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Organismal functions are size-dependent whenever body surfaces
supply body volumes. Larger organisms can develop strongly
folded internal surfaces for enhanced diffusion, but in many cases
areas cannot be folded so that their enlargement is constrained by
anatomy, presenting a problem for larger animals. Here, we study
the allometry of adhesive pad area in 225 climbing animal species,
covering more than seven orders of magnitude in weight. Across
all taxa, adhesive pad area showed extreme positive allometry and
scaled with weight, implying a 200-fold increase of relative pad area
from mites to geckos. However, allometric scaling coefficients for
pad area systematically decreased with taxonomic level and were
close to isometry when evolutionary history was accounted for,
indicating that the substantial anatomical changes required to
achieve this increase in relative pad area are limited by phylogenetic
constraints. Using a comparative phylogenetic approach, we found
that the departure from isometry is almost exclusively caused by
large differences in size-corrected pad area between arthropods and
vertebrates. To mitigate the expected decrease of weight-specific
adhesion within closely related taxa where pad area scaled close to
isometry, data for several taxa suggest that the pads’ adhesive
strength increased for larger animals. The combination of adjust-
ments in relative pad area for distantly related taxa and changes
in adhesive strength for closely related groups helps explain how
climbing with adhesive pads has evolved in animals varying over
seven orders of magnitude in body weight. Our results illustrate the
size limits of adhesion-based climbing, with profound implications
for large-scale bio-inspired adhesives.
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The evolution of adaptive traits is driven by selective pressures
but can be bound by phylogenetic, developmental, and

physical constraints (1). Integrating evolution and biomechanics
provides a powerful tool to unravel this complex interaction,
because physical constraints can often be predicted easily from
first principles (2). The influence of physical constraints is especially
evident in comparative studies across organisms that differ sub-
stantially in size (3–6). For example, Fick’s laws of diffusion state
that diffusive transport becomes increasingly insufficient over large
distances, explaining the development of enlarged surfaces for gas
and nutrient exchange (e.g., leaves, roots, lungs, gills, and guts)
and integrated long-distance fluid transport systems (e.g., xylem/
phloem and circulatory systems) in larger animals and plants.
How these systems change with size is determined by physical
constraints (7–9). Although “fractal” surface enlargements are
possible without disrupting other body functions, strong positive
allometry can conflict with anatomical constraints. For example,
structural stability demands that animals should increase the cross-
sectional area of their bones in proportion to their body weight,
but excessively thick leg bones can compromise other physiological
functions and hamper locomotion (3, 10, 11).
Adhesive pads are another example of an adaptive trait sub-

ject to size-dependent physical constraints. These systems allow

animals to climb smooth vertical or inverted surfaces, thereby
opening up new habitats. Adhesive pads have evolved multiple
times independently within arthropods, reptiles, amphibians, and
mammals and show impressive performance: They are rapidly
controllable, can be used repeatedly without any loss of perfor-
mance, and function on rough, dirty, and flooded surfaces (12). This
performance has inspired a considerable amount of work on tech-
nical adhesives that mimic these properties (13). A key challenge for
both biological and bio-inspired adhesive systems is to achieve size-
independent performance (14–16), that is, the maximum sustain-
able adhesion force, F, should be proportional to the mass to be
supported, m. For vertically climbing animals, F is the product of
the maximum adhesive stress, σ, and the adhesive pad area, A, each
of which may change with mass (A∝ma and σ ∝mb), so that con-
stant size-specific attachment performance requires

m∝Aσ ∝mamb → a+ b≈ 1, [1]

where a and b are the scaling coefficients for σ and A in relation
to body mass, respectively. If animals maintain geometric simi-
larity when increasing in size, A would scale as m2=3, so that the
adhesion per body weight for large geckos (m≈100 g) is expected
to be approximately 107=3 ≈200 times smaller than for tiny mites
(m≈10 μg) if the pads’ adhesive strength σ remained unchanged
(b= 0). Large animals can only circumvent this problem by (i)
developing disproportionally large adhesive pads (a> 2=3)
and/or (ii) systematically increasing the maximum force per unit
pad area (b> 0). How do large climbing animals achieve adhesive
forces equivalent to their body weight?

Significance

How adhesive forces can be scaled up from microscopic to mac-
roscopic levels is a central problem for biological and bio-inspired
adhesives. Here, we elucidate how animals with sticky footpads
cope with large body sizes. We find an extreme positive allometry
of footpad area across all 225 species studied, implying a 200-fold
increase of relative pad area from mites to geckos. Within groups,
however, pads were almost isometric, but their adhesive strength
increased with size, inconsistent with existing models. Extrapo-
lating the observed scaling, we show that to support a human’s
body weight, an unrealistic 40% of the body surface would have
to be covered with adhesive pads, suggesting that anatomical
constraints may prohibit the evolution of adhesion-based climbers
larger than geckos.

Author contributions: D.L. and W.F. designed research; D.L., C.J.C., A.D., and C.-Y.K. per-
formed research; D.L. and C.J.C. analyzed data; and D.L., C.J.C., A.J.C., D.J.I., and W.F.
wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.
1To whom correspondence should be addressed. Email: dl416@cam.ac.uk.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1519459113/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1519459113 PNAS | February 2, 2016 | vol. 113 | no. 5 | 1297–1302

EV
O
LU

TI
O
N

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1519459113&domain=pdf
mailto:dl416@cam.ac.uk
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1519459113/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1519459113/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1519459113


Using the simple biomechanics argument outlined above as a
framework, we here provide a comparative analysis of the al-
lometry of adhesive pad area across 225 species, covering more
than seven orders of magnitude in weight—almost the entire
weight range of animals climbing with adhesive pads—and in-
cluding representatives from all major groups of adhesion-based
climbers.

Results and Discussion
Scaling of Adhesive Pad Area. Across all taxa, adhesive pad area
showed extreme positive allometry and scaled as A∝m1.02 [reduced
major axis regression (RMA); see Fig. 1 and Table S1 for detailed
statistics], an increase sufficient to compensate for the predicted
loss of weight-specific adhesion, even if adhesive strength remained
unchanged. Thus, adhesive pads occupy a larger fraction of the
body surface area in larger animals. Within closely related tax-
onomic groups, however, pad area grew more slowly with body
mass, indicating a strong phylogenetic signal (Figs. 1 and 2).
When evolutionary relationships were accounted for, the ob-

served scaling coefficient decreased dramatically and was almost
consistent with isometry (Figs. 1 and 2 and Table S1). This sys-
tematic change of allometric coefficients with taxonomic rank sug-
gests that phylogenetic inertia impedes a disproportionate increase
of pad area within closely related groups (Figs. 2 and 3A). Our
results thus add to a body of evidence suggesting that the evolu-
tionary flexibility of allometric slopes is low and larger changes in
particular traits are mainly achieved by shifts of the allometric ele-
vation (17, 18).
Removal of the influence of body size by analyzing the re-

siduals (termed “relative pad area” in the following) of a phy-
logenetic reduced major axis regression (pRMA) allowed us to
further investigate at what taxonomic level major shifts in rela-
tive pad area occurred, separating the effects of size and an-
cestry. Relative pad area differed strongly between vertebrates
and arthropods, but comparatively little variation existed within
these groups (Fig. 3A). More than 58% of the variation in re-
sidual pad area was explained by differences between vertebrates
and arthropods (nested ANOVA, F1,173 = 845, P< 0.001; Table
S2), so that body weight and phylum alone accounted for more
than 90% of the total variation in pad area. Rather than being
driven solely by variation in body size, differences in relative pad
area seem to be tied to characteristic features of the corresponding
phyla, such as, for example, the presence or absence of multiple
distal pads (toes) per leg (Fig. 3 B and C). However, we also found
evidence for differences in relative pad area within lower taxo-
nomic ranks. For example, members of the gecko genus Sphaer-
odactylus had considerably smaller pads than other Gekkotan
lizards, whereas Gekko lizards had particularly well-developed

pads (based on their relative pad area; Fig. 3A). In insects,
hemimetabolous orders had smaller relative pad areas than ho-
lometabolous orders (Fig. 3A). Adhesive pads allow access to
arboreal habitats (19–21), but they may come at the cost of re-
duced locomotor performance in situations where no adhesion
is required (22, 23). Thus, the multiple independent losses, gains,
and reductions of adhesive pads in amphibians, insects, lizards,
and spiders (24–27) likely reflect the ecological, behavioral, and
taxonomic diversity within these groups (28, 29).

The Size Limits of Adhesion-Based Climbing. Strong positive allo-
metry of nonconvoluted body structures in organisms ranging in
size over many orders of magnitude is difficult to achieve, owing
to simple anatomical constraints. For example, bone mass in ter-
restrial animals is predicted to increase with mass4/3 to main-
tain constant bone stress levels, but this would require unrealistic
relative bone masses for larger mammals (scaling up an 8-g shrew
with ca. 4% bone mass would produce a rather unfortunate 8-ton
elephant with 400% bone mass). The actual scaling coefficient is
inevitably smaller (≈1.1) (10, 30), and alternative strategies have
evolved to limit bone stresses (11).
Maintaining a pad area proportional to body weight in animals

ranging from 10−5 to 102 g requires extraordinary morphological
changes: Assuming otherwise isometric animals, the proportion of
the total body surface area specialized as adhesive pad needs to
increase by a factor of 107=3 ≈ 200. This extreme shape change may
impose a size limit for adhesion-based climbing. Scaling up the
relative pad area of arthropods and small vertebrates to a human of
180 cm body length and 80 kg body mass would result in an adhesive
pad area of ≈ 106.91 · 80, 0001.02 ≈ 0.81 m2, approximately two-fifths
of the total available body surface area [≈2 m2 (31)]. The required
morphological changes, if at all possible, would thus be enormous,
and difficult to achieve over short evolutionary timescales. Our re-
sults therefore indicate that phylogenetic inertia restricts the “design
space” for evolution at least for closely related taxa. Larger animals
within closely related taxa must therefore either cope with a size-
related decrease in their attachment ability or develop alternative
strategies to compensate for it. Recent studies on tree frogs and ants
revealed that pad adhesive strength can vary systematically with size,
resulting in an almost body size-independent attachment abilities
despite a near-isometric growth of pad area (16, 32). Here, we ex-
tend these studies to investigate whether such adaptations are also
present above the species or genus level.
Fig. 4 shows whole-body adhesion per pad area plotted against

body weight for 17 frog species from 4 families and 12 genera
(33–36; see Supporting Information). All adhesion measurements
were conducted using a tilting platform and are thus comparable
across studies. Over two orders of magnitude in body weight, ad-
hesion force per unit area increased with m0.3 [RMA slope 0.3, 95%

Fig. 1. Allometry of pad area for 225 species, ranging
from ≈20 μg to ≈200 g in body weight. Across all taxa,
pad area was directly proportional to body weight
(RMA, dashed line). The increase in the fraction (black
circles) of the total available surface area (gray circles)
required to accommodate this disproportionate change
is schematically illustrated along the bottom axis, as-
suming that a climbing animal of 80 kg has a total
surface area of 2 m2, comparable to a human of 80 kg
and 180 cm, and that body surface area is approxi-
mately isometric. Strikingly, scaling relationships were
significantly less steep within closely related groups
(representative solid lines from RMA regressions) and
closer to isometry when phylogenetic relationships were
accounted for (pRMA regression, dotted line).
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confidence interval (CI): (0.2, 0.43), generalized least-squares (GLS)
slope 0.19, 95% CI: (0.08, 0.31)], sufficient to achieve body size-
independent adhesive performance despite an approximately iso-
metric growth of pad area [RMA slope 0.74, 95% CI: (0.62, 0.87),
GLS slope 0.70, 95% CI: (0.58, 0.83)]. In contrast to our results for
the allometry of pad area, this relationship remained virtually un-
changed when phylogenetic relationships were accounted for, in-
dicating that pad performance directly responded to selective
pressures unconstrained by phylogenetic history [phylogenetic RMA
slope 0.28, 95% CI: (0.2, 0.42), phylogenetic GLS slope 0.17, 95%
CI: (0.07, 0.27); Fig. 4].
Together, our results provide strong evidence that two different

strategies have evolved to deal with the physical challenges of a
larger body size. These strategies have been adopted at different
taxonomic levels, highlighting how phylogenetic and physical con-
straints can influence the evolution of adaptive traits. Across dis-
tantly related groups, leg morphology is sufficiently different to
accommodate large differences in relative pad area. Within closely
related groups, where anatomical constraints result in a scaling of
pad area closer to isometry, some taxa seem to have increased their
pads’ adhesive efficiency with size. The mechanisms underlying this
increase in adhesive strength are still unclear but may be of con-
siderable interest for the development of large-scale bio-inspired
adhesives. Various hypotheses have been proposed (14, 16, 35) but
still remain to be tested.

Force Scaling and the Evolution of “Hairy” Adhesive Pads. Arzt et al.
(37) suggested that large animals with hairy adhesive pads have
evolved higher hair densities to increase their pads’ adhesive
strength, an idea derived from the assumption that adhesive forces
scale with the width of individual hair tips. Assuming isometric
growth of the total pad area, Arzt et al. (37) predicted that hair
density would need to increase withm2=3 to achieve constant mass-
specific adhesion, in agreement with the data presented (but see
ref. 38, which showed that adhesive hair density increased with
body mass only when species were treated as independent data
points, but not when phylogeny was considered). However, our
data show that total pad area is directly proportional to body mass
across distantly related taxa, so that a constant hair density would
suffice. In addition, there is no experimental evidence that the
adhesive strength of animal adhesive pads increases with decreasing
size of individual contacts (16, 39). Thus, it seems unlikely that
“force scaling” has played an important role in the evolution of fi-
brillar adhesive systems (40).

Adhesive pads constitute a prime model system for studying the
link between morphology, performance, and fitness (41). Further
mechanistic and comparative studies are needed to elucidate the
factors driving the evolution of these structures and may ultimately
allow us to mimic their properties with synthetic adhesives.

Materials and Methods
Data Collection. Data were either collected by the authors or extracted from
references (16, 28, 33–36, 39, 42–84).

Arthropod specimens were collected around Cambridge, United Kingdom
or Brisbane, Australia or obtained from the Cambridge Phasmid Study
Group. All arthropods were identified (85–87), and their live weight was
recorded (ME5, resolution 1 μg, max 5 g or 1,202 MP, resolution 0.01 g, max
300 g; both Sartorius AG). Attachment pads were photographed either with a
Canon EOS camera mounted on a stereo microscope (MZ16; Leica Micro-
systems Ltd.) or by using SEM for large and small specimens, respectively. Some
pads were imaged while in contact with glass, visualized using the stereomi-
croscope with coaxial illumination. For SEM imaging, individual legs were dried,
mounted on stubs, sputter-coated at 65 mA for 10–20 s (K575X turbo-pump

Fig. 2. Change in pad allometry with taxonomic rank. For example, the slope
of the regression line for Araneae in Fig. 1 is one data point for the rank
‟order.” Allometric coefficients decreased systematically, from mass pro-
portionality across all animals to isometry within genera and species. Data for
the species-level allometry are from refs. 16 and 128.

A

B

C

Fig. 3. (A) Overview of the diversity of taxa examined in this study. Branch
lengths do not reflect time or base pair substitutions (see Materials and
Methods). Branches are colored according to a maximum likelihood estimate
of the ancestral state of relative pad area (i.e., the residuals from a log-log
regression of pad area against body weight), visualizing systematic differ-
ences in relative pad area between arthropods and vertebrates. All values
apart from tip states are only approximate and are not used to support any
conclusions (see Materials and Methods). (B and C) Cartoons depicting
footpad morphology for representative groups within the phylogeny shown
above with smooth and hairy adhesive pads. Projected pad area is high-
lighted in orange for each representative (see Materials and Methods).
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sputter; Quorum Technologies) and examined with a field emission gun SEM
at a beam voltage of 5 kV (Leo Gemini 1530VP; Carl-Zeiss NTS GmbH).

Data on toepad-bearing gecko specieswere collected from live animals kept in
theD.J.I. laboratory [under an Institutional Animal Care andUse (IACUC) protocol
2012–0064 from the University of Massachusetts, Amherst to D.J.I.] and pre-
served specimens from the American Museum of Natural History and the Mu-
seum of Comparative Zoology at Harvard University. For each specimen, photos
of one forefoot were obtained by pressing it tightly against the glass plate of an
Epson Perfection V500 Photo Scanner (Seiko Epson Corp.) next to a ruler and
taking a digital scan. The total toepad area across all digits was measured using
ImageJ, version 1.49r (88). We also measured snout-vent length (±1 mm) from
each individual using a clear plastic ruler. Where possible, we measured multiple
conspecific individuals and used the mean as the species value.

Literature data were taken from the papers’ text or tables or were
extracted from figures using WebPlotDigitizer 3.3 (WPD, developed by Ankit
Rohatgi; arohatgi.info/WebPlotDigitizer) or ImageJ, version 1.49m. We tested
the performance of WPD with an x–y plot of 20 random numbers between
1 and 1,000 (x) and 0.01 and 10,000 (y) on a log-log scale and found an ac-
curacy of ≈0.6% for the raw data.

We used live body weights where available and interpolated live weight
from body length where necessary, using established scaling relationships (38).
A list of the species included can be found in the Supporting Information.

Adhesive Pad Area. Animals attach to smooth surfaces by using specialized
attachment pads on their legs. These pads are either covered with dense
arrays of fibrils (hairy pads) or are macroscopically unstructured (smooth
pads). To compare pad areas across different taxa and pad morphologies, the
following assumptions were made:

i) “Projected” pad area is the most meaningful measure of contact area in
comparative studies. Projected pad area is the surface area of the foot
specialized specifically for generating adhesion and friction (89). In a
fibrillar pad, inevitably only a fraction of this area comes into surface
contact (i.e., the “real” contact area is significantly smaller than the pro-
jected contact area).

ii) All animals use a similar fraction of their available pad area when maxi-
mum performance is required. It is unclear what fraction of the available
pad area is used by animals of different size (16, 90, 91), and systematic
studies are lacking. However, the small number of direct contact area
observations available strongly suggest that animals often use the entire
area of their adhesive pads (89, 92), that is, that they are not “overbuilt.”
We thus assume that all climbing pads are designed so that their whole
area can be used in critical situations.

iii) Adhesive performance is dominated by distal pads. Insects can have several
attachment pads per leg. There is strong evidence that these pad types
differ in their morphology, as well as in their performance and function
during locomotion (16, 42, 63, 68, 89 ). Many insects do not use their distal
pads when no adhesion is required (42, 63, 93–96), whereas during
inverted climbing only distal pads are in surface contact (81). Accordingly,
insects with ablated distal pads cannot cling upside-down to smooth
surfaces (42, 96). Distal pads thus seem to be true adhesive pads (81).
Proximal pads, in contrast, can lack strong adhesion andmay be designed
as nonadhesive friction pads (97, 98). The distal pads are usually part of
the pretarsus, but some insects lack a pretarsal pad. In these insects, the
distal tarsal pad can show morphological specializations similar to those
of pretarsal pads (99, 100). Proximal pads are mainly found in arthropods,
but they may also be present in frogs (33, 101). As the contribution of
proximal pads to adhesion is unclear and likely variable, we exclude them
for this study. In most insects, the total proximal pad area is between three
to five times larger than the distal pad area, and pad area is still positively
allometric even when proximal pads are included (reduced major axis re-
gression slope between 0.8–0.9).

iv) The variation of pad area/adhesive strength between different legs/toes and
sexes of the same species and the variation introduced by the animals’ ecol-
ogy is independent and randomly distributed with respect to body weight.
Several studies have shown that the size, morphology and performance of
attachment devices can depend on the ecological niche occupied by the
animals (19, 21, 28, 57, 102). Variation can also occur between sexes
(68, 103, 104), different legs or toes (19, 82), or even between popula-
tions of the same species occupying different habitats (23). For this
study, we assume that because of the large number of samples and
the wide range of body sizes included, any bias introduced by these
factors can be ignored.

v) Adhesive performance of “wet” and “dry” pads is comparable. Dynamic
adhesive pads are frequently categorized as wet or dry. However, there

is no evidence for a functional difference between these two pad types
(105), and indeed maximal adhesive stresses are comparable (16).

Because some of the data used in this study originate from different
groups, we quantified the consistency of pad area measurements among
researchers. A selection of SEM images (three hairy and seven smooth pads)
were given to 10 scientists who independently measured nominal pad area.
We found an average coefficient of variation of 17 ± 9%, which was in-
dependent of the animals’ body weight (ANOVA, F1,8 = 0.067, P = 0.8).
Scaling relationships calculated with this dataset did not vary significantly
across scientists (slope: likelihood ratio statistic = 0.38; elevation: Wald sta-
tistic = 1.21, both df = 9 and P > 0.9).

Phlyogenetic and Statistical Analyses. To account for the nonindependence of
data from related species, we first formed groups within which adhesive pads
are likely homologous, based on their position on the leg and their struc-
ture (i.e., hairy vs. smooth pads). These groups are (i) Squamata, (ii) Anura,
(iii) Araneae, (iv) mites with smooth pads, (v) mites with hairy pads, (vi) insects
with tarsal hair fields (e.g., some Coleoptera and Raphidioptera), (vii) in-
sects with smooth pulvilli (e.g., some Hemiptera), (viii) insects with hairy
pulvilli (e.g., some Diptera), (ix) insects with unfoldable arolia (some Hy-
menoptera), (x) insects with noneversible arolia (e.g., some Polyneoptera,
Hemiptera and Lepidoptera), (xi) insects with specialized distal euplantula
(some Polyneoptera), and (xii) insects with tibial pads (e.g., some aphids).
These groups were all connected directly to the root of the tree, so that
analogous structures share no branch, and thus the respective elements in
the error covariance matrix of our linear models are zero (106). Within
these groups, we assembled a tree topology from phylogenies published
for the constituent groups [Anura (107), Squamata (108), Aranae (27),
Insecta (109), Blattodea (110), Coleoptera (111), Diptera (112), Hemiptera
(113, 114), and Hymenoptera (115, 116)]. Because statistically supported branch
lengths were not available, comparative phylogenetic procedures that allow
for more complex evolutionary models, such as Ornstein–Uhlenbeck models
(117, 118), were not feasible. Instead, we performed phylogenetic general-
ized least squares on 10,000 trees with randomized branch lengths that were
rendered ultrametric via a correlated rate model (119). To account for the
uncertainty of the phylogenetic error covariance structure, Pagel’s λ was
estimated simultaneously via a maximum likelihood optimization (120, 121).
The fitted coefficients were normally distributed, with a coefficient of var-
iation below 1% (Fig. S1). For simplicity, we report results for an ultrametric
tree calculated from a tree with all branch lengths set to 1.

All analyses involving pad area and weight were performed on log10-
transformed values, and with the routines implemented in the R packages
nlme v.3.1–118, ape v.3.1–1, and phytools v.0.3–93 in R v.3.1.3 (122, 123).
There is some controversy as to whether (reduced) major axis or ordinary
least squares regression is more appropriate for estimating allometric co-
efficients from data containing both “measurement” and “biological” error

Fig. 4. Adhesive force per area in 17 tree frog species increased with body
mass, indicating that larger species possess more efficient pads. In contrast to the
allometry of pad area, this result was not significantly influenced by phylogeny.
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(17, 18, 124–126). We thus report results for both techniques and note that the
key results of this study hold independent of what regression model is applied.

An alternative method to account for relatedness is to monitor the change
of the estimated parameters as one moves up in taxonomic rank. We per-
formed multiple reduced major axis regressions across all taxa and separately
within the taxonomic levels class, order, family, and genus (for example, all
Hymenoptera provide one allometric slope data point within the level
“order”). Within the taxonomic levels, groups were only included if the
weight range of the available species exceeded a factor of 3, and if data for
at least four different groups from the next sublevel were available (e.g., an
order was included if at least four families were represented).

To visualize the effect of evolutionary history on body size-corrected pad
area, residuals from a phylogenetic reduced major axis regression were used
to estimate maximum likelihood ancestral states for all nodes and along the
branches via the method described in ref. 127. These values are only rough
estimates, first because we do not have statistically supported branch lengths,

second because the species sampling in our phylogeny is incomplete, third
because we do not account for the influence of relative pad area on di-
versification rate, and fourth because only shared ancestors among lower
taxonomic ranks possessed adhesive pads. Ancestral state estimates are solely
used to visualize systematic differences at the tip level, and no conclusions are
based on them.
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