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We use behavioral methods, magnetoencephalography, and func-
tional MRI to investigate how human listeners discover temporal
patterns and statistical regularities in complex sound sequences.
Sensitivity to patterns is fundamental to sensory processing, in
particular in the auditory system, because most auditory signals only
have meaning as successions over time. Previous evidence suggests
that the brain is tuned to the statistics of sensory stimulation.
However, the process through which this arises has been elusive.
We demonstrate that listeners are remarkably sensitive to the
emergence of complex patterns within rapidly evolving sound
sequences, performing on par with an ideal observer model. Brain
responses reveal online processes of evidence accumulation—
dynamic changes in tonic activity precisely correlate with the expected
precision or predictability of ongoing auditory input—both in
terms of deterministic (first-order) structure and the entropy of random
sequences. Source analysis demonstrates an interaction between pri-
mary auditory cortex, hippocampus, and inferior frontal gyrus in the
process of discovering the regularity within the ongoing sound se-
quence. The results are consistent with precision based predictive
coding accounts of perceptual inference and provide compelling neu-
rophysiological evidence of the brain’s capacity to encode high-order
temporal structure in sensory signals.
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Accumulating work suggests that the brain is sensitive to statis-
tical regularities in sensory input, at multiple time scales (1–9).

The auditory system has been a useful testbed to investigate these
processes (2, 3, 9–13), largely due to the vantage point provided by
the mismatch negativity (MMN) paradigm (12, 13). The MMN is an
auditory-evoked response generated by sounds violating some reg-
ular aspect of the prior sequence and is hypothesized to reflect a
discrepancy between the memory trace, or expectations, generated
by the standard stimulus, and the deviant information (12,13). A
large body of MMN work has demonstrated that listeners are sen-
sitive to the violation of a variety of acoustic sequences, including
very complex regularities (14, 15), and interpreted as indirect evi-
dence for exquisite sensitivity to patterns in sound.
Due to the physical constraints that characterize animate objects

in the environment, sounds emanating from those sources are usu-
ally statistically regular and often repetitive (e.g., flapping wings and
locomotion sounds). The ability to discover regularities within the
sensory input is therefore a critical aspect of scene analysis: pro-
viding the anchor that enables an observer to identify and track a
behaviorally relevant signal from within the brouhaha of a busy
scene. Detecting temporally recurrent auditory features enables
listeners to recognize auditory objects (because most auditory signals
only have meaning as patterns over time), but also to form rules, or
models, that characterize the past and expected behavior of objects
within the environment (4, 16). Indeed, experimental work dem-
onstrates that regularities within an ongoing stimulus are exploited
to tune the system to the statistics of the current sensory input by
optimizing behavior (17), facilitating source segregation (10), and
enabling rapid detection of changes in one’s surroundings (18).

However, a crucial link (19), missing in much of the sensory
processing and statistical learning literature, is an understanding of
the processes through which patterns within ongoing sensory input
are recognized or instantiated in the first instance. Here, we use a
paradigm based on measuring brain responses to rapid tone-pip
sequences governed by specific statistical rules. This method enables
us to directly tap the brain processes subserving the online accu-
mulation of stimulus statistics and recognition of complex recurrent
patterns within the unfolding sensory input. The temporal properties
of listeners’ behavioral and brain responses are then compared with
the probabilistic predictions of a variable-order Markov model. The
model acts as an ideal listener free from constraints on memory
and attention and allows us to establish (upper) bounds on efficient
recognition. Our results demonstrate that the brains of (distracted)
human listeners act as Bayes optimal inference machines, supported
by a network of sources in primary sensory areas, the hippocampus,
and inferior frontal gyrus (IFG).

Results
Listeners are sensitive to repeating sound patterns, even when they
are embedded in rapid sequences (20–24). Here we describe a series
of behavioral and brain imaging experiments in which we sought to
understand the processes through which such regularities are de-
tected by the brain. The first experiment measured behavioral re-
sponses to transitions between regular and random acoustic patterns.
The remaining experiments used magnetoencephalography (MEG)
and functional MRI (fMRI) to examine brain responses to implicit
(bottom-up driven) pattern detection, whereas distracted listeners
performed an incidental (n-back) visual task.

Significance

We reveal the temporal dynamics and underlying neural sources
of the process by which the brain discovers complex temporal
patterns in rapidly unfolding sound sequences. We demonstrate
that the auditory system, supported by a network of auditory
cortical, hippocampal, and frontal sources, continually scans the
environment, efficiently represents complex stimulus statistics,
and rapidly (close to the bounds implied by an ideal observer
model) responds to emergence of regular patterns, even when
these are not behaviorally relevant. Neuronal activity correlated
with the predictability of ongoing auditory input, both in terms of
deterministic structure and the entropy of random sequences,
providing clear neurophysiological evidence of the brain’s capacity
to automatically encode high-order statistics in sensory input.
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The basic stimuli are illustrated in Fig. 1 (Audio Files S1–S8).
Signals consisted of sequences of abutting 50-ms tone-pips
arranged according to four frequency patterns: REG sequences
were generated by randomly selecting (with replacement) a number
(Rcyc; alphabet size) of frequencies from the pool and then iterating
that sequence to create a regularly repeating pattern (new patterns
were generated for each trial; Materials and Methods). RAND se-
quences consisted of tones of random frequencies. REG-RAND
and RAND-REG sequences contained a transition between a
regular and a random pattern. In addition, STEP stimuli, consisting
of a simple step change in frequency between two series of re-
peating tones, were used to estimate basic response times (RTs).
Transition times varied across trials.

Experiment 1: Psychophysics. Subjects listened to RAND-REG
stimuli, and two types of controls (REG-RAND and STEP; Fig. 1)
presented in random order. They were instructed to detect the
changes within the stimuli (transitions from RAND to REG or
vice versa) and respond as quickly as possible by pressing a key-
board button. RTs were measured by calculating the latency be-
tween the nominal transition and the subject’s key press. For each
subject and condition, RTs that deviated by more than 2 SDs from
the mean were discarded from analysis. RAND-REG responses
that occurred before the start of the second cycle (i.e., at a time
when the transition is physically undetectable) were counted as
false positives. The number of false positives was small (Table S1),
confirming that subjects responded when they were reasonably
sure of the occurrence of the transition.
RT to transitions in the STEP stimuli served to estimate the

response time to a simple (computationally nondemanding) stim-
ulus change. In addition to any effects of hardware latency, this
includes the time taken for the change to reach awareness and to
program and/or generate the motor response and the subject’s
general state of vigilance. RTs in RAND-REG and REG-RAND
were then baselined by subtracting the STEP RT. This procedure
estimates a lower-bound measure of the raw computation time
required to detect the emergence, or violation, of a regular pattern.
Theoretically, the transition in the REG-RAND sequence is de-

tectable immediately at the nominal transition time: the first tone-
pip in the RAND sequence suffices to signal that the regular pattern

has been violated. To detect the opposite transition—from random
to regular (RAND-REG)—an observer must wait until the pattern
begins to repeat (i.e., after the first cycle; effective transition; Fig. 1).
The number of further tones required to determine that a regular
pattern has emerged depends on the statistical properties of the
ongoing sequence and on the observer’s decision settings (how much
evidence is sufficient to conclude that the pattern is repeating). We
used an ideal observer model (Materials and Methods) to determine
the theoretical minimum number of tones required to detect the
transition. The model results (Fig. 2 C and D) confirm that REG-
RAND transitions are statistically resolvable after the first RAND
tone (Fig. 2D). For RAND-REG (Fig. 2C), model results suggest
that an observer with perfect memory requires about four tones
after the effective transition (i.e., 1 cycle + 4 tones) to detect the
regular pattern, irrespective of the size of the regularity cycle. This
result is in line with the fact that the ability to detect the regularity
should largely depend on the statistics (transition probabilities)
within the RAND sequence.
Participant detection results are summarized in Fig. 2 A and B

(see Table S1 for information on hits/false alarms and Fig. S1 and
Table S2 for information on RT variability). For Rcyc = 10, listeners
required, on average, 773 ms (15.5 tones) to detect the emergence
of a regular pattern in RAND-REG sequences (Fig. 2A, orange). As
the pattern is not detectable before the first cycle has elapsed, the
RT data suggest that listeners required only an additional half cycle
to detect the transition, performing on par with the estimate pro-
vided by the ideal observer model. RT distributions were computed
by collapsing data from all subjects and all trials. In the vast majority
of the trials (88.5%) subjects required fewer than two cycles to
detect the regularity.
When the regularity cycle is increased to 20 tones (Rcyc = 20),

listeners exhibit a significant lag relative to the ideal observer, on
average responding 9 tones later than the lower bound implied by
the model. Listeners required an average of 1,682 ms (33.6 tones)
to detect the regularity, with 80.4% of the responses occurring
before they heard two full repetitions of the pattern. The sequences
are too rapid for a conscious search of pattern emergence. Instead,
the regularity appears to automatically “pop out” of the ongoing
sound stream. To detect the emergence of regularity, the auditory
system must presumably maintain and update a statistical model of
the auditory input, registering tone repetitions, and decide at which
point there is sufficient evidence to indicate a regular pattern. The
results suggest that the ability to do this efficiently deteriorates after
Rcyc= 10, likely due to insufficient memory capacity.
Interestingly, despite behaving essentially like ideal observers in

the RAND-REG Rcyc = 10 condition, performance in the matching
REG-RAND condition (Fig. 2 A and B, blue bars) is significantly
more sluggish than that implied by an ideal observer: listeners re-
quired an average of 155 ms (3.1 tones) to detect the violation of the
REG pattern. This discrepancy is mirrored in the MEG data below.

Experiment 2: MEG Responses to the Emergence of Regular Patterns.
MEG responses to RAND-REG and REG-RAND signals (with
Rcyc = 10) were measured in experiment 2. Listeners were naïve to
the auditory stimuli and attended to an incidental visual task; the
observed brain responses can therefore be taken as reflecting largely
automatic processes. Group RMS data for the two stimulus condi-
tions, together with their respective no-change controls, are pre-
sented in Fig. 3A. Evoked responses consist of an onset peak
(M100) at ∼100-ms poststimulus onset and a subsequent rise to a
sustained response. Generally, brain activity evoked by both transi-
tions is characterized by large-scale DC shifts, on which responses to
individual tones are superimposed. To disambiguate slow (steady-
state) and fast (phasic stimulus-bound) responses, the data were also
high pass filtered (at 2 Hz), and those waveforms are presented in
the insets.
The response to the RAND-REG transition is manifested as a

gradual increase in amplitude (over 250 ms; five tones) and a

Fig. 1. Spectrograms of the stimuli used in the experiment (Top: RAND-REG;
Middle: REG-RAND; Bottom: STEP). Transitions are marked with a solid line
in each exemplar. The transition in RAND-REG is not detectable until one
regularity cycle has elapsed (i.e., until the pattern starts repeating). This time
point is labeled effective transition in the figure. REG (and RAND) patterns
were generated anew for each trial.
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subsequent plateau. The first difference between the mean RAND-
REG and RAND responses (determined with bootstrap resampling;
Materials and Methods) emerges at 775-ms after transition in the left
hemisphere (LH) and 790 ms in the right hemisphere (RH), i.e., just
under 16 tones. This estimate is essentially identical to that derived
behaviorally in experiment 1 (and to the ideal observer model),
indicating that regularity detection processes operate efficiently even
in naïve listeners, when the stimulus is not behaviorally relevant.
There were no differences between the high pass filtered responses
for this condition, suggesting that the detection of regularity is a
contextual effect that is expressed in changes in the amplitude of
slow (steady-state) activity.
The mean response to the transition in the REG-RAND signals

(cessation of a regular pattern) is characterized by a small power
increase at about 150 ms after transition (this is more prominent in
the high pass-filtered data), followed by a sharp decrease and a
plateau. The first significant difference between the mean REG-
RAND and REG responses occurs during the downward slope, at
223 ms after transition in the LH and 281 ms afrer transition in the
RH. High pass filtering the data reveals an earlier difference be-
tween REG and REG-RAND at 173–190 ms in the RH (not
significant in the LH), consistent with latencies commonly associ-
ated with the MMN response. Overall, the data suggest that, on
average, the brain requires about three tones to detect the viola-
tion of the regular pattern, consistent with the behavioral estimates
in experiment 1. Brain responses to the violation of regularity are
characterized by an MMN-like response and a sharp decrease in
DC power that occurs immediately after the MMN.

Single trial data, from a representative subject, are shown in Fig.
3B. The mean (across trials) REG-RAND response (Upper) first
emerges at 775 ms after transition (14.6 tones); however, this latency
is variable across trials as seen from the raster plot and summary
latency distribution. In contrast, REG-RAND response latencies are
consistent across trials, resulting in a sharp mean transition response
at 216 ms after transition (five tones). The delay (relative to an ideal
observer) in this condition therefore appears to be a constant,
presumably imposed, interval.
Rather than focusing on transitions between REG and RAND,

sensitivity to regularity can also be investigated by comparing brain
responses to the onset of REG and RAND sequences. During the
initial portion of the sequence (first cycle), responses to the two
types of sequences should be identical, with differences emerging as
soon as the auditory system discovers that the pattern is repeating.
Fig. 4 focuses on the initial responses to REG and RAND signals,
irrespective of whether they contain a later transition. The differ-
ence between the two responses emerges around 650 ms after onset
(roughly 13 tones or 1.3 cycles). A repeated measures bootstrap
analysis, thresholded at P < 0.01, comparing REG and RAND re-
sponses (Materials and Methods), indicated that a significant differ-
ence between conditions emerges at 743 ms in the LH and 746 ms in
the RH (i.e., just under 15 tones). At that time point, the response to
RAND plateaus while that to REG continues to rise, plateauing at
1,000 ms (2 cycles) after onset. Further to this, there is no evidence,
at least in the time-locked signal analyzed here, for additional ac-
cumulation of evidence concerning the regular pattern. Notably,
similarly to the transition responses (Fig. 3), the difference between

A B

C D

Fig. 2. Behavioral results (experiment 1). (A) Detection times for RAND-REG and REG-RAND transitions where REG patterns consisted of 10 tones (Rcyc = 10).
Bar plots show the mean RT as measured relative to the nominal transition time. The total height of the bars corresponds to the raw RTs from which the RT to
the STEP condition (hatched bars) was subtracted to obtain baselined RT (solid bars). Error bars indicate 1 SD. Also plotted are RT histograms for RAND-REG
(Upper) and REG-RAND (Lower). The histograms were computed over all trials and all subjects. Raw RT in each trial was corrected by that subject’s mean STEP
RT (thus resulting in instances of negative RT, or responses occurring before the nominal transition in RAND-REG). Orange or dark-blue colored bars indicate
responses which fell within 2 SDs from the mean. The results demonstrate that, on average, subjects require about 1.5 cycles to detect the emergence of
regularity (with >80% of the responses occurring before the pattern has repeated). The average time required to detect the violation of a REG pattern is
three tones. (B) Detection times for RAND-REG and REG-RAND transitions where REG patterns consisted of 20 tones (Rcyc = 20). (C) Ideal observer model
responses to RAND-REG signals showing the average information content of each tone-pip (from five tones before the transition). The model required a cycle +
four tones to detect the emergence of regularity. Shading indicates 2 SEM. (D) Ideal observer model responses to REG-RAND signals showing the average
information content of each tone-pip (from five tones before the transition). Transitions are detected immediately following the first RAND tone.
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REG and RAND is manifest as a marked increase in the DC am-
plitude (increase in power).
Source localization (Fig. 4B and Materials and Methods),

applied to the interval 650–950 ms (containing the period

over which REG and RAND diverge), showed increased
activity in auditory cortex (bilaterally), hippocampus (bi-
laterally), and IFG (RH only). Table S3 provides coordinate
information.

BA

Fig. 4. Buildup of regularity (experiment 2). (A) Responses to the onset of REG and RAND signals. The responses, including an M100 onset response, and a
rise to a sustained response, are identical up to about 650 ms. Subsequently, activity in REG continues to build up until about 1,000 ms (two cycles) where it
plateaus. Shading around the lines represents 2 SEM, computed with bootstrap resampling (60; 1,000 iterations; with replacement). Intervals where a re-
peated measures bootstrap procedure indicated significant differences between conditions are marked with a black line, underneath the brain response. (B)
MEG source localization results. Shown is a group SPM t map for the REG > RAND contrast in the 650- to 950-ms interval, thresholded at P = 0.005 (un-
corrected). These are superimposed on the MNI152 T1 template with the coronal and axial sections at x = 48, y = −18, and z = 3 mm, respectively.

A B

Fig. 3. MEG responses to the emergence and violation of a regular pattern. (A) Group-RMS (RMS of individual RMSs; 13 subjects) of brain responses to RAND-REG
(Upper) and REG-RAND (Lower) conditions, along with their respective no-change controls. The figures show the entire stimulus epoch, from stimulus onset (t = 0) to
offset (t= 4,500ms). Shaded areas around the curves represent twice the SEM, computedwith bootstrap resampling (60; 1,000 iterations; with replacement). Respective
transition times are marked by a dotted black line. Intervals where a repeated measures bootstrap procedure indicated significant differences between conditions are
marked with a black line, underneath the brain response. The high pass-filtered responses are also plotted underneath the main curve. (B) Single trial data from a
representative subject for RAND-REG (Upper) and REG-RAND (Lower). In each panel, the top plot displays the RMS response (in orange or blue, respectively) computed
across averaged data from the 40 selected channels for that subject (in gray). Raster plots (Lower) show the single trial data for each condition. Data for each trial were
temporally smoothed using a moving average over 10 adjacent samples (16.6 ms) and normalized between 0 and 1 to facilitate visualization. To quantify the temporal
jitter in transition responses, the transition time within each trial is estimated by cross-correlating the single trial RMS time course with an ascending (for RAND-REG) or
descending (REG-RAND) Heaviside-step function. The lags that gave the maximum correlation value for each trial are plotted in the histograms.
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Experiment 3: fMRI. fMRI BOLD activation was measured in re-
sponse to a continuous sequence randomly alternating between
REG (Rcyc = 10), RAND, and silent intervals. The duration of each
interval was randomized between 4 and 10 s. Due to the temporal
constraints associated with the fMRI technique, it is likely that this
manipulation predominantly captures the brain systems associated
with the sustained portion of REG- and RAND-related processing.
Fig. 5A presents the activation elicited by the REG and RAND
conditions, overlaid on the subjects’ average anatomy. Both signals
produced very similar patterns of activation along heschl’s gyrus
(HG) and planum temporale (PT) bilaterally (the approximate
position of HG is indicated by two arrowheads on the axial section
in Fig. 5A). For REG, the activation cluster was larger, extending
into more posterior regions of the superior temporal plane as well
as the superior temporal gyrus (STG). In contrast, group activation
for RAND was mostly centered on HG and extended less into PT,
in line with the MEG results, above, which consistently demonstrate
increased activation for REG relative to RAND sequences.
A “REG vs. RAND” contrast was examined to isolate regions

associated with the processing of regularity (Fig. 5B; see Table S4
for coordinate information). This contrast revealed increased he-
modynamic responses to REG in the left hemisphere in the lateral
part of HG, bilaterally in PT, all along the upper bank of the STG,
extending to planum polare (PP). Additionally, IFG activation
was found in the left hemisphere (right IFG was also present but
did not survive the P < 0.05 familywise error cluster correction).
The RAND vs. REG contrast was also inverted to isolate po-
tential regions specific to RAND sequences (RAND > REG),
but no candidates were found; all of the regions activated by
random sequences were activated to at least the same degree by
regular sequences.

Experiment 4: MEG Responses to Regular and Random Patterns of
Varying Alphabet Size. Experiments 2 and 3 focused on regular
patterns with a fixed cycle length (10 tones; 500 ms). In experiment
4, three different regularity cycle lengths (Rcyc = 5, 10, and 15) were
presented in random order. RAND signals with matched alphabet
sizes were also included in the data set (e.g., RAND5 is a random
sequence consisting of only five frequencies). Overall, on any given
trial the presence of regularity or its cycle length were unpredict-
able. Fig. 6A (Upper) shows the group RMS response at stimulus
onset to the REG5/10/15 and RAND20 conditions. The results
demonstrate rapid detection of regularity even when the duration
of the regularity is a priori unknown. Mean response latencies for the
different regularities (relative to RAND20) scaled with cycle duration.

A comparison of each regularity condition with its matched
RAND signal is plotted in Fig. 6B. The latencies at which responses
to relevant condition pairs first diverge are summarized in Table S5.
Sustained response patterns are identical to those observed in

experiment 2 above, with the three regularity conditions tending to
the same amplitude level. RAND sequences of different alphabet
sizes also exhibit sustained amplitude differences, with the most
predictable (RAND5) presenting the highest amplitude (Fig. 6B).
This pattern of results is consistent with a hypothesis that the ob-
served brain responses are modulated by the predictability (rather
than complexity) of the pattern. For example, in the leftmost panel in
Fig. 6B, the deterministic regularity (REG5) shows the highest am-
plitude, followed by RAND5 (where, if the rule is learnt, an observer
can expect one of five frequencies). RAND20 (where the prediction
precision is lowest) is associated with the lowest DC amplitude.
To facilitate comparison, responses to RAND signals of increasing

alphabet size are replotted in Fig. 6C. The mean RMS amplitude
(over the entire epoch duration) was computed for each subject in
each condition (Fig. 6C, Right). A repeated-measures ANOVA
(Greenhouse–Geisser corrected) demonstrated a main effect of
alphabet size [F(1.3, 15.4) = 9.70, P < 0.005]. Post hoc compari-
sons (least significant difference) indicated significant reduction in
activity between RAND5 and RAND10 (P < 0.005), as well as
between RAND15 and RAND20 (P < 0.05), indicating sensitivity
to nondeterministic regularities.
Model results for the same stimuli are plotted in Fig. 6D. In-

dependent of the regularity cycle, the ideal observer model required
a cycle plus three tones to detect the emergence of regularity. A
comparison with the MEG data suggests that brain responses from
distracted humans exhibit ideal observer behavior for REG5 and
REG10, with growing sluggishness emerging for larger cycle sizes. It
is noteworthy that this pattern correlated with the observed DC
amplitude effects: REG5 and REG10, for which performance is
ideal observer like, also exhibit the same amplitude, whereas the
sustained amplitude of REG15 is just below this level.

Discussion
The aim of this series of experiments was to understand whether,
and how, the brains of naïve listeners detect the emergence of
complex patterns within rapidly evolving sound sequences. Our
results suggest that the auditory system continually scans the en-
vironment and efficiently represents complex stimulus statistics,
even when they are not behaviorally relevant.

BA

Fig. 5. fMRI results. (A) fMRI group activation for REG and RAND conditions, superimposed onto coronal (y = −26), sagittal (x = −55), and axial (z = 12)
sections of the average structural image. The height threshold for activation was P < 0.001 (uncorrected) at the peak level, P < 0.05 (FWEc.) at the cluster level.
Blue, activation for RAND; orange, activation for REG. The white arrowheads on the axial section indicate the midline of Heschl’s gyrus in each hemisphere.
(B) Regions showing increased hemodynamic responses to REG sequences compared with RAND, thresholded at P < 0.001 (uncorrected, but see familywise
error corrected coordinate information in Table S5). Results are shown for different axial sections on the subjects’ average structural anatomy. The color map
indicates peak level significance. The contrast revealed increased hemodynamic responses to REG bilaterally in PT, STG, and planum polare (PP). Additional
activation in the left inferior frontal gyrus (IFG; right IFG was also present but does not survive correction for multiple comparisons; Table S5).
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Sensitivity to Acoustic Patterns. Listeners demonstrate remarkable
sensitivity to the emergence of patterns within rapidly unfolding
random tone-pip sequences. On most trials, listeners required less
than one full repetition of a pattern to detect the regularity. This
performance held for all cycle durations tested (up to Rcyc = 20) (25,
26) and appears to take place automatically: estimates based on
brain response latencies from naïve, passively listening partici-
pants (experiments 2 and 4) were essentially identical to those
obtained behaviorally (experiment 1). For cycles of up to 10 tones,
detection time was similar to that estimated from an ideal observer
model with perfect memory. Longer cycles were associated with
increasing sluggishness suggestive of growing strain on some form of
memory store (see below).
Experiment 4 (Fig. 6) examined responses to deterministic reg-

ularities with varying complexity (repeating patterns of increasing

length) and nondeterministic, increasingly complex, regularities
(random tone sequences varying in alphabet size). The pattern of
MEG responses demonstrates that the brain is sensitive to both the
alphabet size of a pattern (e.g., responses differentiate RAND5
from RAND20), as well as the specific sequence structure (e.g.,
responses differentiate REG5 and RAND5).
The ideal observer model, used to benchmark performance, was

based on storing ongoing sequence statistics in terms of the transi-
tion probabilities with which tones in the alphabet have appeared
following each sequential context (i.e., tallying all tones, pairs, and
triplets). Examining model output revealed that it was sufficient to
store contexts of three tones (four in the case of RAND-REG
transitions) to detect transitions within the sequences used here.
That human performance could be reproduced by the ideal observer
model suggests that listeners may be storing similar statistics.

A

B

C

D

Fig. 6. MEG responses to sequences of varying alphabet size (experiment 4). (A) Group RMS of brain responses to REG5, REG10, and REG15 conditions, along
with RAND20. Plotted is the entire stimulus epoch, from stimulus onset (t = 0) to offset (t = 3,500 ms). Intervals where a repeated measures bootstrap procedure
indicated significant differences between each REG condition and RAND20 are marked with a line, underneath the brain responses. (B) Responses to REG5, REG10,
and REG15 (identical to A) with those to their respective random controls (RAND5, RAND10, RAND15), and RAND20. Gray shading indicates temporal intervals
where a significant difference (repeated measures bootstrap analysis; Materials and Methods) was found between responses to RAND5/10/15, respectively, and
RAND20. (C) (Left) Responses to the different RAND stimuli (identical to B). (Right) Average RMS amplitude over the entire stimulus duration. Error bars indicate 1
SEM. (D) Model output showing trial-averaged information content for each tone pip from sequence onset for REG5, REG10, and REG15. Shading indicates 2 SEM.
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In addition to memory processes associated with storing transi-
tion probabilities, while scanning the unfolding sequence, listeners
must maintain a certain portion of the sequence in short-term
memory for comparison with the stored transition probabilities.
Both memory processes could impose constraints on performance.
Our results do not speak directly to how sequential information is
encoded; however, subjectively (Audio Files S1–S8), it seems that
once the RAND-REG transition has been detected, one becomes
aware of the preceding pattern. In other words, the brain appears
to call on mnemonic representations to reverse scan the stored
representation of the pattern and infer when the regularity began
(27, 28). In experiments using stimuli similar to those used here
(RAND-REG transitions with Rcyc = 6), Jaunmahomed and Chait
(27) investigated the nature of this retrospective assignment. Par-
ticipants were asked to indicate whether a light flash occurred
before or after the onset of the regular pattern. The point of
subjective simultaneity did not occur at the point of detection, but
preceded it by about a cycle. This effect was reduced by half when
the tone duration decreased (from 100 to 50 ms), suggesting that
the memory representation of the ongoing sequence, used to infer
regularity onset, is not limited by a fixed duration but rather by
information (number of events).
Having established regularity detection formally, in terms of

ideal Bayesian assumptions—and having identified robust neu-
rophysiological correlates—means that we are now in a position
to further explore the underlying memory mechanisms by sys-
tematically manipulating various properties of the regularities
and how they are violated and by examining whether these
processes might be affected by effort or attentional set.

Substrates. Two complementary approaches were used to identify
the neural substrates underlying the processing of REG vs. RAND
patterns: MEG source analysis, focused specifically on the interval
where responses to REG and RAND first diverged, suggested
that the process of regularity detection is subserved by a network
comprised of early—auditory cortical (AC)—sources along with
sources in frontal cortex (right IFG). This finding is a first dem-
onstration of the involvement of these networks in implicit learning
of rapidly evolving statistical structure but is generally consistent
with previous reports implicating these structures in auditory
sequence learning. Activations in IFG and AC are commonly
reported in the context of the MMN oddball paradigm (27, 28) and
interpreted (29) as suggesting that the MMN arises from an in-
teraction between bottom-up and reentrant effects (9, 11, 30).
Similarly, violations of artificial grammars consisting of complex,
nonadjacent, or hierarchical relationships between elements in
sound sequences have been shown to activate IFG during both
explicit decision making and implicit tasks (31–33). IFG has also
been consistently implicated during encoding and retention periods
in working memory experiments (34–36), including in working
memory paradigms for pitch (37).
Our MEG results suggest that the hippocampus also contrib-

utes to the process of refining the generative model and discov-
ering the regularity within the ongoing sound sequence. Although
it is not often observed in auditory experiments, MEG has been
previously reported to be sensitive to hippocampal sources (38,
39). The present findings are consistent with recent suggestions
that the hippocampus might be involved in the integration of
complex temporal patterns in audition (40). Importantly, these
data provide support for the emerging literature on hippocampal
involvement in high resolution pattern perception (41–43), and
statistical learning (44–46), adding converging evidence for the
role of the medial temporal lobe in the rapid detection of regu-
larities within continuously presented sensory signals.
fMRI analysis was focused on identifying BOLD response dif-

ferences between REG and RAND. Due to the limits on temporal
resolution, it is likely that this is mostly driven by the sustained re-
sponse portion of the signals rather than the (brief) period of

evidence accumulation. This analysis revealed a largely similar
network, comprised of auditory cortical and frontal sources, but
notably differing in the lateralization of IFG activation and lacking
hippocampus activity. Within the auditory cortex, RAND activity
was mostly centered on HG and extended less into PT, indicating
that the processing of random sequences is associated with more
local computations than REG sequences. This pattern of activation
is also consistent with the large sustained response difference be-
tween REG and RAND observed in the time domain data (see
more discussion below).
The absence of hippocampal activity in the fMRI data are difficult

to interpret due to the various differences in sensitivity between the
MEG and fMRI methods (47). One possibility is that hippocampal
activity is too slow to be accompanied by BOLD increases, which are
conventionally considered to occur for oscillatory local field poten-
tials above beta range (48). Another is that the contribution of the
hippocampus to regularity detection is time delimited and restricted
to the early stages of pattern detection. However, further work is
required to understand the nature of this involvement.

Sustained-Response Amplitude Reflects Sequence Predictability. The
emerging divergence between REG and RAND, when tran-
sitioning between the two sequences (Fig. 3) and at onset (Figs. 4
and 6), is manifest as an increase in the sustained amplitude of
the evoked response. This result cannot be attributed to low-
level effects such as refractoriness or neural adaptation. Adap-
tation effects, measured with MEG or EEG, are commonly
revealed as a decrease in response amplitude over time (49). The
present data are characterized by the opposite effects. For in-
stance, REG10 (a repeated sequence of 10 tones) is associated
with higher sustained amplitude than RAND20 (a random pat-
tern of 20 tones; Figs. 4 and 6). The data are also not consis-
tent with explanations in terms of attention effects. Although
gain increases are often observed in the context of attentional
manipulations (selective attention often enhances sensory-
evoked responses), and it is theoretically possible that regularly
repeating signals might attract attention even in naïve distracted
subjects (5) leading to a gain increase, rapid gain decreases are
difficult to account for within this framework.
Instead, the observed sustained amplitude modulations appear

to be contingent on the predictability of the sequence such that

i) The sustained amplitude correlates with the alphabet size of
the sequence: RAND5 > RAND10 > RAND15 > RAND20
(Fig. 6).

ii) For a given alphabet size, the sustained amplitude is higher
when the sequence is deterministic (REG5 >RAND5, REG10 >
RAND10, etc.).

iii) The DC amplitude appears to not depend on the complexity
of the regular pattern per se, but rather on the degree to
which the pattern has been learned: REG5 and REG10, for
which performance (quantified as the latency at which the
response diverges from that to RAND) is ideal observer like,
are also associated with similar DC amplitudes. However,
the sustained amplitude of REG15—for which detection
is slower than that of an ideal observer—is just below
this level.

iv) The transition from REG to RAND, when the sequence
becomes unpredictable, is associated with an immediate
drop in the sustained response.

In the predictive coding framework, evoked responses have usu-
ally been interpreted as reflecting prediction error (7, 11, 50, 51). In
this context, increasing stimulus predictability and the concomitant
suppression of prediction error are associated with a decrease in the
sensory evoked response: an effect which is indeed commonly ob-
served for the relatively simple stimulus sequences previously used
to investigate predictive coding (2, 3, 7, 9, 51, 52). In contrast, in-
creasing predictability in the present dataset is associated with an
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amplitude increase. These effects have not been observed pre-
viously, possibly due to the significantly simpler signals used in those
studies, where predictability is often confounded with low-level
neural adaptation. The complex, wide-band tone patterns used here
are largely free of this constraint, enabling a new view of brain
mechanisms that underlie bottom-up driven statistical learning.
The observed effects are compatible with an interpretation of the

responses as reflecting precision-weighted sensory signals. Precision
(the inverse variance of a variable) is a key element of predictive
coding, enabling the system to operate optimally under different
degrees of uncertainty by reweighting signals according to their
inferred reliability (53, 54). Reliable inputs—associated with low
uncertainty (high precision)—indicate salient sensory evidence and
give rise to heightened sensitivity (increased gain), such that sub-
sequent prediction errors, suggestive of a genuine change in the
environment, are up-weighted in the process of model updating.
Conversely, unreliable (low precision) inputs, indicative of a weak
model or a high degree of uncertainty, are down-weighted. The
present data are consistent with such effects: rapid, bottom-up
driven response modulation concomitant with adaptive predictive
precision. However, the shape of the response does not resemble a
classic gain effect, and it is unclear whether the signals reflect a
single process (gain modulation of sensory units) or a superposition
of independent processes (a sustained current + a sensory evoked
response). Additionally, because it is impossible to disambiguate
excitatory and inhibitory processes with MEG, it is possible that the
DC modulation reflects a sustained inhibitory current.

MMN. Most previous work on sensitivity to acoustic patterning has
been conducted in the context of the MMN paradigm where the
occurrence of a mismatch response to a signal that violates a pre-
viously established regularity is taken as a (indirect) measure of the
extent to which this regularity has been acquired (10, 11, 16, 30).
AnMMN-like response is observed here, evoked by the transition

from a regular to random pattern in the REG-RAND signals. This
response is immediately followed by a sharp amplitude decrease,
consistent with a process by which the MMN, reflecting precision-
weighted prediction error (9), signals the incompatibility of sensory
input with the existing internal model, which then leads to an im-
mediate down-regulation of gain on the relevant sensory units.
It is noteworthy that the drop in amplitude occurs some five

tones after the transition to RAND, in contrast to an almost
immediate (relative to an ideal observer) rise in amplitude
following the emergence of regularity. This result reveals an
apparent asymmetry: the brain immediately detects the rising
predictability associated with the transition to a REG signal but is
delayed at updating its estimate of precision following the vio-
lation of a REG signal. The intrinsic delay associated with reacting
to violation of regularity suggests that the auditory system is pro-
grammed to hold on to regularities for slightly longer than is ob-
jectively warranted, perhaps because of operational time-constants
associated with the mechanisms giving rise to regulation of gain. In
other words, there appears to be a bias in the precision-weighted
modulation (observable also in behavior) toward discovering pat-
terns and against losing patterns that have been discovered.

Materials and Methods
Experiment 1.
Stimuli. Stimuli were sequences of 50-ms tone-pips (gated on and off with
5-ms raised cosine ramps) with frequencies drawn from a pool of 20 values
equally spaced on a logarithmic scale between 222 and 2,000 Hz (12% steps).
RAND-REG stimuli (Fig. 1) consisted of an initial sequence of random tones that
after a certain duration, changed into a REG pattern. REG sequences were
generated by randomly selecting (with replacement) a number (Rcyc) of fre-
quencies from the pool and then iterating that sequence to create a regularly
repeating pattern. In this manner, novel regular patterns were created on each
trial. The complexity of the pattern depends on the length of the regularity
cycle (Rcyc). Rcyc was set to 10 or 20 in this experiment.

Two control transitionswere included in the stimulus set: (i) REG-RAND stimuli
contained a transition between a regular and a random pattern. (ii) STEP stimuli
consisted of a step change in frequency between two sequences of repeated
tones. A series of no-change sequences (either REG, RAND, or a sequence of
fixed frequency tones) were also included. All signals comprised between 7*Rcyc
and 9*Rcyc tones. The time of change varied randomly across trials, with the
transition occurring between the 4*Rcyc-th and 5*Rcyc-th tones.

The tone durations used are well below the range of durations of notes in
melodies (55) and below the reported thresholds for order discrimination
within tone sequences (22, 56–58). The sequences are therefore much too
rapid to enable any form of explicit reasoning regarding pattern emergence.
Rather, the emergence of regularity appears to perceptually pop out from the
ongoing sequence irrespective of subjective effort. The present experiments
aim to characterize this apparent pop-out process.
Procedure. Twoconsecutive blocks of 130 stimuli (50REG-RAND, 50RAND-REG, 50
RAND, 50 REG, 15 STEP, and 15 constant frequency tone) were presented for
Rcyc = 10, followed by two blocks of 130 stimuli with Rcyc = 20. Subjects also
completed a short practice session (40 trials) for each Rcyc. Stimulus presentation
was controlled with the Cogent software (www.vislab.ucl.ac.uk/cogent.php). Sub-
jects were tested in a darkened, acoustically shielded room (IAC triple-walled sound
attenuating booth). They were instructed to fixate a white cross in the center of
the computer screen while listening to the stimuli and respond, by pressing a
keyboard button, as soon as they detected the stimulus transitions in REG-RAND,
RAND-REG, or STEP stimuli, presented in random order within the block.

Stimuli were rendered offline and stored as 16-bit .wav files at 44.1 kHz,
delivered to the subjects’ ears with Sennheiser HD555 headphones (Senn-
heiser) and presented at a comfortable listening level (self-adjusted by each
listener). The interstimulus interval (ISI) was 2,000 ms. The stimulus set was
generated anew for each participant.
Participants. Thirteen paid subjects (nine female; average age, 24 ± 8 y)
participated in the experiment. All reported no history of hearing or neu-
rological disorders. Two subjects were excluded from analysis due to inability
to perform the task (no response for >50% of the trials). All experimental
procedures reported in this manuscript were approved by the research ethics
committee of University College London, and written informed consent was
obtained from each participant.

Experiment 2 (MEG).
Stimuli. The stimulus set included the RAND-REG and REG-RAND signals as
described above, aswell as their no-change controls (REG and RAND). The cycle
length within the regular patterns was fixed at Rcyc = 10. Stimulus duration
was 4.5 s, and the transition time was fixed at 2.5 s after onset for REG-RAND
and 2 s after onset for RAND-REG. One hundred four signals were generated
for each of the stimulus conditions. In this way, the probability of change was
maintained at 0.5, and the occurrence of a transition within any specific
stimulus was unpredictable. The stimuli were presented to the listeners in a
random order with an ISI that varied between 700 and 2,000 ms.

Subjects were naïve to the auditory stimuli and engaged in an incidental
(N-back) visual task. The task consisted of a sequence of landscape images,
grouped in series of three (duration of each image was 5 s, with a 2-s between
series interval during which the screen was blank). Subjects were instructed to
fixate at a cross, drawn in the middle of the display, and press a button
whenever the third image in a series was a repetition of the first or second one.
Such repetitions occurred in 10% of the trials. The visual task served as a decoy
task: a means to maintain attentional set and to divert attention away from the
auditory stimuli. The instructions encouraged speed and accuracy, and feedback
(number of hits, misses, and false positives) was provided at the end of each
block. Visual and auditory stimuli were presented simultaneously from different
computers to preclude correlation between audio and visual stimulus timing.
Procedure. The experimental session always began with a preliminary “func-
tional localizer” block, followed by the main experiment. In the functional
localizer recording, subjects listened to about 200 repetitions of a 50-ms pure
tone at 1 KHz, with an ISI randomized between 750 and 1,550 ms. The cor-
responding brain responses were used to ensure that recorded signals had a
reasonable signal-to-noise ratio (SNR) and to determine which MEG channels
were most sensitive to evoked activity within the auditory system. In the
main experiment, which lasted about 40 min (excluding breaks), subjects
listened to stimuli while performing the visual task as described above. All
listeners were naïve as to the different stimulus conditions and informed that
they were participating in a visual processing study. The presentation was
divided into four runs of about 10 min. Between runs, subjects were per-
mitted a short rest but were required to remain still.
Recording and data analysis. Magnetic signals were recorded using a CTF-275
MEG system (axial gradiometers, 274 channels; 30 reference channels; VSM
MedTech). Acquisition was continuous, with a sampling rate of 600 Hz and a
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100-Hz hardware low-pass filter. Offline low-pass filtering was applied at
30 Hz for all time domain analyses (two-pass, fifth-order Butterworth), but
there was no offline filtering for source-space analysis.

Functional localizer data were divided into 700-ms epochs, including 200 ms
before onset, and baseline corrected to the preonset interval. The M100 com-
ponent of the onset response (59) was identified for each subject as a source/sink
pair located over the temporal region of each hemisphere on the subjects’ scalp
maps. The M100 current source is generally robustly localized to posterior su-
perior temporal plane in both hemispheres (59). For each subject, the 40 most
strongly activated channels at the peak of the M100 (20 in each hemisphere)
were considered to best reflect activity in the auditory cortex and thus selected
for subsequent analyses. This procedure serves the dual purpose of enhancing
the auditory response components over other response components and com-
pensating for any channel misalignment between subjects.

For the data from the main experiment, 5,500-ms epochs (from 500 ms
before stimulus onset to 500ms after stimulus offset) were created for each of
the stimulus conditions, averaged, and baseline corrected to the silent pres-
timulus interval. Trials with power that deviated from the mean by more than
twice the SD (typically less than 7%) were flagged as outliers and discarded
automatically from further analyses. Denoising source separation (DSS) analysis
was applied to maximize reproducibility across trials (60, 61). For each subject,
the first two DSS components (i.e., the two most reproducible components)
were then selected and projected back into sensor space. Electromagnetic
responses showed profound fluctuations in steady-state levels between the
stimulus conditions and at the transitions. To identify additional (fast) activity,
potentially masked by the slow DC changes, the same analysis was also per-
formed on 2-Hz high-pass filtered data (Fig. 3).

In each hemisphere, the RMS of the field strength across the 20 channels,
selected in the functional source localizer run, was calculated for each sample
point. The time course of the RMS, reflecting the instantaneous amplitude of
neural responses, was used as a measure of neuronal responses evoked in the
auditory system. For purposes of illustration, group RMS (RMS of individual
subject RMSs) is shown, but statistical analysis was always performed across
subjects. The figures (except for the representative subject data in Fig. 3B) plot
group RMS in the RH. The LH activation was always qualitatively identical.

To statistically evaluate the latency of the transition response (the time
point at which RAND-REG or REG-RAND first show a statistical difference
from their respective controls) the (squared) difference between the RMSs
was calculated for each participant and subjected to bootstrap resampling
(1,000 iterations, balanced) (62). The difference was deemed significant if the
proportion of bootstrap iterations that fell above/below zero was more than
99% (i.e., P < 0.01) for 12 or more adjacent samples (20 ms). The bootstrap
analysis was run over the entire epoch duration; all significant intervals
identified in this way are indicated in the relevant figures.
Source localization. To identify the brain areas subserving the process of
regularity detection, we focused on comparing responses to the onset of REG
and RAND signals. This approach allowed us to pool over the transition and
control (no transition) conditions, substantially increasing the SNR. Focusing
on the onset (Fig. 4), rather than transitions (Fig. 3), was also useful for
specifically isolating the process of regularity extraction from those related
to signaling a change in the sequences.

Source localization (based on data from all 274 sensors) was performed on
the nonfiltered, time-averaged data using a minimum norm prior model (61).
Before inversion, DSS component analysis (60, 61) was applied to each sub-
ject’s sensor data to maximize the difference between RAND and REG re-
sponses from 500 ms before stimulus onset to 1,500 ms after stimulus onset.
The first two DSS components (those that maximized the difference between
REG and RAND) were projected back into sensor space and used for the lo-
calization analysis. After inversion, source estimates were averaged over the
interval of 650–950 ms, corresponding to the period over which the difference
between REG and RAND builds up, projected to a 3D source space, and
smoothed [8-mm full width at half maximum (FWHM) Gaussian smoothing
kernel] to create Neuroimaging Informatics Technology Initiative (NIfTI) im-
ages of source activity for each subject. Source reconstructed responses were
then used for the second level analysis using standard (statistical parametric
mapping) procedures in SPM8 (www.fil.ion.ucl.ac.uk/spm/). Fig. 4B shows the
activation map (F contrast) thresholded at P < 0.005 (uncorrected).
Participants. Thirteen paid subjects (eight female; mean age = 27.6 y) par-
ticipated in the experiment. All but one were right handed (63).

Experiment 3 (fMRI).
Stimuli. The stimulus set included the REG (fixed at Rcyc = 10) and RAND signals
as described above, as well as silent (scanner noise only) periods, which were
treated as a stimulus condition in this experiment. The durations of each se-
quence type were randomized between 4 and 10 s using a truncated Poisson

distribution with a parameter of 6 s. The minimum of 4 s was used to ensure
that there was ample time to detect the regular patterns. One hundred fifty
signals were generated for each of the stimulus conditions (REG, RAND, and
Silence). A single, long sequence was built by presenting abutting REG, RAND,
and Silence periods in a randomized fashion, such that the nature and the
timing of the transitions were completely unpredictable. See SI Materials and
Methods for details regarding image acquisition and analysis.
Procedure. In the main experiment, which lasted about 60 min, participants
passively listened to the auditory stimuli while performing the same visual task
as in theMEGexperiments above. Soundswere delivereddichoticallywith tube-
phones (EARTONE 3A 10 Ω; Etymotic Research) inserted into the ear canal. All
participants were naïve to the different stimulus conditions and informed that
they were taking part in a visual processing study. The presentation was di-
vided into five runs of about 12 min each. Between runs, participants were
permitted a short rest but were required to remain in the scanner. Perfor-
mance feedback on the visual task was provided at the end of every block.
Participants. Sixteen paid subjects (six female; mean age = 27.6 ± 3 y) took part
in the fMRI experiment. All but one were right handed (61).

Experiment 4 (MEG).
Stimuli. The stimulus set included REG sequences with Rcyc = 5, 10, and 15
(henceforth referred to as REG5, REG10, and REG15, respectively). Each REG
signal was matched with a RAND signal, comprising the same subset of fre-
quencies (the same alphabet) but presented in a random order (henceforth
referred to as RAND5, RAND10, and RAND15). Also included were RAND20
sequences (identical to RAND sequences in experiments 1, 2, and 3), sampling
the entire frequency pool (alphabet size of 20). One hundred four sequences
were generated for each of the stimulus conditions. Stimuli were presented in
random order such that on each trial the type of stimulus (REG or RAND) and
cycle duration (or alphabet size) were unpredictable. The stimuli were gen-
erated anew for each subject. The ISI was randomized between 700 and
2,000 ms. Subjects were naïve to the auditory stimuli and engaged by an in-
cidental visual task, as described in experiment 2.
Procedure. The procedure was the same as in experiment 2.
Participants. Thirteen paid subjects (seven female; average age, 28 ± 8 y)
participated in the experiment. All but one were right handed (63).

Statistical Model. A model of auditory expectation, based on a variable-order
Markov model, was used to quantify the predictability of each tone-pip within
the experimental sequences (64). This model has previously been used suc-
cessfully to predict listeners’ pitch expectations in musical melody assessed
both behaviorally and using EEG (65, 66). Here, we use the responses of the
model as an ideal observer to compare with those of the participants.

Information Dynamics of Music (IDyOM) uses unsupervised statistical learning
to acquire transitional dependencies through exposure to sequences of auditory
events. Here, the model is configured to learn online throughout an experi-
mental session, starting with a null model, given the same experience as a
typical participant in the study. The model’s output at each tone-pip position
within a sequence is a conditional (or posterior) probability distribution gov-
erning the frequency of the next tone-pip, given the preceding context. This
distribution accumulates the model’s experience during the experimental ses-
sion. Using the posterior distribution, the model estimates the predictability of
each possible continuation tone-pip, including the tone-pip that actually follows.
The model’s output is formalized using the information-theoretic concept of
information content (IC). IC is the negative log probability (−log P) of a tone pip
and is used as a measure of the unexpectedness of each tone-pip in the sequence,
given the preceding context. The model is predominantly used to provide a
benchmark for the earliest time at which RAND-REG (and REG-RAND) transitions
can be detected. This time point is quantified by identifying the tone-pip position
for which the IC begins to deviate (fall or rise). Because the model is based on
storing high-order transition probabilities, it is particularly tuned to detect the
emergence of deterministic regular patterns. In this research, an initially empty
model is trained incrementally on a stimulus set identical to those presented to
participants. Because it learns dynamically from the entire stimulus set of short
tone sequences, themodel is not sensitive to alphabet sizewithin individual stimuli.

Themodeling data presented here are computed by running themodel on
the full stimulus set for one participant, in the same order as would be
presented to a participant in the study. The model output is summarized by
averaging IC for each tone position in each condition over trials in the same
way that participant responses are averaged across trials.
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