2.22, P < 0.05). In addition, the accuracy for the
EXT sequences was lower than MIN or MOD during pre-
training (MIN vs. EXT: t = 3.13, P < 0.01; MOD vs. EXT: t = 2.41,
P < 0.05). Despite low accuracy during pre-training, this
pattern of low EXT accuracy was not carried forward during
training (see Results).

Behavior Effects: Initial Learning: Pre-training and
Training Scan 1 MIN
To determine how performance improved during initial learn-
ing, paired t-test comparisons were used to evaluate differ-
ences in MT, RT, and error between the pre-training scan
session and the MIN trials from training scan 1. As predicted,
subjects initiated (RT: t = 4.26, P < 0.0001) and completed (MT:
t = 10.71, P < 0.00001) the sequences faster after a brief period
of training. However, their improvement in speed was accom-
panied by a decrement in accuracy (error: t = 5.30, P < 0.0001),
altogether being consistent with a speed–accuracy tradeoff.

Behavior Effects: Training Scans 1–3
The impact that practice exposure (MIN, MOD, and EXT) has
on MT performance during the scan test sessions was evalu-
ated using a three-way repeated-measures ANOVA (practice ex-
posure × session × time bin). MT shortened dramatically as a
function of practice exposure [F2,38 = 149.75, P < 0.00001],
session [F2,38 = 65.56, P < 0.00001] and trial bin [F4,76 = 38.84,
P < 0.00001], indicating that performance improved as a func-
tion of number of practice trials (Fig. 2a). There was a signifi-
cant interaction between practice exposure and session
[F4,76 = 13.45, P < 0.00001]. Post hoc testing (test session 3–test
session 1) revealed that this interaction in MT performance
across sessions was determined by MIN and MOD improve-
ment relative to EXT (MIN vs. EXT: t = 4.69, P < 0.001; MOD vs.

EXT: t = 6.32, P < 0.00001). This effect was driven by decreas-
ing performance gains, which occurred as a function of the
overall amount of practice. Because the EXT sequences were
trained at a higher intensity during home training, perform-
ance improvements from 1 scan session to the next were ex-
pected to be relatively small compared with between-session
improvements for MOD and MIN. Within-session performance
also improved in relation to training depth as revealed by an
interaction between exposure condition and trial bin [exposure
× trial bin: [F8,152 = 15.69, P < 0.00001]. This effect was driven
by larger within-session gains for MIN relative to MOD and
EXT sequences (MIN vs. MOD: t = 7.58, P < 0.00001; MIN vs.
EXT: t = 3.78, P < 0.001) and suggests that MIN performance is
affected by the amount of practice rather than the amount of
time spent on the task in general.

Although MTs became faster over the course of learning, it
is notable that performance was sometimes slower at the start
of a new scan session relative to the end of the previous scan
session (Fig. 2a). For instance, MTs for MIN at the start of scan
3 were slower than those at the end of scan 2 (t =−2.85; P =
0.01). However, no other direct comparisons were significant
(e.g., EXT start scan 3 vs. EXT end scan 2; t =−1.70, P = 0.1).
It is conceivable that this slight fluctuation in performance
could be due to differences between learning apparatus and

Figure 2. Performance effects during learning. (a) Chronologically ordered MTs from
the scanning sessions reveal widely different amounts of improvement as a function of
prior practice exposure. (b) MTs ordered to show the cumulative effect of practice.
Note the similar performance for paired MOD and MIN sequences at 140, 150, and
190 trials of exposure, even though these comparisons span 2–3 weeks of chronologic
time.
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environment (home/scanner training). It is perhaps more
likely that this effect is driven by the relatively small amount of
training for the MIN sequences (1 trial/session) during the
home training sessions. Although we did not set out to test
memory decay, it is possible that such a limited exposure
could lead to a drop in performance. Altogether, these small
effects are unlikely to have any influence on RS magnitude
effects of learning.

RT was evaluated as a secondary performance measure
using a similar three-way repeated-measures ANOVA with
practice exposure, session, and trial bin serving as the factors.
We found effects of exposure [F2,38 = 55.18, P < 0.00001] and
session [F2,38 = 11.68, P < 0.0001], indicating that subjects in-
itiated sequences faster with increased practice exposure. An
interaction between practice exposure and session further sup-
ported this perspective, with rate of improvement in RT occur-
ring more strongly over sessions for MIN with respect to EXT
(MIN vs. EXT: t = 2.62; P = 0.0167). An interaction between
practice exposure and trial bin [F8,152 = 3.91, P < 0.001] re-
vealed that within-session RT change differed between expos-
ure conditions.

Error rates were compared over the course of training using
a two-way repeated-measures ANOVA with practice exposure
and session serving as factors. A significant main effect of prac-
tice exposure confirmed that more errors were made for MIN
than either MOD or EXT sequences [F2,38 = 9.54, P < 0.001]. An
interaction [F4,76 = 2.78, P < 0.05] showed that subjects gradual-
ly improved in error for MIN over time but showed some-
what of the opposite pattern for MOD and EXT, indicative of a
possible change in speed–accuracy tradeoff over long-term
practice.

The above-mentioned findings suggest that sequence per-
formance might be determined entirely by the amount of prior
physical practice, with no additional gains from having prac-
ticed other sequences. If true, then there should be no differ-
ence in performance between different sequence exposure
conditions (e.g., MIN vs. MOD) if the amount of physical prac-
tice between conditions is matched. To test this idea, compari-
sons were made between MIN and MOD sequence MT data
acquired during scanning. These data were matched in terms
of exposure but differed substantially in the overall amount of
time spent practicing the task. For instance, 190 MIN sequence
trials were completed during training scan 3 whereas 190
MOD trials were completed during training scan 1. We per-
formed paired t-test comparisons of MT after the completion of
3 different amounts of training (140, 150, and 190 trials). We
found no difference between any of these pairs that were
matched in terms of training amount (140 trials: t = 1.43, P =
0.17; 150 trials: t = 1.43, P = 0.17; 190 trials: t = 1.24, P = 0.23),
indicating that performance gains are dominated by the
amount of physical practice (Fig. 2b). The same conclusion
was met with comparisons using either RT (140 trials, t =
−0.0124, P = 0.99; 150 trials: t = 0.7174, P = 0.48; 190 trials: t =
−0.5475, P = 0.59) or error (140 trials, t = 1.6839, P = 0.11; 150
trials: t = 2.4259, P = 0.03 (ns, α = 0.0167); 190 trials: t = 1.2789,
P = 0.22). This analysis suggests that time alone has little influ-
ence on performance. A similar conclusion was met when
comparing across all home and scanning behavior (see Supple-
mentary Material).

The experiment was primarily designed to test for changes
in RS of fMRI BOLD activity during learning. By pairing se-
quences with similar practice exposure, this approach could

control for longitudinal changes of movement kinematics, as
measured by MT or RT. Systematic differences in MT between
new and repeated events as a function of condition (MIN,
MOD, and EXT) and training scan session (1–3) were evaluated
using a three-way (practice exposure × session × repetition)
repeated-measures ANOVA. There was a significant main effect
of repetition [F1,19 = 133.26, P < 0.0001], revealing that MT for
repeat trials was generally faster than new trials. We also found
a significant interaction between condition and repetition
[F2,38 = 4.52, P < 0.05], which was driven by greater priming for
MIN compared with MOD (MIN vs. MOD: t = 3.03, P < 0.01).
While significant, these relative differences between new and
repeated trials were small, with the average change for MIN
being 115 ms (±73 ms), 73 ms (±35 ms) for MOD, and 86 ms
(±38 ms) for EXT. It is doubtful that this small difference in
movement duration would have an impact on the magnitude
of movement-related activity in motor areas. Further, there was
no significant interaction of repetition and session, suggesting
that the small differences between new and repeat trials were
stationary over the course of the experiment. Thus, there
should be no impact on RS measures acquired early versus late
in the experiment, and thus, no influence on longitudinal
changes of RS. There were no significant effects of repetition
on RT.

Behavioral Effects: Predictive Sequence Movements and
Performance Plateau
Subjects improved in overall sequence performance, expressed
through dramatically faster MTs. By the end of the experiment,
subjects could type out a complex, 10-element arpeggio in 1.6 s,
with some subjects able to complete a sequence in under
900 ms. This rapidity can only be achieved if subjects no
longer rely on the DSP stimuli to guide individual finger re-
sponses and strongly suggests that sequences are expressed as
a unified action rather than a simple chain of stimulus–response
behavior. To test for the emergence of unified sequence execu-
tion, IKIs faster than the upper 75% of the IKIs from MIN
training scan 3 were defined as predictive. For each practice ex-
posure level and scan session, the percent of predictive trials
were compared in a two-way repeated-measures ANOVA (prac-
tice exposure × session). There was a main effect for training
exposure [F2,38 = 105.37, P < 0.00001] and session [F2,38 =
52.72, P < 0.00001], and interaction [F4,76 = 6.86, P < 0.0001].
The interaction was driven by a larger within-condition
increase over sessions for the MOD sequences relative to MIN
and EXT (MIN vs. MOD: t = 3.70, P < 0.005; MOD vs. EXT: t =
3.18, P < 0.005). Subjects made substantial gains in predictive
IKIs between training scans 1 and 2 for MOD (t = 8.92, P <
0.0000001), at which point they had practiced 200–300 trials.
This can also be seen through the acceleration of learning in
Figure 2b from 200 to 300 trials. Interestingly, there was a
similar jump in predictive sequence movements for EXT (t =
5.23, P < 0.0001) between training scans 1 and 2. Given the
amount of trials needed to reach a virtual plateau in perform-
ance (see below section), this jump in predictive IKIs likely
reflects the transition from cue- to memory-guided sequence
production.

In order to determine when subjects reached a virtual
asymptote in performance, MTs for EXT sequences were fit
to a double-exponential model. The quality of the fits across in-
dividuals were strongly supportive of the model (adjusted
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R2 = 0.82). Using the estimated model, the rate of MT change
reached an asymptote after 915 trials (±291 trials) according to
a conservative incremental rate cutoff of 0.25 ms/trial. On
average, subjects reached this asymptote during their 13th
home training session (±4 sessions), which was achieved
between training scans 1 and 2. This indicates that the majority
of subjects had reached asymptotic performance by training
scan 2. To test whether asymptotic performance was achieved
earlier in training, both MIN and MOD sequences were also
evaluated using the same double-exponential model. The
model fits were acceptable for both (MIN-adjusted R2 = 0.73;
MOD-adjusted R2 = 0.77). However, no subjects reached a
plateau in performance for either exposure condition, which is
consistent with the above-mentioned finding that approxi-
mately double the amount of MOD practice trials are needed to
reach a performance plateau.

Imaging Results: Main Effect of the DSP Task as Revealed
through Repetition Suppression
The magnitude of RS revealed a robust sensitivity throughout
the motor system whenever the same sequence was repeated.
The RS response occurred over an extensive network of motor
regions (Fig. 3). These regions largely overlap with motor
areas that are active during sequencing compared with rest
(Grafton et al. 1992, 1995; Jenkins et al. 1994). This wide-
spread pattern of activation suggests that primary and second-
ary motor system regions can represent information that is
needed to either retrieve or execute a specific motor sequence.
This main effect collapsed across trials from all exposure con-
ditions from all scan sessions. We used this contrast as a mask
in subsequent analyses to characterize learning effects of RS.

The Formation of Initial Sequence Knowledge
Previous accounts of sequence learning have commonly
focused on locating rapid changes of brain activation that
occur over the course of a single training session. Regions in-
volved in the expression of sequence-specific representations,
rather than that which simply pertains to general task knowl-
edge, should show increasing RS over a corresponding rapid
timescale. To test for evidence of RS changes on this rapid
timescale, we performed a simple linear contrast between MIN
training scan 1 (110 trials/sequence) and the pre-training scan
(50 trials/sequence). There was a robust increase in RS magni-
tude in primary and secondary cortical and subcortical motor
regions, relative to the pre-training session (Fig. 4, Table 1).
This suggests that motor regions, as exemplified by the pre-
motor cortex (PMd/ bilateral PMv) and cerebellum (bilateral
lobule VI), support the initial formation of specific sequence
knowledge at a rapid timescale. Based on previous single-
session learning studies, it does seem possible to find evidence
of rapid timescale learning over the course of the pre-training
session. However, the comparison of early and late pre-
training RS failed to produce any results within the motor
system, even at a liberal uncorrected threshold (P < 0.01). The
lack of within-session change at the start of the experiment is
unsurprising, because the sequences were unfamiliar. This is
consistent with the perspective that sequence-specific repre-
sentations did not solidify during the pre-training session. The
lack of familiarity therefore leads to the recruitment of similar
population activity from one trial to the next, regardless of
whether the same sequence has been produced on successive
trials. This demonstrates the sensitivity of RS to the develop-
ment of sequence-specific representations.

Figure 3. Main effect of RS magnitude for executing the DSP task, collapsed across
all sequences, all sessions, and all training intensities. Results are shown at a
whole-brain-corrected threshold of P< 0.05 (FWE).

Figure 4. Initial formation of sequence knowledge. Primary and secondary cortical and
subcortical motor system regions show increased RS at a rapid timescale (training
session 1 MIN> pre-training session). Images are displayed at a corrected threshold
using topological FDR (q<0.05), and follow neurological convention (left image is left
brain).
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Effects of Skill-Specific Efficiency
Previous evidence from skilled performance in humans (Steele
and Penhune 2010; Wiestler and Diedrichsen 2013) and long-
term learning in non-human primates (Picard et al. 2013) sug-
gests that the expression of skilled movement comes through
the generation of efficient neural activity in the motor system.
This suggests that there should be regions that show a reduc-
tion in RS over the course of training. Skill-specific efficiency
was defined as the longitudinal reduction of sequence-specific
RS as a function of amount of prior practice during training
scans 1–3. As predicted, there was a substantial decrease in RS
magnitude as a function of prior training exposure (Fig. 5,
Table 2). An expansive cluster of activation was localized to the
contralateral left hemisphere cortex. Significant voxels in this
cluster spanned dorsally from just rostral to the juncture of the
precentral and superior frontal sulci (pre-PMd) caudally
through the precentral and postcentral gyrii and into the super-
ior parietal gyrus. Within the cluster, local sub-maxima of note
included the M1, S1, the SMA, and the PMd. Extracted param-
eter estimates of these local peaks all revealed strong decreases
in RS magnitude over the course of training. It is important to
note that this decrease in RS was occurring while there was
also an overall decrease in BOLD magnitude, for both new and
repeated trials, as a function of practice exposure (Supplemen-
tary Fig. 2). The reduction of RS with practice therefore reflects
a compression of the difference in BOLD between new and re-
peated events. In this respect, skill-specific efficiency emerges
through the continued reduction of neural resources that are
needed for the expression of a motor skill. Additional regions
showing this pattern over the 3 training scans included the
bilateral cerebellum (lobule VI), left ventrolateral thalamic
nucleus (VL), right PMd, and the right anterior intraparietal
sulcus (aIPS). The pattern of decreasing RS magnitude in these
regions suggests that they are continually modified over the
course of extended learning.

Effects of Skill-Specific Specialization
Skill-specific specialization was defined as a late increase of
sequence-specific RS. This was tested using a quadratic function
over all trials (sorted by prior training exposure) acquired in
training scans 1–3. By using a quadratic, the model allows for
initial declines in RS that might occur with efficiency effects, fol-
lowed by later increases of RS related to specialization. Regions

showing this pattern of skill-specific specialization included the
left M1, SMA, right anterior cerebellum, and the right ventral pre-
motor (PMv) cortex (Fig. 6, Table 3). Visual inspection of the RS
parameter weights shows that each region expresses a complex
pattern of RS over the course of training. After the initial increase
of RS, there is substantial reduction of RS typically after the first
200 training trials. Critically, these regions show an eventual in-
crease in RS magnitude, which suggests that these regions
support the ongoing formation of motor sequences during slow
but continued incremental gains in performance. Of note, the RS
magnitude weights in these regions begin to increase between
740 and 1480 trials. This corresponds roughly to the same time
that behavior has reached a performance plateau, and moreover,
after there is a sharp increase in the proportion of predictive se-
quence movements. We also tested for simple linear increases of
RS over training scans 1–3, without any significant results. This
suggests that there is no area with pure specialization of function
that does not also undergo prior changes related to efficiency.

Overlapping Effects of Initial Learning, Efficiency, and
Specialization
Within many regions, there was a striking degree of overlap for
changes taking place along different timescales of learning, as
revealed through the conjunction analysis (Fig. 7, Table 4).
Regions undergoing an initial sensitivity to the formation of se-
quence representations and then a subsequent decrease in their
relative contribution (a pattern consistent with skill-specific effi-
ciency) included the premotor cortex (bilateral PMd/PMv/SMA)
and anterior cerebellum (bilateral lobule VI). The primary sen-
sorimotor cortex (M1/S1) demonstrated further complex dy-
namics over learning with initial increases and decreases of RS
as well as subsequent slow increases in sequence-specific
representation late in learning. This overall pattern captures an
interesting feature in that there is an initial expansion of sensori-
motor involvement, which is then followed by the gradual con-
centration of sequence-specific specialization.

Comparisons with Changes of BOLDMagnitude
Much of what we know regarding functional plasticity of
motor sequence learning has come from the standard GLM ap-
proach and investigation of general BOLD magnitude change
over time. For the current task, this time-dependent approach
is of limited value because of the dramatic changes in move-
ment kinematics over time. That was a major reason to employ
RS for detecting sequence-specific changes independent of ki-
nematics. Nevertheless, initial learning, efficiency, and special-
ization contrasts were also carried out with respect to general
BOLD magnitude change as an exploratory analysis. Using this
approach, we found a prominent efficiency effect across the
motor system, which was similar to our skill-specific efficiency
results (Supplementary Fig. 3) and also consistent with previ-
ous effects of neural efficiency (Wu et al. 2004; Steele and
Penhune 2010). However, we failed to detect any changes
of BOLD due to initial learning or slow timescales effects.
Hence, RS affords a greater sensitivity for detecting longitudinal
changes of sequence representations.

Discussion

We identified brain areas supporting the expression of motor
sequence representations that were acquired over 6 weeks of

Table 1
Brain regions showing effects of the initial formation of sequence knowledge based on increasing
RS

Region Functional name Side MNI coordinates Voxels Peak T

x y z

Precentral gyrus PMv R 51 −4 43 106 4.47
Cerebellum Lobule VI R 30 −61 −26 117 4.35
Superior parietal gyrus SPL R 30 −67 46 38 4.17
Intraparietal sulcus aIPS L −39 −43 40 38 4.08
Cerebellum Lobule V L −24 −49 −26 76 4.07
Precentral gyrus PMv L −63 2 28 30 4.01
Precentral gyrus PMd L −21 −4 52 65 3.73
Postcentral gyrus M1/S1 L −45 −28 55 63 3.70
Superior frontal gyrus Pre-SMA/SMA L 0 5 58 42 3.33
Superior occipital gyrus sLO L −24 −67 58 46 3.32
Intraparietal sulcus aIPS R 33 −49 46 20 3.18

Note: Significance for all voxels tested with a group mixed-effects analysis. Sub-maxima for
clusters larger than 100 voxels are listed below the main cluster in which they are located. All
effects are corrected using topological FDR, or if sub-maxima, standard FDR correction (q< 0.05)
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training. Improving performance was shaped by the amount of
deliberate practice for each sequence without strong support
for generalization between sequences. The degree to which
motor areas represented a particular sequence changed over 3
timescales. Importantly, by using RS, these changes were inter-
preted as sequence-specific and free of potential confounds
related to changes in kinematics and general task familiarity.
Within the first 50–100 trials of practice, when sequence
knowledge was initially being formed, both primary and sec-
ondary motor areas demonstrated increasing sequence-specific
activity, as assessed by RS fMRI. With continued moderate
training over 100–700 trials, there was a widespread decline of
sequence-specific activity in both motor and other task-related
areas, a result that we label as skill-specific efficiency. With
more extensive practice over 1000–2000 trials, coinciding with
near asymptotic behavioral performance, a small set of motor
areas including M1, PMv, SMA, and anterior cerebellum in-
creased in their sequence-specific activity, indicative of late,
skill-specific specialization. Critically, we found that many
regions changed on at least 2 of these proposed timescales

demonstrating that functional contributions during learning
are non-monotonic and diverse across cortical regions.

Efficiency effects usually reflect a reduction of absolute
BOLD magnitude over time. Here, we consider skill-specific ef-
ficiency by testing for a reduction in RS magnitude that is inde-
pendent of overall reductions of BOLD. Skill-specific efficiency
was prominent in the contralateral primary sensorimotor
cortex and premotor regions including the PMd/PMv, SMA/
CMA, as well as the posterior parietal cortex. These regions
also show the general pattern of decreasing BOLD activation
as sequence learning progresses, which has been previously
observed both at fast (Wu et al. 2004; Floyer-Lea and Matthews
2005; Steele and Penhune 2010) and slower timescales over
several months to years of training (Jäncke et al. 2000; Picard
et al. 2013). Our results based on RS fMRI sharpen a general
model of efficiency by demonstrating that there is a decrease
that is sequence-specific.

Visual comparison of the parameter estimates from different
regions indicates that there is considerable diversity of how ef-
ficiency can be expressed. For example, there was an early sign

Figure 5. Effects of skill-specific efficiency. Motor system regions reflect skill-specific efficiency as evidenced by decreasing RS magnitude between 110 and 2120 practice trials.
Images are displayed at a corrected threshold using topological FDR (q< 0.05), and follow neurological convention (left image is left brain). Bar plots are obtained from local
maxima and extracted from the parameter estimates, ordered in terms of practice exposure rather than chronological time. SMA, supplementary motor area; M1, primary motor
cortex; PMd, dorsal premotor cortex; SMC, somatosensory cortex; IPS, intraparietal sulcus.
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of efficiency (110–170 trials) within lobule VI of the anterior
cerebellum, which might be related to the reduction of online
error correction (Doyon and Benali 2005; Grafton et al. 2008).
On the other hand, the left PMd, which is consistently
involved during sequence learning (Hardwick et al. 2013), de-
monstrated a slower appearance of skill-specific efficiency

(350–500 trials). This more sustained decay might reflect a
longer time to optimize the visuomotor task, which is in line
with the initial increase in predictive sequence behavior. This
regional variability in the time course of efficiency undermines
any ability to use changes of RS within any single region to
predict transitions between learning stages.

Decreasing RS could be due to either overall population
fatigue or sharpening due to the reduction of non-essential
neurons (Grill-Spector et al. 2006). We speculate that there is
an overall reduction in non-essential neurons, leaving just
those neurons that are needed to express a particular motor se-
quence skill. This suggests that over moderate timescales of
practice, the motor system resolves the initial cost of sustaining
a newly acquired motor skill through the gradual emergence
of a reduced set of optimally tuned neuronal populations and
elimination of non-essential populations.

We also found that a subset of regions demonstrated an in-
crease in RS magnitude at a slower timescale. Increasing RS
magnitude implies that there is an increase in representational
strength as the sequences were practiced beyond a point of
asymptotic performance. Because of the closely matched per-
formance on repeated trials with the RS paradigm, these in-
creases are unlikely to be due to faster rates of movement.
Skill-specific specialization occurred in the left sensorimotor
cortex, SMA, right PMv, and the ipsilateral (right) anterior cere-
bellum. These regions are all known to shape corticospinal
output (Dum and Strick 2005).

The left sensorimotor cortex, encompassing both banks of
the central sulcus, demonstrated substantial changes along
fast, moderate, and slow timescales (Fig. 7). Previous studies

Table 2
Brain regions showing evidence of RS-based neural efficiency

Region Functional name Side MNI coordinates Voxels Peak T

x y z

Precentral gyrus M1 (4a) L −51 −7 52 1598 5.79
Postcentral gyrus S1 (BA2) L −51 −22 43 5.71
Precentral gyrus M1 (4a) L −45 −13 46 5.51
Precentral gyrus PMd L −42 −4 49 5.30
Cingulate gyrus CMA R 12 5 49 5.12
Superior frontal gyrus SMA L 0 2 58 5.06
Precentral gyrus M1 (4p) L −36 −25 49 4.99
Postcentral gyrus S1 (BA2) L −45 −28 52 4.68
Intraparietal sulcus aIPS L −33 −40 43 4.64
Inferior occipital gyrus R 45 −67 −8 119 5.21
Intraparietal sulcus aIPS R 30 −46 49 388 5.07
Superior parietal gyrus SPL R 21 −58 52 5.00
Intraparietal sulcus aIPS R 36 −37 46 4.91
Precentral gyrus PMd R 27 −4 55 281 4.59
Occipital pole L −15 −91 −11 37 4.40
Parietal operculum L −54 −19 19 34 4.10
Thalamus VL L −15 −13 4 46 3.98
Inferior occipital gyrus L −42 −79 −2 63 3.88
Cerebellum Lobule VI L −21 −64 −23 35 3.85
Cerebellum Lobule VI R 30 −58 −29 35 3.47

Note: Significance for all voxels tested with a group mixed-effects analysis. Sub-maxima for
clusters larger than 100 voxels are listed below the main cluster in which they are located. All
effects are corrected using topological FDR, or if sub-maxima, standard FDR correction (q< 0.05).

Figure 6. Effects of skill-specific specialization. Motor system regions show a quadratic RS response as a function of physical practice, with early decreases followed by late
increases in RS. Images are displayed at a corrected threshold using topological FDR (q< 0.05), and follow neurological convention (left image is left brain). Bar plots are obtained
from local maxima, ordered in terms of practice exposure rather than chronological time. M1, primary motor cortex; PMv, ventral premotor cortex; SMA, supplementary motor area;
CB, cerebellum.
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have observed increasing extent of M1 activation with long-
term learning (Karni et al. 1995; Hlustík et al. 2004) as well as
sequence-specific neuronal activity (Matsuzaka et al. 2007).
The current study extends these results because subjects always
produced the sequences as quickly as possible, without any ex-
ternal pacing, so there was close correspondence with what was
actually learned during practice. Furthermore, by using RS, we
could establish that the changes in M1 were skill-specific and
not due to effects related to general task familiarity.

Other human studies investigating functional change in M1
with extensive practice have relied on comparisons between
novices and experts (Jäncke et al. 2000; Krings et al. 2000) or
have compared over-learned with random sequences in the
macaque (Picard et al. 2013). It is interesting to note that M1
change in these long-term studies is dominated by neural effi-
ciency. On the other hand, studies of structural change show
an overall expansion of cortical volume in task-relevant struc-
tures (Gaser and Schlaug 2003; Han et al. 2009; Park et al.

2009). Further studies are clearly needed to match longitudinal
functional and structural changes at the same timescales and
training intensities to see how these changes might interact.

Our locus of skill-specific specialization in M1 overlapped
with the posterior section of M1, referred to as either area 4p
or “new M1” (Geyer et al. 1996; Rathelot and Strick 2006).
Unlike 4a, the pyramidal neurons of 4p make far more direct
monosynaptic connections with motoneurons (Rathelot and
Strick 2006, 2009). One hypothesis for the evolution of 4p is
that it allows greater manual dexterity without the reliance on
central pattern generators or motor primitives from within the
spinal cord, which may be critical for sculpting novel muscle
synergies (Rathelot and Strick 2009). Furthermore, neuroima-
ging studies suggest that 4p is involved in execution of abstract
motor behavior (Binkofski et al. 2002; Sharma et al. 2008) and
that activation of 4p is critical in recovery from stroke (Ward
et al. 2003; Sharma et al. 2009).

The SMA is modulated at both fast and moderate time-
scales, with activation increasing following the completion of
relatively small amounts of practice (Grafton et al. 1992, 2002;
Bischoff-Grethe et al. 2004; Floyer-Lea and Matthews 2005).
We too observed that the pre-SMA/SMA demonstrated both an
initial rapid increase in RS magnitude as well as skill-specific
efficiency, which emerged following the completion of ap-
proximately 200 trials. Importantly, we found that a caudal
portion of pre-SMA/SMA demonstrated an effect of skill-
specific specialization (Fig. 6). It is curious to note that despite
strong support from non-human primate research (Tanji and
Shima 1994; Shima and Tanji 2000), direct evidence for the in-
volvement of the SMA in the expression of skilled motor se-
quences is lacking. Other long-term studies failed to observe
slow timescale effects of SMA (Hlustík et al. 2004; Lehéricy
et al. 2005), which could be due to the fact that previous ex-
periments confounded internally generated movement by
clamping performance during imaging.

The anterior cerebellum showed evidence of skill-specific
efficiency at a moderate timescale (Fig. 5), as well as specializa-
tion on a slow timescale (Fig. 6). Evidence for the involvement
of cerebellum in long-term learning is supported by cross-
sectional studies that report increased gray matter differences
in experts relative to controls (Gaser and Schlaug 2003; Han

Figure 7. Conjunction of functional timescales of learning. Colors correspond to the
timescale curves shown on the middle-right of the image. Red indicates initial learning,
efficiency, and specialization, blue indicates initial learning and efficiency, and green
indicates efficiency and specialization.

Table 4
Brain regions showing conjunction effects based on the strict overlap of different timescales of
learning

Region Functional name Side MNI coordinates Voxels Peak T

x y z

Overlap between initial learning, efficiency, and specialization
Postcentral gyrus S1 L −45 −28 55 51 3.70
Precentral gyrus M1 L −39 −16 49 3.33

Overlap between initial learning and efficiency
Precentral gyrus PMv R 51 −4 43 49 4.38
Precentral gyrus PMd R 42 −1 46 3.14
Postcentral gyrus S1 L −45 −28 55 60 3.70
Precentral gyrus M1 L −39 −16 49 3.33
Cerebellum Lobule VI L −24 −64 −23 24 3.49
Precentral gyrus PMd L −21 −4 52 54 3.49
Cerebellum Lobule VI R 30 −58 −26 28 3.36
Superior frontal gyrus SMA L 0 5 58 32 3.33

Overlap between efficiency and specialization
Precentral gyrus M1 L −36 −22 55 131 4.11
Postcentral gyrus S1 L −42 −28 58 3.84

Note: Significance for all voxels tested with a group mixed-effects analysis. Individual time effects
are corrected using topological FDR, or if sub-maxima, standard FDR correction (q< 0.05).

Table 3
Brain regions showing evidence of RS-based neural specialization

Region Functional name Side MNI coordinates Voxels Peak T

x y z

Precentral gyrus M1 (4p) L −36 −22 55 141 4.11
Precentral gyrus PMv R 60 8 34 27 3.70
Cerebellum Lobule VI R 24 −64 −29 39 3.42
Superior frontal gyrus SMA R 3 −4 52 28 3.35

Note:Significance for all voxels tested with a group mixed-effects analysis. Sub-maxima for
clusters larger than 100 voxels are listed below the main cluster in which they are located. All
effects are corrected using topological FDR, or if sub-maxima, standard FDR correction (q< 0.05).
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et al. 2009; Park et al. 2009). Further, a recently updated model
raises the notion that the cerebellum is continually active
during the expression of sequence skills, in order to update
forward-model parameters (Penhune and Steele 2012). Given
the interactivity between motor cortical areas and cerebellum
during learning (Grafton et al. 2008; Steele and Penhune 2010;
Galea et al. 2011), our results suggest that increased motor re-
presentations late in training reflect both a motor plan in M1
(including SMA) and a forward model in the cerebellum.

Sequence-specific activity also increased in the right PMv. Al-
though little direct evidence suggests a role for PMv in long-
term learning, it is known to be readily involved in the represen-
tation, decoding, and implementation of sequential behavior
(di Pellegrino et al. 1992; Grafton et al. 1996, 1997). It is also
involved in the prediction of perceptual sequence patterns
(Schubotz and von Cramon 2003). Similar to known properties
of the medial premotor cortex (Shima and Tanji 2000), the PMv
also appears to support the structure or organization of sequences.

Previous studies (Doyon et al. 2002; Lehéricy et al. 2005;
Coynel et al. 2010) and related models of sequence learning
(Hikosaka et al. 2002; Doyon and Benali 2005) suggest that the
basal ganglia are differentially engaged over the course of se-
quence learning. While we did find robust engagement of the
basal ganglia throughout the task (Fig. 3), we failed to find any
modulation of RS magnitude as a function of physical practice,
even at more liberal uncorrected thresholds. Our results
suggest that the basal ganglia are consistently engaged in the
expression of skill-specific representations throughout motor
learning. This does not exclude the possibility that these struc-
tures are involved in learning within the current context;
however, they do suggest that the basal ganglia are not critical
for the storage of sequence representations. This observation
is consistent with an account that the basal ganglia are modu-
lated by kinematics but not necessarily the storage of long-term
motor sequence information (Desmurget and Turner 2010;
Turner and Desmurget 2010).

There are some potential limitations of our study that merit
future explanation. We did not directly test whether the ob-
served timescales of changing brain activity corresponded to
particular cognitive operations. Specifically, there was no
control over implicit or explicit awareness. Like a musician
trying to learn a new arpeggio, our subjects always knew they
were learning sequences. The behavioral data show the partici-
pants could predict a sequence after approximately 250 trials.
Thus, over the course of the next 1850 trials, changes in the
brain were unlikely to be based on state transitions such as
the emergence of awareness. Furthermore, we cannot link the
current results to studies demonstrating the important role of
sleep on memory consolidation in the first few days of practice.
We assume that over the course of 6 weeks of practice, the
impact of initial memory consolidation can be discounted, and
that the overall effect of sleep would only be relevant for
analyzing individual differences of learning rates.

Supplementary Material
Supplementary Material can be found at http://www.cercor.oxford
journals.org/ online.
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