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High-level neurons processing complex, behaviorally relevant signals
are sensitive to conjunctions of features. Characterizing the receptive
fields of such neurons is difficult with standard statistical tools,
however, and the principles governing their organization remain
poorly understood. Here, we demonstrate multiple distinct receptive-
field features in individual high-level auditory neurons in a song-
bird, European starling, in response to natural vocal signals (songs).
We then show that receptive fields with similar characteristics can
be reproduced by an unsupervised neural network trained to
represent starling songs with a single learning rule that enforces
sparseness and divisive normalization. We conclude that central
auditory neurons have composite receptive fields that can arise
through a combination of sparseness and normalization in neural
circuits. Our results, along with descriptions of random, discontin-
uous receptive fields in the central olfactory neurons in mammals
and insects, suggest general principles of neural computation across
sensory systems and animal classes.
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How neurons efficiently represent multidimensional stimuli
is an important question in sensory neuroscience. Dimension-

ality reduction involves extracting a hierarchy of features to obtain
a selective and invariant (categorical) representation useful for
behavior. To understand better the principles underlying this pro-
cess in the central auditory system, we characterized receptive
fields of neurons in the caudo-medial nidopallium (NCM) of the
European starling (Sturnus vulgaris), a songbird with an acoustically
rich vocal repertoire (1). The NCM, a secondary auditory cortex-
like region in songbirds, receives convergent inputs from the pri-
mary thalamorecipient region, Field L, and other secondary au-
ditory regions (2) and contains neurons selectively tuned to birdsong,
a behaviorally relevant natural stimulus (3–5).
We recorded action potentials extracellularly from individual

well-isolated NCM neurons during the playback of starling songs
and estimated the structure of the neurons’ receptive fields using
the Maximum Noise Entropy (MNE) method (6). Statistical in-
ference methods in this class (7, 8) maximize the noise entropy of
the conditional response distribution to produce models that are
constrained by a given set of stimulus–response correlations but
that are otherwise as random, and therefore as unbiased, as pos-
sible. Unlike the spike-triggered covariance (STC) method (9),
MNE works well with natural stimuli; in contrast to the maximally
informative dimensions (MID) method (10), MNE can identify
any number of relevant receptive-field features.

Results
Single NCM Neurons Respond to Multiple Distinct Features of Starling
Song. We recorded neuronal responses to six different 1-minute-
long songs, each repeated 30 times. These songs were recorded
from three male starlings, and together they contained over 200
motifs, brief segments of starling song that are perceived as distinct
auditory objects (11). An NCM neuron usually responds to a variety

of motifs (4, 12) (Fig. 1), and NCM neurons display rapid stimulus-
specific adaptation (13), suggesting that an individual neuron can be
sensitive to a variety of different stimulus features.
To examine whether single NCM neurons respond to multiple

distinct features of starling song, we obtained significant eigen-
vectors of the second-order MNE model’s matrix J for each
neuron that together with the first-order term (Methods) define
its receptive field (Fig. 2). On average, NCM neurons’ receptive
fields (n = 37 neurons) contained six excitatory features, or nega-
tive eigenvalues of the matrix J (6.43 ± 2.06, range 2–11, inter-
quartile range 5–8), and six suppressive features, or positive
eigenvalues of the matrix J (6.35 ± 2.41, range 3–12, interquartile
range 5–7). As a control, we also determined the number of fea-
tures using all possible five-song subsets of the six-song set. The
distributions of significant features obtained using five or six songs
were not statistically different (Kolmogorov–Smirnov test, P = 0.3
and P = 0.2 for the negative and positive eigenvalues, respectively).
Using many more songs, however, did reveal additional features
(see the next section). The features of each neuron’s receptive
field were spectrotemporally diverse: the neurons typically com-
bined broadband features resembling clicks and narrowband
features resembling tones, or harmonic stacks. The spectral and
temporal statistics of the ensemble of features were captured
using the modulation power spectrum (14) (Fig. 3). Thus, we
found multiple, distinct receptive-field features in individual high-
level auditory neurons in response to natural stimuli. To reflect their
multifeature composition, we call these receptive fields composite.
To verify the model’s ability to predict responses to new stimuli,

we estimated its parameters for each neuron using all possible five-
song subsets and generated a prediction of the probability of a spike
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for each time bin of each of the remaining songs (Methods). The
correlation coefficients between the predicted and the measured
responses ranged from zero (as not every song evoked a response in
every neuron) to 0.8, with the average correlation of 0.23 ± 0.2 and
the interquartile range of 0.06–0.36 (Fig. 4). Similar ranges of
correlation values were reported using other methods (in particular,
the Spectro-Temporal Receptive Field, or STRF) in the auditory
forebrain of the zebra finch and starling (15, 16). To compare the
two models (MNE and STRF) directly on our dataset, we obtained
STRFs for all of the neurons in our sample using the widely used
strfpak package (15). The STRF model provided significantly

poorer predictions of responses to songs than the second-order
MNE model (P = 1.4 × 10−5 with paired t test, Fig. 4B): the av-
erage correlation between the STRF prediction and the actual
response was 0.16 ± 0.13, and the interquartile range was 0.06–
0.23. Only 14 values (6%) obtained with the STRF model were
equal or greater than 0.4, compared with four times as many (51
values, 23%) obtained with the MNE model. No correlation co-
efficients greater than 0.6 were obtained with the STRF model,
whereas the MNE model produced 15 values greater than 0.6.
Although the average values of the correlation coefficients indi-
cate that both models are incomplete descriptions of the NCM
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Fig. 1. A single NCM neuron responds to several different motifs. (A) Spike raster plot (Top), peri-stimulus histogram (Middle), and spectrogram (Bottom)
showing an example NCM neuron’s response to a full song. (B) Four 3-second-long excerpts taken at the indicated times from the response shown in A. The
different panels show the neuron responding to acoustically distinct motifs (harmonic stacks, clicks, and other broadband stimuli), supporting the idea that
individual NCM neurons can be sensitive to a variety of different stimulus features.
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neurons’ receptive fields, the MNE model revealed for the first
time to our knowledge multiple receptive-field features in in-
dividual neurons responding to natural stimuli.

Composite Receptive Fields Comprise Multiple Features of Similar
Strength. The function of the composite receptive fields must de-
pend on the relative strength of component features. In this regard,
it is noteworthy that eigenvalues of the matrix J, which defines
feature strength, were of the same order of magnitude. For ex-
ample, the average difference between the 10 largest (in absolute
magnitude) neighboring negative eigenvalues, corresponding
to excitatory features, of the neuron in Fig. 2 was 7%, and the
maximal difference was 24%. Furthermore, many of the signif-
icant eigenvalues were small, i.e., at the border of significance,
even though the associated eigenvectors contained clear struc-
ture (Fig. 2B). These observations imply that the auditory neurons’
receptive fields are not dominated by a single strong feature, but
rather are characterized by a large number of somewhat weaker
features of similar strength. These eigenvalue distributions con-
trast with those obtained using the same method from macaque
retinal ganglion cells tuned to few features, where the difference
between neighboring eigenvalues was several hundred percent,
and from model cells with few built-in strong features corre-
sponding to clearly outstanding eigenvalues (6). They are similar,
however, to eigenvalue distributions obtained using a different
method (STC) and an artificial stimulus—Gaussian noise flicker—
in salamander retinal ganglion cells, which are known to be sen-
sitive to multiple features (17).
One concern is that the observed similarities in feature strength

reflect limits in the amount of data used to fit the model rather
than the true properties of auditory neurons. To examine this
possibility, we repeated the experiments and analyses using 60
1-minute-long songs, each repeated 10 times. We held some units
with an excellent signal-to-noise ratio for 10 h or longer. We
obtained features and eigenspectra from this 10-h dataset in five

neurons (Fig. 5), four of which were also part of the main dataset
(six songs repeated 30 times). The larger dataset allowed us to
uncover some additional features in these neurons: in the same
four neurons, we obtained 7.5 ± 2.1 negative and 7.5 ± 3.3 positive
features with 6 songs, and 10.8 ± 1.3 negative and 8.3 ± 1.9 positive
features with 60 songs (taking 40 among the 60 songs resulted in
10 ± 2.4 negative and 7.8 ± 1.7 positive features). To quantify
similarity between features obtained with the two stimulus sets, we
computed the correlation coefficient between each of the 6-song
features and all of the features extracted from the 60-song dataset
for that same neuron. Of the 54 features extracted from four
neurons using the 6-song dataset, 35 had a correlation co-
efficient with a 60-song feature that was significantly greater
than expected by chance (Methods), indicating they were pre-
served in the larger dataset. In addition, the mean similarity
between features in the 6- and 60-song datasets from the same
neuron was significantly higher than the similarity between
datasets across neurons (P = 0.0011, paired t test). This supports
the conclusion that large numbers of highly similar features are
preserved between datasets from the same neuron and that
these features primarily characterize properties of the neurons
rather than the datasets used to obtain them. Moreover, the same
characteristics of the eigenspectra persisted: eigenvalues of sim-
ilar magnitude, with the average and maximal difference be-
tween the neighboring eigenvalues being 9% and 30%, and 8%
and 15%, for the top 10 negative and positive eigenvalues, re-
spectively (n = 5 neurons). Thus, the composite receptive fields
of NCM neurons comprise multiple features of similar strength.

Artificial Neural Network Reproduces These Receptive Fields Using
Sparseness and Divisive Normalization. We next examined whether
receptive fields like those observed in NCM neurons could emerge
through two encoding principles that have been proposed to be
important to the function of neural circuits: sparseness and divisive
normalization. Sparseness is a common property of cortical re-
sponses (18), where each neuron responds only to a small number
of all stimuli (lifetime sparseness) and each stimulus activates
only a small fraction of all neurons in the population (population
sparseness). Divisive normalization, another general principle of
neural computation (19), is the suppression or scaling of one
neuron’s activity by the weighted activity in the circuit. We won-
dered whether an artificial neural network with the above con-
straints (sparseness and normalization) was able to learn composite
receptive fields, with each unit pooling distinct features of similar
strength, as observed in the biological neurons.
We trained a two-layer neural network using sparse filtering

(20), a recently developed unsupervised learning algorithm (21),
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Fig. 2. Composite receptive field of a single NCM neuron. (A) Examples of
multiple excitatory and suppressive features obtained from one NCM neu-
ron. The top two rows show the negative (excitatory) features. In this neu-
ron, eight negative eigenvalues were significant. The largest nonsignificant
eigenvector is also displayed to the right of the dotted line in row two and
can be seen to contain structure. Eigenvectors corresponding to even smaller
eigenvalues (not shown) contained no clear structure. The two bottom rows
show nine significant positive (suppressive) features. (B) Eigenspectrum of
the matrix J for the same neuron as in A. Eigenvalues were normalized for
comparison with the data in Fig. 6B. The dashed lines indicate the two
largest (in absolute value) positive and negative eigenvalues obtained from
500 symmetrical Gaussian random matrices with the same mean and vari-
ance as those of matrix J.
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Fig. 3. Capturing the statistics of feature ensembles. Projections of modula-
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neural network features (black) on spectral (Left) and temporal (Right) axes.
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on the same 60 starling songs that we used to obtain the features
in Fig. 5 and analyzed the acoustical features represented by units of
this network. Because the principles (the cost function) that underlie
the network’s features are well-understood and defined mathemat-
ically, the network can serve as a benchmark representation to which
the biological neurons’ feature distributions can be compared.
The network had two layers; the input layer (layer 1) learned

basis features that resembled narrowband tones, broadband clicks,
and some more complex structures. The second layer combined
these features. Each layer-2 unit responded to several different
first-layer features; that is, layer-2 units had composite receptive
fields (Fig. 6A). Some layer-2 units had partially overlapping re-
ceptive fields. For example, the units “e” and “f” responded to the
same (e.g., e1 and f1) as well as different (e.g., e9 and f9) features.
This partially overlapping set of features was reminiscent of the
mixture of precisely shared and independent receptive-field sub-
regions in neighboring neurons in the mouse visual cortex (22).
The population sparseness constraint assured that only a few basis
features were active for each layer-2 unit; competition between
units (normalization) assured that active features had similar
magnitudes (Fig. 6 B and C). The average difference between
pairs of neighboring units (after sorting all units according
to their activity and selecting 10 layer-1 units with the largest

magnitude for each layer-2 unit) was 25%, and the maximal
difference was 84% (Fig. 6C). This result accords with the re-
ceptive fields of NCM neurons, in which a few significant ei-
genvalues had similar magnitude (Figs. 2B and 5B). The
spectrotemporal characteristics captured by these sets of sparse,
evenly strong features matched those observed in the real neu-
rons and those present in the songs themselves (Fig. 3). Note
that the neural network did not explicitly model the stimulus
distribution, but rather reproduced its properties based on the
sparseness and normalization constraints.

Discussion
We have shown that individual high-level auditory neurons in the
starling forebrain possess composite receptive fields comprising
up to a dozen or more independent features of similar magni-
tudes. We then rediscover the distributions of these component
features in an artificial neural network using divisive normali-
zation and sparseness, suggesting plausible biological mecha-
nisms for this composite representation.
The observed diversity and magnitude of features that drive

spiking responses in NCM neurons is hard to reconcile with the
strictest notions of feature selectivity implied by linear receptive-
field models and low-dimensional stimulus representations. We
show that the spiking response of a single NCM neuron can be
produced by any one of many independent features. Although
problematic at the level of a single neuron considered in iso-
lation, this encoding scheme could be advantageous at the neu-
ronal ensemble level because it allows each neuron to participate
in many different ensembles. Computational models suggest that
ensembles composed of diverse receptive fields, such as those we
observed here, are superior for encoding multidimensional stimuli
compared with populations in which each neuron responds to only
a single stimulus (23). Recently, we also showed that the logical
rules underlying the combination of independent inputs in NCM
neurons can vary as a function both of the inputs and the neuron’s
state, sometimes reflecting an AND-like operation, sometimes an
OR-like operation (13). Collectively, it appears that individual
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Fig. 4. Prediction of responses to new stimuli. (A) The empirically measured
time-varying average spike rate (blue) and the MNE-predicted spike rate
(red) for a single neuron’s response to a song. The correlation coefficient
between the measured and predicted response was 0.56. The number of
spikes in each time bin was normalized by the number of stimulus repeti-
tions. (B) Full distribution of correlation coefficients obtained with the sec-
ond-order MNE model plotted against those obtained with the STRF. The
diagonal line indicates unity.
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NCM neurons act as flexible logical gates operating in a high-
dimensional feature space.
Given their benefits, composite receptive fields may be a fun-

damental property of sensory systems that flexibly map diverse,
multidimensional stimuli onto different behaviors. In support of
this notion, composite receptive fields have also been identified in
high-order olfactory neurons in mammals and insects (24, 25). In
the olfactory system, because the number of odorants and odors
that an individual may experience is very large and their identity
cannot be predicted a priori, random projections of mitral cells in
the olfactory bulb to pyramidal neurons in the piriform cortex are
considered a good unbiased starting point from which learning
then carves the associative networks (24, 26). In contrast, olfac-
tory circuits mediating responses to pheromones, which are con-
served evolutionarily and highly species-specific, are precisely
wired, and the associated receptive fields are specific (26). Like
the space of possible odors, the learned vocal repertoires of
starlings and many other songbirds are large and unpredictable.
Each adult starling has several dozen distinct motifs in its rep-
ertoire, most of which are unique to that bird, and the behavioral
significance of these signals varies according to the idiosyncratic
life history of both the singer and each listener (1). It is note-
worthy that in both the associative olfactory centers and in high-
order auditory neurons the representation of multidimensional
and unpredictable natural stimuli is associated with the presence
of composite receptive fields. Functionally similar properties have
also been identified in prefrontal cortex, where many neurons are
tuned to mixtures of multiple task-related aspects, and this so-
called “mixed selectivity” has been suggested to be a hallmark of
brain structures involved in cognition (27).

We also demonstrate how the observed composite receptive
fields could emerge in sensory networks. Both the neural net-
work trained in this study and the neurons in the starlings’ brains
display receptive fields that capture the statistics of the starling
song. Unsupervised learning algorithms in general can produce
statistically optimal representations of complex inputs (28, 29)
and have been used successfully to model simple-cell receptive
fields in primary visual cortex (30) and auditory responses in the
cochlear nerve (31). The success of both these efficient sensory
encoding models is directly based on the maximization of sparse-
ness in the underlying algorithms. We show that the same con-
straint of sparseness, coupled with divisive normalization between
units within each network layer, yields representations with re-
ceptive fields composed of several distinct features of similar
magnitude. Thus, these processes may be general constraints that
shape information processing across multiple neuronal stages. A
key question for future research is to understand both the imple-
mentation of sparseness (18) and normalization in sensory neural
circuits and the functional significance of discontinuous, composite,
and apparently random receptive fields in songbirds and other
animals. The success of random projections for dimensionality
reduction, e.g., in compressed sensing and machine learning (32–
34), provides useful frameworks for this research.

Methods
Spike Recording and Sorting. Under a protocol approved by the Institutional
Animal Care andUse Committee of the University of California, SanDiego,we
performed experiments on adult male European starlings (Sturnus vulgaris).
We obtained stimuli for the experiments by recording songs from adult male
starlings (unfamiliar to the test subjects) inside a sound attenuation box
(Acoustic Systems) at 44.1 thousand samples/s. For physiological testing, birds
were anesthetized (urethane, 7 mL·kg−1) and head-fixed to a stereotaxic
apparatus mounted inside a sound attenuation box. The use of urethane was
necessary to obtain the long-stimulus presentation epochs required in this
study and is unlikely to alter selectivity significantly (15, 16). Songs were
played to the subjects at 60-dB mean-level while we recorded action poten-
tials extracellularly using 32-channel electrode arrays (NeuroNexus Technol-
ogies) inserted through a small craniotomy into the NCM. Stimulus presentation,
signal recording, and spike sorting were controlled through a PC using Spike2
software (CED). Extracellular voltage waveforms were amplified (model 3600
amplifier, A-M Systems), filtered, and sampled with a 50-μs resolution and
saved for offline spike sorting. Single units were identified by clustering
principle components of the spike waveforms, only when no violations of
the refractory period (assumed to equal 1 ms) occurred, and only from re-
cordings with an excellent signal-to-noise ratio (large-amplitude extracellular
action-potential waveforms). All analyses, except for spike sorting, were per-
formed in Matlab (MathWorks).

MNE Receptive-Field Analysis. To compute the linear and quadratic features,
we downsampled stimuli to 24 kHz and converted them into spectrograms
using spectrogram function in Matlab with parameters: nfft = 128, Hanning
window of length 128, and a 50% segment overlap. The DC component was
removed, and the adjacent 64 frequencies were averaged pair-wise twice to
obtain 16 frequency bands ranging from 750 Hz to the Nyquist frequency
(12 kHz). The adjacent time bins were averaged three times for a final bin
size of 21 ms. We typically used 20 time bins to compute MNE receptive
fields (both the linear and quadratic features). Using stimuli with 32 instead
of 16 frequencies, or smaller time bins, or a different number of time bins
(10, 16, 32) to compute receptive fields gave similar results. The spectro-
grams were converted into the logarithmic scale.

A full description of the MNE model is given in ref. 6. Briefly, the minimal
model describes the probability of a spike, given a stimulus s (e.g., a song
spectrogram), as PðspikejsÞ= ð1+ expða+ sh+ sT JsÞ−1, which is a logistic func-
tion with parameters a, h, and J determined to satisfy the mean firing rate and
the correlations with the first and second moments of the stimulus, respectively
(6). Data were divided into two sets for training and testing; the testing set
contained one-quarter of the data. Parameters were estimated four times, each
time using a different segment of data for training and testing, and averaged.
Early stopping was used for regularization to prevent overfitting. As in STC,
diagonalizing the matrix J yields quadratic features with the same time and
frequency dimensions as the original stimuli that drove spiking. To test signif-
icance, the eigenvalues of J were compared with those obtained from a
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Fig. 6. Neural network trained on starling songs learns composite receptive
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randomly reshuffled J matrix. As a second test of the eigenvalues’ significance,
we constructed 500 symmetrical Gaussian randommatrices with the samemean
and variance as those of J and obtained a distribution of their eigenvalues.
Eigenvalues of J were considered significant if they were outside of this dis-
tribution. The two approaches resulted in the same, or similar, numbers of
significant eigenvalues. When the numbers were not the same (and they never
differed by more than 1), we conservatively chose the smaller number.

To test how well the model predicted responses to new stimuli, we obtained
the parameters a, h, and J for each neuron using all subsets of five among the
six songs and generated a prediction of the response to the remaining sixth
song not used in the parameter estimation. This prediction was then compared
with the actual response to that song using the Matlab corrcoef function.

Feature Similarity. For a subset of neurons, we computed the correlation
coefficient (CC) between each feature extracted from the 6-song dataset and
each feature extracted from the 60-song dataset for that same neuron. We
count a 6-song feature as “preserved” in the larger dataset if the correlation
coefficient between it and any feature in the 60-song set exceeds the bounds of
the 95% confidence for all CCs between 6-song and 60-song features from that
neuron. We quantified feature similarity directly by computing the absolute
value of the correlation coefficient between each of the 54 features from the
6-song dataset and each of the 73 features from the 60-song datasets for all
neurons in which theywere obtained (n = 4). We used the absolute value of the
CC because the features are quadratic; the same feature can appear in different
datasets as spectrograms with opposite polarity (i.e., with the red and the blue
regions reversed). We considered the CC with the largest absolute value among
all of the features from the 60-song dataset from the same neuron to be the
best within-cell match and the average of the CCs with the largest absolute
value among the features in each of the 60-song datasets obtained from dif-
ferent cells to be the best between-cell match. We then compared the best
within-cell match to the best between-cell match for each six-song feature
using a paired t test. Although our analysis shows that similar features
are maintained across datasets from the same cell, both the preservation of

(comparatively stronger) features and the loss of (comparatively weaker) fea-
tures are expected as songs from new birds are added. Because all features are
not independent and must be orthogonal, if a new strong feature appears that
is not orthogonal to an existing weak feature, the weak feature will change. As
more data are added, the basis vectors have to change to remain orthogonal.

Unsupervised Neural Network. The network was forced to construct a compact
representation of starling song by learning features based on the song statistics
and subject to two constraints. First, only a small fraction of units should be
active at any time (population sparseness). Second, all units should compete
with each other and therefore be approximately equally active (high dis-
persal). As a result of this competition—akin to divisive normalization in
neural circuits—in conjunction with the population sparseness constraint,
any individual unit was active only rarely (lifetime sparseness). These three
characteristics—population sparseness, lifetime sparseness, and normalization—
are typical of neuronal activity in the cortex. To implement the network, we
used the code from Ngiam et al. (2011) (20), which is freely available. Briefly,
the sparse filtering objective (eq. 1 in ref. 20) first normalizes features by di-
viding them by their L2-norm over all training examples to assure that they are
equally active and lie on the unit L2-ball (a sphere of unit radius), and then the
algorithm minimizes the L1-norm of the normalized features over the set of
examples to optimize for sparseness. Ngiam et al. (2011) (20) provide a detailed
description. The algorithm has only one hyperparameter, the number of
features to learn. We tried values between 100 and 256 for both layers and
consistently obtained the same features; the final results were obtained with
100 target features. The first layer was trained on starling songs converted into
log-spectrograms. The second layer was trained on the normalized first-layer
features, using a greedy layer-wise stacking commonly used in deep neural
architectures (35).
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