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The terrestrial carbon cycle is currently the least constrained compo-
nent of the global carbon budget. Large uncertainties stem from
a poor understanding of plant carbon allocation, stocks, residence
times, and carbon use efficiency. Imposing observational constraints
on the terrestrial carbon cycle and its processes is, therefore, necessary
to better understand its current state and predict its future state.
We combine a diagnostic ecosystem carbon model with satellite
observations of leaf area and biomass (where and when available)
and soil carbon data to retrieve the first global estimates, to our
knowledge, of carbon cycle state and process variables at a 1° × 1°
resolution; retrieved variables are independent from the plant func-
tional type and steady-state paradigms. Our results reveal global
emergent relationships in the spatial distribution of key carbon cycle
states and processes. Live biomass and dead organic carbon residence
times exhibit contrasting spatial features (r = 0.3). Allocation to struc-
tural carbon is highest in the wet tropics (85–88%) in contrast to
higher latitudes (73–82%), where allocation shifts toward photosyn-
thetic carbon. Carbon use efficiency is lowest (0.42–0.44) in the wet
tropics. We find an emergent global correlation between retrievals of
leaf mass per leaf area and leaf lifespan (r = 0.64–0.80) that matches
independent trait studies. We show that conventional land cover
types cannot adequately describe the spatial variability of key carbon
states and processes (multiple correlation median = 0.41). This mis-
match has strong implications for the prediction of terrestrial carbon
dynamics, which are currently based on globally applied parameters
linked to land cover or plant functional types.
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The terrestrial carbon (C) cycle remains the least constrained
component of the global C budget (1). In contrast to a relatively

stable increase of the ocean CO2 sink from 0.9 to 2.7 Pg C y−1 over
the past 40 y, terrestrial CO2 uptake has been found to vary between
a net 4.1-Pg C y−1 sink to a 0.4-Pg C y−1 source, and accounts for a
majority of the interannual variability in atmospheric CO2 growth.
The complex response of terrestrial ecosystem CO2 exchanges
to short- and long-term changes in temperature, water availability,
nutrient availability, and rising atmospheric CO2 (2–6) remains
highly uncertain in C cycle model projections (7). As a result, there
are large gaps in our understanding of terrestrial C dynamics, in-
cluding the magnitude and residence times of the major ecosystem
C pools (8, 9) and rates of autotrophic respiration (10). Moreover,
the impact of climatic extremes on C cycling, such as recent Ama-
zon droughts (11), highlights the importance of understanding the
terrestrial C cycle sensitivity to climate variability. To understand
terrestrial CO2 exchanges in the past, present, and future, we need
to better constrain current dynamics of ecosystem C cycling from
regional to global scales.
C uptake, allocation, pool stocks, residence times, respiration,

and disturbance together drive net CO2 exchanges (12) on subdaily
to millennial timescales; these C state and process variables also
determine the temporal sensitivity of the net C balance to climatic
variability. For example, global changes in photosynthetic uptake

could lead to a rapid response from short-lived C pools (such
as foliage, fine roots, and litter) or a prolonged response from
the long-lived C pools (such as woody biomass and soil C), with
very different outcomes on ecosystem source–sink behavior. Quan-
titative knowledge of terrestrial C pathways is, therefore, central to
understanding the temporal responses of the major terrestrial C
fluxes—including heterotrophic respiration (13), fires (14, 15),
and wetland CH4 emissions (16, 17)—to interannual variations
in C uptake.
Although C dynamics have been extensively measured and ana-

lyzed at site level (18–21), the respiration and allocation of fixed C
and its residence time within the major C pools are difficult and
expensive to measure at site level and remain poorly quantified on
global scales. As a result, global terrestrial C cycle models rely on
land cover type-specific C cycling parameters—based on spatially
preassigned plant functional types—to determine C fluxes and C
pools (22). Globally spanning C cycle observations can provide a
much-needed constraint on the spatial variability and associated
dynamics of the terrestrial C cycle. Over the past decade, a growing
number of datasets has enhanced understanding of the terrestrial C
cycle, including global-scale canopy dynamics [National Aeronautics
and Space Administration Moderate Resolution Imaging Spec-
troradiometer (MODIS) leaf area index (LAI)], empirically derived
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global soil C data [Harmonized World Soil Database (HWSD)]
(23), satellite-based above- and belowground biomass (ABGB)
maps for the tropics (24, 25), and Greenhouse Gases Observing
Satellite CO2 and plant fluorescence (26, 27). These spatially and
temporally explicit datasets provide an enhanced view of the ter-
restrial C cycle and can be used together to retrieve consistent
global C state and process variables. Significant efforts in data-
driven estimates of the global C fluxes have been made over the
past decade. These efforts include estimates based on atmospheric
CO2 concentrations (1, 28, 29), high-resolution global primary
production maps (30) based on eddy covariance tower datasets
(FLUXNET) (18), mean residence time of terrestrial C (31),
ecosystem respiration dependence on temperature based
on FLUXNET data (32), and global C cycle data assimilation
systems (33).
Given an increasing number of C cycle observations, what remains

an outstanding challenge is to produce a data-consistent analy-
sis of terrestrial C cycling—including retrievals of C fluxes, C
pools, autotrophic respiration, allocation fractions, and residence

times—based on multiple global-scale earth observations and
datasets. Current global-scale terrestrial biosphere models, be-
cause of their complexity and structures, are ill-equipped to
ingest an ever-increasing volume of earth observations to esti-
mate (rather than prescribe) model parameters based on the cur-
rently available observations. To overcome this challenge, we use a
model–data fusion (MDF) approach to retrieve terrestrial C state
and process variables during the period 2001–2010 without invoking
plant functional type or steady-state assumptions. We bring to-
gether global MODIS LAI, a tropical biomass map (24), a soil C
dataset (23), MODIS burned area (34), and a diagnostic ecosys-
tem C balance model [Data Assimilation Linked Ecosystem Carbon
Model version two (DALEC2)] (19, 35) to retrieve C state and
process variables by producing a novel data-consistent and spa-
tially explicit analysis of terrestrial C cycling on a global 1° × 1°
grid (Fig. 1) [we henceforth refer to this MDF setup as the C data
model framework (CARDAMOM)]. Specifically, we address the
following questions: How is C uptake partitioned between the live
biomass pools and respiration? What is the residence time of C
within the major ecosystem C pools? How do estimates of C cycle
states and processes vary spatially, and to what degree do emer-
gent variable patterns match land cover maps? We use a Markov
Chain Monte Carlo MDF algorithm to retrieve C state and pro-
cess variables—and their associated uncertainty—within each
1° × 1° grid cell (Materials and Methods). The MDF approach
retrieves the state and process variables that minimize the model
mismatch against any available C cycle observations. Therefore, in
the absence of extratropical biomass data or wintertime MODIS
LAI observations, estimates of 2001–2010 C cycle state and process
variables are achievable, albeit more uncertain.

Results
Distinct C allocation patterns emerge from our terrestrial C anal-
ysis (Fig. 2). Net primary production (NPP) allocation to structural
biomass (wood and fine roots) is largely ≥80% (area-weighted 25th
to 75th percentile range = 85–88%) in the wet tropics (<23° N/S;
annual precipitation >1,500 mm) in contrast to the dry tropics (77–
87%) and extratropical regions (73–82%). The highest NPP allo-
cations to foliage (≥30%) spatially coincide with major grassland
areas, including the North America prairies, the central Asia
steppes, and the Sahel region in Africa. The dry tropics exhibit
relatively high NPP allocation to labile C (7–14%) (Fig. S1), which
reflects the increasing impact of seasonality on production as
precipitation declines, requiring labile C stores for leaf flush. C use
efficiency (CUE; equivalent to 1 − autotrophic respiration frac-
tion) is overall lowest within the wet tropics (0.42–0.44) in contrast
to dry tropical (0.45–0.50), temperate (23–55° N/S; 0.47–0.50), and
high-latitude (>55° N/S; 0.49–0.50) areas.

Fig. 1. Diagnostic ecosystem C balance model DALEC2 (19, 35) and datasets
used to retrieve 1° × 1° C state and process variables. GPP, a function of climate
and foliar C, is partitioned into autotrophic respiration (Ra) and NPP. NPP is
partitioned into the live biomass pools. Plant mortality provides input to the
DOM pools. Heterotrophic respiration (Rh) is derived from decomposing DOM
pools. Fire fluxes are derived from burned area data (35) and all C pools (SI Text,
section S2). Within each 1° × 1° grid cell, we use a Bayesian MDF algorithm
to retrieve C state/process variables and uncertainties; variables are retrieved
without prior land cover type or steady-state assumptions. Data constraints
consist of MODIS leaf area, total biomass (24) (tropics only), and soil C (23).
Details on the Bayesian fusion approach are provided inMaterials and Methods.

Fig. 2. Retrievals of NPP allocation to structural
(wood and fine roots) and photosynthetic (labile and
foliage) C pools. Allocation fractions were retrieved at
1° × 1° using a Bayesian MDF approach (Fig. 1). The
GPP allocation fraction retrievals at locations B, T, D,
and W are shown on the Right (black dot, median;
box, 50% confidence range; line, 90% confidence
range).
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Live biomass and dead organic C residence times exhibit con-
trasting spatial features (r = 0.3) (Fig. 3). Within the majority of
wet tropical land area (56%)—especially across most of the Amazon
River (76%) and Congo River (69%) basins—the longest C resi-
dence time occurs within the woody pool (Fig. S1). In the dry tropics
and extratropical latitudes, soil C residence times exceed wood C
residence time by a median factor of 2.6 (1.6–4.3). Woody residence
time is typically shorter in the dry tropics (8–19 y) compared with
other biomes (wet tropics: 12–21 y; temperate latitudes: 21–29 y; and
high latitudes: 25–28 y). Litter C residence time is typically longer in
extratropical ecosystems (0.8–1.6 y) compared with tropical ecosys-
tems (0.4–0.5 y). The longest foliar residence time (or leaf lifespan)
occurs in the wet tropics and semiarid regions (Fig. S1).
Overall, the wet tropics are characterized by relatively high

structural C (>100 tC ha−1) and photosynthetic C (>2.5 tC ha−1)
(Fig. 4): in contrast, the dry tropics and extratropical regions exhibit
less structural and/or photosynthetic C. Foliar C stocks are typically
larger in the wet tropics (2.8–4.7 tC ha−1) relative to other biomes
(0.2–0.6 tC ha−1); similarly, fine root stocks are also greater in the
wet tropics (4.0–5.3 tC ha−1) compared with other biomes (0.8–
2.7 tC ha−1). Root:shoot (fine root C:leaf C) is lowest in the wet
tropics (1.1–1.5) followed by the dry tropics (1.6–1.9) and extratropics
(1.8–2.1). We find larger woody C uncertainties (1° × 1° 90% con-
fidence range/median) in the extratropics (1.8–4.6) in contrast to
tropical woody C (1.4–1.6) because of the latitudinal limits of the total
ABGBmap (24). Litter C is greater in high latitudes (2.4–3.4 tC ha−1)
relative to temperate (0.6–2.4 tC ha−1) and tropical (0.2–2.6 tC ha−1)
regions. High-latitude ecosystems have higher labile C stocks linked
to seasonal leaf expansion (0.2–0.5 tC ha−1) relative to temperate
(0.1–0.3 tC ha−1) and tropical (0.1–0.3 tC ha−1) ecosystems.

We find high leaf C mass per leaf area (LCMA) values in the
wet tropics (85–97 gC m−2) and semiarid regions, such as the
Sahel, southwestern United States, and the Australian conti-
nent (typically >100 gC m−2) (Fig. 5); LCMA estimates are
lower (typically <80 gC m−2) in high latitudes and the dry tropics.
We find a positive correlation between leaf lifespan and LCMA in
high-latitude (r = 0.79), temperate (r = 0.80), dry tropical (r = 0.78),
and wet tropical (r = 0.64) areas.
Global gross primary production (GPP; global 25th to 75th

percentile = 91–134 Pg C y−1), ecosystem respiration (91–137 Pg
C y−1), and fires (1.3–2.0 Pg C y−1) are broadly consistent with
a terrestrial C model ensemble (22), data-driven estimates (36),
and bottom-up inventories (37) (Fig. S2). The net C exchange
uncertainty (−8 to +13 Pg C y−1) is an order of magnitude greater
than mode net C exchange (NCE; −2 Pg C y−1); NCE latitudinal
uncertainty is larger but comparable with the terrestrial C model
ensemble range. Global atmospheric model CO2 concentrations
based on CARDAMOM mode NCE fluxes are seasonally consis-
tent [r2 = 0.93; root-mean-square error (RMSE) = 0.53 ppm CO2]
with mean total column CO2 measurements (38) (Fig. S3). The
mean integrated C residence time in ref. 31 is within the range of
individual pool residence times at locations B, T, D, and W (Fig. 3).
The 2001–2010 CARDAMOM analysis spatial and temporal LAI
variability is consistent with the MODIS LAI constraints (r2 = 0.8;
RMSE = 0.6 m2/m2). When alternative GPP (36), alternative model
structure, or biased data constraints (±20%) are imposed at loca-
tions B, T, D, and W, 88% of median sensitivity analysis estimates
are within ±50% of median C state and process variable retrievals
(Fig. S4).

Fig. 3. Retrievals of C residence time (RT) in live bio-
mass and dead organic C pools; residence times are
retrieved at 1° × 1° using a Bayesian MDF approach
(Fig. 1). Brown denotes ecosystems with high residence
times for all C pools, green denotes ecosystems with
long live biomass C residence times, and orange de-
notes ecosystems with low live biomass residence time.
The residence times for individual C pools at locations
B, T, D, and W are shown on the Right (black dot,
median; box, 50% confidence range; line, 90% confi-
dence range). Mean C residence times in ref. 31 are
shown as gray boxes (50% confidence intervals) and
black dots (medians).

Fig. 4. Retrieved mean photosynthetic (foliar and
labile) and structural (wood and fine roots) C pool
stocks; C stocks are retrieved at 1° × 1° using a Bayesian
MDF approach (Fig. 1). Retrieved mean C stocks for
each pool at locations B, T, D, and W are shown on
the Right (black dot, median; box, 50% confidence
range; line, 90% confidence range). Dark colors denote
high-structural C/high-photosynthetic C ecosystems,
green denotes low-structural C/high-photosynthetic C
ecosystems, red denotes low-photosynthetic C/high-
structural C ecosystems, and yellow denotes low-
photosynthetic C/low-structural C ecosystems.
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Retrieved C cycle variables are broadly consistent with a range
of in situ measurements (Table S1). Estimates of CUE within the
Amazon River basin are comparable with the upper bound of
recent measurements (0.32–0.47) (39). Recent estimates of ex-
tratropical forest C density (40) are, on average, 38% lower than
CARDAMOM total biomass estimates within forested areas
(although the forest biomass estimates are typically within the
CARDAMOM 1° × 1° uncertainty). Estimates of mean Amazon
woody C residence times (15–21 y) are lower but comparable with
aboveground woody C residence times derived from site-level
measurements (∼20–70 y) (20).
We find that 88–99% of C state and process variability is

accounted for by eight empirical orthogonal basis functions (EOFs)
(Fig. 6); in other words, retrieved C state and process variables are
largely explained by eight modes of spatial variability (Fig. S5). On
average, the Global Land Cover Map (GLOBCOVER) land cover
classifications (41) (e.g., deciduous forests, evergreen forests, and
grasslands) account for <50% of C state and process variability
(median multiple correlation coefficient R = 0.41); GLOBCOVER
land cover types best describe spatial variations in C stocks (0.5 ≤
R ≤ 0.8) followed by LCMA (R = 0.4), residence times (0.3 ≤ R ≤
0.5), and allocation fractions (0.1 ≤ R ≤ 0.4).

Discussion
Typically, C allocation and residence time parameters are based on
land cover types in global-scale terrestrial C cycle studies (refs. 9
and 22 among others); here, spatially broad allocation and resi-
dence patterns emerge instead as a result of the MDF approach.
For example, high-biomass ecosystems throughout the wet tropics
display similar C allocation, residence time, and LCMA configu-
rations (Figs. 2–5). Similarly, we find that dead organic matter

(DOM) C residence is generally longer in high latitudes (Fig. 3).
Compared with conventional land cover types, EOFs 1–4 account
for a larger degree of the spatial structures in retrieved C variables
(Fig. 6); for most variables, the two dominant EOF modes—
which together reflect first-order variations in latitude and global
precipitation patterns (Fig. S5)—explain more spatial variability
than GLOBCOVER land cover types. The mismatch between
land cover types and retrieved variables has major implications for
the estimation and prediction of terrestrial C cycling, which is
currently based on small sets of globally applied parameters linked
to land cover types. The importance of climate, biodiversity, fire,
and anthropogenic disturbance in generating these mismatches
needs to be explored in additional research (42).
It also is clear that plant traits vary across biomes (Figs. 2–4 and Fig.

S1), not just at biome boundaries (43), and that there are continental-
scale tradeoffs and correlations among traits (44). Our analysis is
consistent with these viewpoints: for example, the emergent relation-
ship between LCMA (proportional to leaf mass per area) and leaf
lifespan (Fig. 5) matches the positive correlation found in global plant
trait datasets (45). Evaluating global plant trait patterns emerging
from CARDAMOM provides a novel opportunity for connections to
theoretical and functional biodiversity research and a route to in-
tegrating this knowledge into predictive terrestrial C cycle modeling.
The residence times of major C stocks provide substantial

insights into the sensitivity and potential future trajectories of the
terrestrial C cycle. For example, land cover changes in the wet
tropics may result in rapid DOM C losses given the relatively
short DOM residence times (<30 y) (Fig. 3). In contrast, high-
latitude C residence times are an order of magnitude higher (30–
300 y), and therefore, shifts in C allocation or turnover rates are
likely to result in long-lived C flux responses. Overall, given the
predominant role of C residence times in future terrestrial up-
take responses (9), the derived residence times provide a first-
order estimate of ecosystem response times as a result of changes
in C cycling regimes. However, we note that model structure is
likely to be a major source of uncertainty in long-lived (>10 y) C
flux predictions. For example, although reduced complexity
models can capture some of the principal long-term (>10 y)
DOM dynamics represented in earth system models (8), sys-
tematic errors in DOM dynamics can arise because of the un-
derrepresentation of processes controlling DOM residence times
(46, 47). We also note that our decadal analysis is unlikely to
be able to capture slow feedback processes acting on longer

Fig. 5. (Upper Left) Retrieved median 1° × 1° LCMA (in grams C per meter−2).
(Upper Right) Zonal mean of median LCMA and 50% confidence range (CR).
(Lower) LCMA against leaf lifespan for high latitudes (>55° N/S), temperate
regions (23°–55° N/S), dry tropics (precipitation <1,500 mm; <23° N/S), and wet
tropics (precipitation >1,500 mm; <23° N/S).

Fig. 6. Multiple correlation coefficients (R; x axis) of retrieved C state and process
variables—allocation fractions (AF), residence times (RT), mean C pools, and LCMA
(y axis)—against 18 GLOBCOVER land cover fractions and C variable primary EOFs.
R denotes the ability of GLOBCOVER land cover types and primary EOFs to predict
1° × 1° state and process variables (R would equal one if all C state and process
variables could be expressed as a linear sum of land cover fractions or EOFs).
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timescales, such as permafrost remobilization and priming (48).
The large allocation and stocks and short residence time of wood
in the wet tropics indicate the potentially rapid postdisturbance
regrowth and C accumulation (49). We note that fires are less
frequent but major events within boreal ecosystems (50), and
therefore, longer time periods are required for retrievals to fully
account for the effect of fires on high-latitude C residence times.
C state and process variable retrievals are sensitive to the uncertainty

characteristics of C cycle observations (35) and the prior parameter
ranges (Table S2). We highlight that the current coverage and ac-
curacy of C cycle observations (24, 51) remain major limiting factors
in our approach. For example, extratropical C stock and residence
time uncertainties are higher because of the absence of biomass ob-
servations. Undoubtedly, future estimates of globally spanning
biomass density will provide a major constraint on CARDAMOM
estimates of extratropical C state and process variables (52).
Land to atmosphere C flux estimates could be used to further

constrain CARDAMOM C fluxes (Fig. S2) and C cycle variables
associated to nonsteady C states. For example, soil C residence time
samples are negatively correlated with corresponding mean 2001–
2010 NCE samples at locations B (r = −0.3), T (r = −0.4), D (r =
−0.5), and W (r = −0.3); therefore, regional- or grid-scale estimates
of NCE could provide a much-needed additional constraint on soil
C residence time. CARDAMOM flux magnitude and uncertainty
can be used as prior information in global atmospheric CO2 in-
versions; in turn, the assimilation of Greenhouse Gases Observing
Satellite (26) and Orbiting Carbon Observatory 2 atmospheric CO2
observations (53) should further constrain CARDAMOM NCE
estimates and their associated uncertainties. In this manner, non-
steady-state C fluxes can ultimately be reconciled with ecosystem
state and process variables, such as C stocks and residence times.
The CARDAMOM approach provides a framework to test alter-

native model structures (54): in this manner, combined C cycle model
parametric and structural uncertainties can be characterized, while
ensuring consistency between models and global-scale datasets. This
assessment would amount to a major step forward from conventional
C cycle model intercomparison studies. Ultimately, an ensemble of
models can be used to determine the degree to which retrievals of
key C state and process variables are model-dependent. Moreover,
alternative model structures could be used in CARDAMOM to
assimilate globally spanning plant traits related to C cycling (55) and
satellite observations, such as solar-induced fluorescence (27), veg-
etation optical depth (56), soil moisture (57, 58), and changes in
aboveground biomass (25, 59, 60). We anticipate that the incor-
poration of additional datasets and alternative model structures into
CARDAMOM will generate quantifiable reductions in retrieved
C variable uncertainties and new ecological insights on the state of
the terrestrial C cycle.

Materials and Methods
We grid MODIS LAI, ABGB (24), and HWSD topsoil and subsoil (0–100 cm) C
density (23) at a 1° × 1° resolution (SI Text, section S1). DALEC2 is analyti-
cally described in ref. 35; an overview of DALEC2 C fluxes and pools is shown in
Fig. 1. The 17 DALEC2 parameters (controlling the processes of photosynthesis,
phenology, allocation, and turnover rates) and six initial C pools robustly
characterize terrestrial ecosystem C balance (19). DALEC2 is a generic repre-
sentation of C cycling, where plant functional types are not explicit; instead,
model parameters are treated as unknown and independent quantities for
each 1° × 1° grid cell (Table S2). We incorporate a fire C loss parameterization
to account for seasonal and interannual variations in fire C fluxes from DALEC2

(SI Text, section S2). The model drivers consist of monthly time step European
Centre for Medium-RangeWeather Forecasts (ECMWF) Reanalysis Interim (ERA-
interim) meteorology and MODIS burned area (34) at a 1° × 1° resolution.

For each 1° × 1° grid cell, we use Bayesian inference to retrieve the
probability of DALEC2 model parameter xi (Table S2) given observational
constraint Oi [henceforth p(xijOi)], where

pðxijOiÞ∝pðxiÞpðOijxiÞ. [1]

In the expression, p(xi) is the prior parameter information, and p(Oijxi) is the
likelihood of xi with respect to Oi. We use a Markov Chain Monte Carlo algo-
rithm to sample xi from p(xijOi); we henceforth refer to the retrieved DALEC2
parameter values at pixel i as yi. Within each grid cell, C allocation fractions,
residence times within each C pool, stocks, LCMA, and associated C fluxes are
derived from 4,000 samples of yi (SI Text, section S3). We, hence, obtain a
probability density function for all C cycle variables within each 1° × 1° grid cell.

Wedonot imposeplant functional type-specific prior parameter distributionsor
steady-state assumptions: p(xi) consists of ecologically viable parameter ranges
(Table S2) and ecological and dynamical constraints (35). These constraints guar-
antee ecologically consistent parameter retrievals within a globally prescribed
parameter space without imposing spatially explicit prior parameter information.

From the C state and process variable estimates within each 1° × 1° grid
cell, we use 4,000 samples of yi to determine the mean, median, mode, and
percentile ranges for each C state and process variable. In Figs. 2–4, we
present C allocation, residence time, and C stock 5th, 25th, 50th, 75th, and
95th percentiles at four selected locations: B: 62.5°N, 81.5°E; T: 40.5°N,
120.5°W; D: 12.5°N, 20.5°E; and W: 7.5°S, 60.5°W. We chose B, T, D, and W as
representative examples for C state and process variable values within each
area (the full 1° × 1° C state and process variable maps are shown in Fig. S1).
To determine the robustness of our C state and process variable estimates,
we perform dedicated sensitivity tests to characterize the role of systematic
errors in data constraints and model structure: we repeat our C variable
retrievals using ±20% LAI, ±20% ABGB, ±20% HWSD, ±20% combustion
coefficients, alternative GPP (36), and limited heterotrophic respiration at
<0 °C (SI Text, section S4 and Table S3).

We compare our results against in situ and regional observations of C
allocation, pools, and residence times (SI Text, section S5), and we evaluate
the resulting fluxes against atmospheric CO2 observations across 12 Total
Carbon Column Observing Network sites (38) by incorporating NCE results in
a 4D atmospheric transport model (29). To determine whether global land
cover types can predict the spatial variability of our results, we conduct a
multiple correlation coefficient analysis between C state and process vari-
ables and 18 GLOBCOVER land cover fractions at 1° × 1° (Figs. S5 and S6). We
also used a principal component analysis on C state and process variables to
retrieve the primary 1° × 1° EOFs. The details of the CARDAMOM results
evaluation and analyses are fully described in SI Text, sections S5, S6, S7, and
S8. The Pearson’s correlation coefficient is abbreviated as r throughout the
text. All spatially derived r and RMSE values reported in the text are area-
weighted. Retrieved C variable ranges—reported as area-weighted 25th to
75th percentile range—are derived from 1° × 1° mean allocation and C
stocks, log-based mean C residence times (Fig. S1), and median LCMA values
(Fig. 6). All CARDAMOM datasets presented in this study can be downloaded
from datashare.is.ed.ac.uk/handle/10283/875.
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