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Summary

Sleep is traditionally constituted of two global behavioral states, NREM and REM, characterized 

by quiescence and reduced responsiveness to sensory stimuli [1]. NREM sleep is distinguished by 

slow waves and spindles throughout the cerebral cortex, REM sleep by an ‘activated’, low-voltage 

fast EEG paradoxically similar to that of wake, accompanied by rapid eye movements and muscle 

atonia. However, recent evidence has shown that cortical activity patterns during wake and NREM 

sleep are not as global as previously thought. Local slow waves can appear in various cortical 

regions in both awake humans [2] and rodents [3-5]. Intracranial recordings in humans [6] and 

rodents [4, 7] have shown that NREM sleep slow waves most often involve only a subset of brain 

regions that varies from wave to wave rather than occurring near-synchronously across all cortical 

areas. Moreover, some cortical areas can transiently ‘wake up’ [8] in an otherwise sleeping brain. 

Yet, until now, cortical activity during REM sleep was thought to be homogenously wake-like. 

We show here, using local laminar recordings in freely moving mice, that slow waves occur 

regularly during REM sleep, but only in primary sensory and motor areas, and mostly in layer 4, 

the main target of relay thalamic inputs, and in layer 3. This finding may help explain why during 

REM sleep we remain disconnected from the environment even though the bulk of the cortex 

shows wakelike, paradoxical activation.
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Results & Discussion

REM sleep, so called because of the occurrence of rapid eye movements [9], is also known 

as “paradoxical sleep” because the activated, low-voltage fast EEG is similar to that of wake 

[10]. During both NREM and REM sleep subjects are disconnected from the environment 

and do not respond to mild stimuli. In NREM sleep the EEG shows the regular occurrence 

of sleep spindles and slow waves, reflecting the bistability of cortical membrane potentials 

[11], which can lead to cortico-cortical disconnection and fading of consciousness [12]. 

During REM sleep, however, cortical activity is wake-like, cortico-cortical connectivity is 

preserved [12], and subjects regularly dream [13]. So far, the general assumption has been 

that during REM sleep EEG low voltage fast activity occurs in all cortical areas and across 

all layers. However, this assumption has not yet been tested thoroughly. We recorded from 

freely moving mice implanted with electroencephalogram (EEG) electrodes in frontal and 

parietal cortex, electromyogram (EMG) electrodes in neck and vibrissal muscles, as well as 

with laminar probes in several primary and secondary/association cortical areas, to assess 

both global and local neuronal activity patterns during the sleep/wake cycle and after sleep 

deprivation. Sleep was scored in 4-sec epochs according to established criteria, and we 

considered all consolidated sleep episodes throughout the entire light phase, when mice 

sleep most of the time (Figure 1A). Global activity patterns, reflected by the EEG and EMG, 

were as expected (Figure 1B-C). Wake was characterized by low voltage fast activity and 

high muscle tone in both neck and vibrissal muscles (Figure 1B, top), and NREM was 

clearly dominated by slow waves (0.5- 4 Hz) and reduced muscle tone (Figure 1B, middle). 

By contrast, the EEG of REM sleep resembled that of wake and there was phasic vibrissal 
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activity (Figure 1B, bottom). Accurate state detection was confirmed by EEG spectral 

analysis and quantification of EMG content (Figure 1C).

To survey regional cortical activity across behavioral states, we examined local field 

potentials (LFPs) recorded from layer 3 of 6 cortical regions including primary visual, 

sensory, and motor areas (V1, S1, M1), secondary visual and motor areas (V2, M2) and 

retrosplenial cortex (RS), an association area involved in memory and spatial navigation 

[14] (Figure 1D-E). In both active wake (with EMG content in the top 33% of the 24-h wake 

EMG activity) and NREM sleep, local activity across all areas exhibited the pattern 

expected based on the EEG, with wake dominated by low voltage high frequency activity 

and NREM sleep characterized by slow waves. However, in REM sleep neural activity in 

some areas deviated from the expected global activity mode. Specifically, while local 

activity in V2, M2, and RS was wake-like, slow waves were unexpectedly present in V1, S1, 

and M1 (Figure 1D). Spectral analysis across all REM episodes of the light period revealed 

prominent SWA in these areas but not in secondary/association regions, indicating that the 

occurrence of slow waves is a robust phenomenon in primary cortical regions throughout 

REM sleep (Figure 1E). Thus sleep slow waves, the hallmark of NREM sleep, occur 

regularly also during REM sleep, but only in primary cortical areas. By contrast, sleep 

spindles, the other EEG feature of NREM sleep, were present in NREM LFP recordings of 

all 3 primary areas but were not detected during REM sleep (data not shown).

Previous studies of local intracortical activity patterns during REM sleep reported wake-like 

activated patterns but not sleep slow waves [11, 15], perhaps because they often probed 

association cortex [11] and/or because unit intracortical recordings are usually biased toward 

deep layers [15]. Taking advantage of laminar probes, we examined activity not only across 

multiple cortical areas, but also across all cortical layers (Figure S1). Examples of 

simultaneously recorded LFPs from superficial (layer 3) and deep (layer 5) layers are shown 

in Figure 2A. During active wake, the characteristic activated pattern was found in both 

superficial and deep layers of all recorded areas (Figure 2A, top row). Similarly during 

NREM sleep slow waves were present across all areas and layers (Figure 2A, middle row). 

However, in REM sleep the wake-like, activated pattern was observed in both superficial 

and deep layers in secondary/association areas, whereas in primary sensory cortical areas 

slow waves were recorded in superficial layers, but not in deep layers, which instead 

exhibited an activated pattern (Figure 2A, bottom row). In M1, slow waves were also 

present in deep layers but were of smaller amplitude than in superficial layers. Spectral 

analysis across all layers, averaged across animals, confirmed these findings: SWA was low 

in wake and high across all layers during NREM sleep, with peak power in the deep layers 

(Figure 2B, top and middle rows). During REM sleep, SWA was low in secondary/

association areas across layers. In primary sensory areas (S1, V1), SWA peaked in layer 4 

and decreased in power with distance from layer 4 (Figure 2B, bottom row), and in M1, 

SWA peaked near the bottom of layer 3 and extended into deep layers. This analysis 

confirmed that REM SWA was specific to these regions and further suggested that it was 

generated by a mechanism in the middle (layer 4) and superficial (mainly layer 3) layers. 

Similar results were found by analyzing sleep in the dark period (Figure S2), as well as 

using a different normalization method (Figure S3). Thus, we found two dissociations in the 

pattern of cortical activity during REM sleep, between primary and secondary/association 
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areas, and within primary sensory areas, between deep and middle/superficial layers. In sum, 

slow waves do occur during REM sleep, but only in primary areas, and only or mainly in 

middle/superficial layers, especially layer 4.

NREM sleep slow waves are due to the alternation, every second or so, of neuronal ON 

periods, characterized by a depolarized membrane potential (UP state) and neuronal firing, 

and OFF periods, during which the membrane potential hyperpolarizes (DOWN state) and 

neurons cease to fire [11, 16]. To clarify the neuronal substrates underlying REM sleep 

SWA, we analyzed current source density (CSD) and multiunit activity (MUA) locked to 

individual slow waves. In V1, NREM sleep slow waves were associated with sources 

(positive current leaving neurons) in the deep layers and OFF periods across all layers 

(Figure 3), consistent with previous findings in cat frontal, parietal and occipital cortex [17]. 

By contrast, during REM sleep slow waves were associated with sources in the middle/

superficial layers, which also showed the strongest decrease in MUA, while firing in deep 

layers was slightly reduced but remained tonic (Figure 3). Similar results were obtained for 

NREM and REM sleep slow waves in S1 and M1 (Figure 3). In all three primary areas, 

REM slow waves were smaller than those in NREM sleep, likely reflecting the fact that only 

a spatially-restricted subset of neurons in the cortical column participated in the underlying 

OFF period. Thus, in primary areas, REM sleep slow waves are associated with current 

sources and neuronal OFF periods in middle/superficial layers but not, or much less so, in 

deep layers.

We also recorded from pairs of regions (V1/M1, S1/M1) in the same animal, to test whether 

REM sleep slow waves were synchronized across the 3 primary areas or remained local. The 

latter was true in all cases, that is, we found that individual REM slow waves in one area 

were not associated with decreased MUA in the other area (data not shown). Moreover, 

REM sleep slow waves were not associated with decreased MUA in secondary/association 

areas (data not shown). Altogether, these findings reveal a novel type of local slow wave 

that occurs in primary cortical regions and is characterized by a decoupling of activity 

patterns in the middle/superficial and deep compartments. Previous research in slices [18] 

and in vivo [19] had shown that superficial layers do not always participate in UP states; the 

present results extend these findings by revealing that middle/superficial layers can have 

OFF periods even in states when deep layers fire tonically.

Finally, we sought to characterize other similarities and differences between REM sleep 

SWA and SWA occurring in other behavioral states. NREM sleep SWA is well-known to 

increase with prior wake duration [20], a result confirmed in our data: NREM sleep SWA 

was highest at sleep onset and after sleep deprivation, and declined with sleep across the 

light cycle (Figure 4A-C). However, REM sleep SWA did not increase with sleep pressure 

and remained stable across the light cycle in V1, while in S1 and M1 it actually increased 

toward the end of the light cycle, when sleep pressure is lowest, although the trend was not 

statistically significant (Figure 4A-C). Similarly, other slow wave parameters such as 

number and slope, which also reflect sleep pressure in NREM sleep [21], were not regulated 

homeostatically in REM sleep (Figure 4D-F). Increasing evidence suggests that the 

homeostatic regulation of NREM SWA may reflect the build-up of stronger synaptic 

connections among cortical neurons during extended wake, leading to higher synchrony in 
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the occurrence of ON and OFF periods during subsequent sleep [22]. Other evidence shows 

that while most intracortical synapses across all layers remain plastic in the adult brain, this 

may not be the case for the thalamocortical synapses of layer 4 [23]. Thus, we speculate that 

REM SWA does not appear to reflect sleep/wake history because it peaks in layer 4, where 

at least some synapses may be less responsive to plastic changes during wake.

Slow waves have also been described in rodents during quiet wake [3-5], as well as during 

the performance of a reaching task [4], though little is known about their laminar dynamics. 

We found that in freely moving mice SWA also occurred in quiet wake (with EMG content 

in the bottom 33% of the 24-h wake EMG activity), but unlike during REM sleep, slow 

waves during quiet wake usually spanned all layers and were present in secondary areas (V2 

and RS; Figure 4G,H). These results suggest that, from an electrophysiological perspective, 

slow waves in quiet wake more closely resemble those in NREM sleep than those in REM 

sleep. SWA in quiet wake and REM sleep also showed differential regulation by motor 

activity: wake SWA was reduced with increased motor activity (quiet wake in Figure 4G; 

active wake in Figure 2B), while REM sleep SWA peaked during periods with high phasic 

vibrissal muscle activity (“phasic REM”) (Figure 4I), at least in V1.

We report here that cortical neuronal activity during REM sleep is not homogenously 

wakelike, as was previously thought, but is characterized by the occurrence of local slow 

waves and associated neuronal OFF periods in the middle/superficial layers of primary 

cortical areas. This finding demonstrates that local activity patterns in the cerebral cortex 

can deviate from the global activity mode in all major behavioral states, as was recently 

shown for wake [4], NREM sleep [8], and now for REM sleep. The spatially restricted 

nature of REM slow waves may explain why REM SWA has not previously been reported: 

LFPs recorded in either the deep or the most superficial layers (layers 1-2) of primary areas 

would likely miss slow waves originating in layer 4. Moreover, REM slow waves may go 

undetected at the scalp level since they are not present in layers 1-2 and since EEG captures 

activity of a broader neuronal network that may include nearby secondary/association areas.

The mechanisms responsible for the local occurrence of slow waves during REM sleep are 

currently unknown. However, it is known that REM sleep is characterized by a combination 

of high acetylcholine and low noradrenaline levels [24]. Cholinergic stimulation can directly 

hyperpolarize layer 4 spiny stellate cells in primary areas (A1, S1, V1) [25], decrease layer 4 

firing [26], and reduce sensory evoked responses in this layer [27, 28], while noradrenaline, 

but not acetylcholine, is sufficient to activate layer 4 [29]. Thus, local slow waves in layer 4 

of primary areas may be facilitated by the high ratio between acetylcholine and 

noradrenaline. The absence of other neuromodulators could also contribute, such as orexin 

or histamine [30]. However, orexinergic and histaminergic projections mainly target deep 

layers and at least for orexin, post-synaptic signaling seems to be confined to layer 6 [31, 

32]. Thalamic mechanisms could also play a role, since relay thalamic nuclei provide the 

main input to layer 4 in primary areas. However, thalamic recordings in REM sleep show 

wake-like electrophysiological properties [33-35], and thalamic lesions do not disrupt wake 

activity patterns in layer 4 of awake rats [29]. Finally, since REM slow waves in M1 were 

more likely to spread to deep layers, it is possible that slow waves in this area are caused by 

an altogether different mechanism.
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What is the possible functional role of local REM sleep slow waves in the middle and 

superficial layers of primary cortices? In other behavioral states, the occurrence of slow 

waves and the underlying OFF periods have behavioral consequences. In awake rats, for 

instance, OFF periods occurring during a reaching attempt interfere with task performance 

[4]. In NREM sleep, the bistable dynamics between ON and OFF periods that characterizes 

slow waves impairs cortical information transmission and cortico-cortical effective 

connectivity [12, 36]. NREM sleep slow waves may also be responsible for sensory 

disconnection, since higher SWA at the onset of NREM sleep is associated with longer OFF 

periods [15] and higher arousal thresholds [37, 38]. Until now, the profound sensory 

disconnection of REM sleep had remained a paradox [13], since all cortical neurons were 

thought to be tonically activated and cortico-cortical connectivity is preserved [39]. The 

present findings suggest two possible mechanisms. First, the peak occurrence of slow waves 

and associated neuronal OFF periods in layer 4 of primary cortical areas may gate stimulus-

evoked signaling right upon entering cortex, since inputs from relay thalamic nuclei target 

primarily layer 4. Consistent with this possibility, hyperpolarization of layer 4 cells 

decreases angular tuning in mouse S1 [40]. Also consistent with this hypothesis, sensory-

evoked activity decreases [41] and arousal thresholds increase [37] especially during phasic 

REM sleep, which is when we observed a surge in slow waves. Second, the OFF periods in 

the superficial layers of primary cortices, which originate the major feedforward output to 

the rest of the cortex, may gate cortico-cortical interactions between primary and secondary 

regions.

In sum, our results suggest that SWA in REM sleep may promote disconnection, as it does 

in NREM sleep. The higher levels of SWA in NREM sleep may result in greater 

disconnection in this phase of sleep, consistent with the observation that arousal thresholds 

in deep NREM sleep are higher than in REM sleep [38, 42], and may also disrupt conscious 

experience in this state. Instead, the focal occurrence of REM SWA specifically in the layers 

of primary sensory cortex involved in feedforward signaling, combined with activation in 

secondary/association areas, may bias the balance between bottom-up and top-down cortical 

signaling in favor of top-down, potentially accounting for both sensory disconnection and 

dreaming [13].

Experimental Procedures

All animal procedures followed the National Institutes of Health Guide for the Care and Use 

of Laboratory Animals and facilities were reviewed and approved by the IACUC of the 

University of Wisconsin-Madison, and were inspected and accredited by AAALAC. Mice 

were implanted with laminar probes (NeuroNeuxs, A1×16, 50 or 100 um site spacing) and 

custom-made EMG and EEG probes. Baseline and sleep deprivation recordings were 

performed in freely moving mice using a PZ amplifier and RZ2 system (Tucker-Davis 

Technologies). Sleep scoring was performed using SleepSign (Kissei Comtec). Data 

analyses were performed using custom Matlab (MathWorks), FieldTrip [43], and the 

CSDPlotter toolbox [44]. Detailed methods are provided in Supplemental Materials.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Occurrence of REM slow waves in primary sensory and motor cortex
A, left, 24-h hypnogram showing the distribution of consolidated sleep and wake episodes in 

one representative animal. All consolidated NREM and REM episodes during the light cycle 

were used for analysis (see Supplemental Experimental Procedures for details). Right, 

example of consolidated episodes of sleep and wake (bold colors) and the non-consolidated 

and transitional epochs that were excluded from the analysis (light colors). B, 
Representative 12-sec traces showing global activity patterns in Wake (W), NREM sleep 

(NR), and REM sleep (R). Parietal EEG, electroencephalogram from parietal cortex; neck 

and vibrissal EMG, electromyogram from neck and vibrissal musculature. C, top, spectral 

analysis (entire 12-h light period) of frontal and parietal EEG, showing a prominent peak in 

the low frequencies in NREM sleep and in the theta range (6-9 Hz) in REM sleep. EEG 

power was normalized by dividing the power in each frequency bin by the total power 

across all frequencies. Bottom, neck and vibrissal EMG content across states, showing 

reduced muscle tone during sleep and an increase in vibrissal EMG in REM sleep relative to 

NREM sleep, due to phasic muscle activity. D, Representative 4-sec local field potential 

(LFP) recordings from 6 cortical areas across behavioral states. Sample data for each area 

are from different animals. E, Spectral analysis of LFPs from superficial layers of 6 cortical 

areas, averaged across all consolidated sleep epochs of the 12-h light period. Abbreviations 
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(used throughout figure legends) and number of animals for each region: V2: secondary 

visual cortex (n=4 mice), RS: retrosplenial cortex (n=4), M2: secondary motor cortex (n=4), 

V1: primary visual cortex (n=11), S1: primary somatosensory cortex (n=3), M1: primary 

motor cortex (n=6). Error bars are standard deviation. ***=p<0.0005.
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Figure 2. REM slow waves are present in superficial but not deep layers of primary cortical 
areas
A, Representative 4-sec LFP recordings from superficial (S, layers 1-4) and deep (D, layers 

5-6) layers during sleep and wake across cortical areas. Sample data for each area are from 

different animals. B, Group spectrograms in V2 (W=2 mice, sleep=4 mice), M2 (W=3, 

sleep=4), RS (W=3, sleep=4), V1 (W=5, sleep=11), S1 (W=1, sleep=3) and M1 (W=2, 

sleep=6). Only mice with a sufficient quantity of wake data without movement artifacts 

were included, and in all cases mice used for sleep analysis contributed both artifact-free 

NREM and REM sleep data. Wake spectral data are averaged across consolidated wake 

epochs in the dark cycle, when mice are mostly awake, and sleep spectral data are averaged 

across all consolidated sleep epochs in the light cycle, when mice mostly sleep (similar 

results were obtained when analyzing sleep epochs in the dark cycle, Figure S2). LFP power 

was normalized by dividing the power in each frequency bin on each channel by the total 

power across all frequencies and channels on the 16-channel probe. Results did not change 

when spectral data were normalized to the mean total power across all probes (Figure S3). 

Zero indicates the depth at which the gamma peak occurs, and superficial and deep layers 

correspond to depths ≥ 100 um and ≤ -100 um, respectively (see Supplemental Experimental 
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Procedures and Figure S1 for details). Grey bars indicate layers/depths from which 

recordings were not available (usually layer 1).

Funk et al. Page 13

Curr Biol. Author manuscript; available in PMC 2017 February 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Neuronal dynamics underlying NREM and REM slow waves
Top, mean LFP from all slow waves (SWs) used for analysis from NREM and REM sleep 

(entire 12-h light period) in V1 (n=9 mice), S1 (n=3), and M1 (n=6). Middle, bottom, CSD 

and MUA locked to the peak of individual slow waves and averaged across slow waves. For 

MUA, firing rate was normalized by the baseline firing rate measured between -1 and -0.5 

sec before the slow wave peak. Sinks and sources represent positive current entering and 

leaving cells, respectively. Grey bars indicate layers/depths for which CSD/MUA data were 

not available.
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Figure 4. Additional differences between REM SWA and SWA in other behavioral states
A-F. NREM and REM slow waves are regulated differently: during NREM sleep SWA 

and number and slope of slow waves peak in early baseline sleep, increase with sleep 

deprivation, and decline in the course of sleep, but none of these changes occur in REM 

sleep. Relative SWA (2-hr bins, expressed as % of 12-hr baseline light period for each state) 

in NREM and REM sleep during the baseline light period and after sleep deprivation 

(indicated by grey areas) in V1 (A, n=9 baseline, n=4 sleep deprivation), S1 (B, n=3 

baseline, n=3 sleep deprivation) and M1 (C, n=6 baseline, n=4 sleep deprivation). D. 
Number of large amplitude slow waves (top 20th percentile) in V1 during early and late 

sleep in baseline (E vs. L, n=11) and during the first three hours of sleep following sleep 

deprivation (hours 7-9 after lights on), which were compared with the same circadian time in 

baseline (7-9B vs. 7-9SD, n=5). Early and late sleep are defined as the first three and last 

three hours of the baseline 12-hour light period, respectively. Rising slope of large 

amplitude slow waves in early and late sleep and during the first three hours of sleep 

following SD in V1. E,F. Same as in D, from S1 (E, baseline, n=3; sleep deprivation, n=3) 

and M1 (F, baseline, n=6; sleep deprivation, n=4). G,H. SWA in quiet wake involves deep 
layers and occurs in V2 and RS. Representative 4-sec LFP recordings from superficial (S) 

and deep (D) layers of V1, V2, RS, and M1 (G) and power spectra (H) during quiet wake 
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from V1 (n=10), V2 (n=3), RS (n=3), and M1 (n=4). Quiet wake was defined as wake 

epochs with neck EMG content in the bottom 33 percentile of all wake across 24 hrs, and 

the epochs analyzed in H were specifically from bouts of consolidated wake in the light 

period. Grey bars indicate layers/depths for which spectral data were not available. I. Phasic 
motor activity in REM sleep does not abolish REM SWA in V1 and S1. Ratio of spectral 

activity in phasic REM sleep epochs (high vibrissal EMG) and tonic REM sleep epochs (low 

vibrissal EMG) in V1 (n=9), S1 (n=3), and M1 (n=4). Grey bars indicate layers/depths for 

which spectral data were not available. * p<0.05, ** p<0.005, ***p<0.0005.
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