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Abstract

Fusing information from different imaging modalities is crucial for more accurate identification of 

the brain state because imaging data of different modalities can provide complementary 

perspectives on the complex nature of brain disorders. However, most existing fusion methods 

often extract features independently from each modality, and then simply concatenate them into a 

long vector for classification, without appropriate consideration of the correlation among 

modalities. In this paper, we propose a novel method to transform the original features from 

different modalities to a common space, where the transformed features become comparable and 

easy to find their relation, by canonical correlation analysis. We then perform the sparse multi-task 

learning for discriminative feature selection by using the canonical features as regressors and 

penalizing a loss function with a canonical regularizer. In our experiments on the Alzheimer’s 

Disease Neuroimaging Initiative (ADNI) dataset, we use Magnetic Resonance Imaging (MRI) and 

Positron Emission Tomography (PET) images to jointly predict clinical scores of Alzheimer’s 

Disease Assessment Scale-Cognitive subscale (ADAS-Cog) and Mini-Mental State Examination 

(MMSE) and also identify multi-class disease status for Alzheimer’s disease diagnosis. The 

experimental results showed that the proposed canonical feature selection method helped enhance 

the performance of both clinical score prediction and disease status identification, outperforming 

the state-of-the-art methods.
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Introduction

The world is now facing the explosion of Alzheimer’s Disease (AD) prevalence in 

accordance with the population aging. It is expected that about 1 out of 85 people will be 

affected by AD by 2050 (Brookmeyer et al. 2007; Wee et al. 2012). In this regard, it has 

been of great interest to investigate the pathological changes and to find biomarkers for 

diagnosis of AD and its prodromal stage, Mild Cognitive Impairment (MCI). For the last 

decade, neuroimaging has been successfully used to observe AD-related pathologies in the 

spectrum between cognitive normal and AD (Tang et al. 2009; Wu et al. 2006; Zhu et al. 

2014b), and machine learning techniques have played core roles to analyze the complex 

patterns in medical image data (Li et al. 2012; Liu et al. 2012; Suk et al. 2014a, 2015b, c).

The study of computer-aided AD diagnosis via machine learning techniques often 

encounters the problem of so-called ‘High Dimension, Low Sample Size’ (HDLSS) (Fan et 

al. 2007), that is, the number of features is much larger than the number of observations. In a 

neuroimaging study, selecting informative features (or equivalently discarding uninformative 

features) has become a prevalent step before building a regression model for predicting 

clinical scores or a classification model for identifying the disease status (Salas-Gonzalez et 

al. 2010; Stonnington et al. 2010; Zhang et al. 2011; Zhang and Shen 2012). For example, 

(Salas-Gonzalez et al. 2010) used a t-test to select voxels of interest for binary classification, 

while (Stonnington et al. 2010) integrated relevance vector regression into the feature 

selection model for the prediction of clinical scores, such as the Alzheimer’s Disease 

Assessment Scale-Cognitive subscale (ADAS-Cog) and Mini-Mental State Examination 

(MMSE) using MR images.

Among various methods in the literature, the sparse least square regression model has shown 

its effectiveness for solving the HDLSS problem in many applications (Cho et al. 2012; 

Cuingnet et al. 2011; Hall et al. 2005; Zhang and Shen 2012; Zhu et al. 2014c; Suk et al. 

2014b, 2015a). For example, (Liu et al. 2009) proposed an ℓ2,1-norm regularized regression 

model to select features that could be jointly used to represent multiple response variables 

and (Zhang and Shen 2012) applied the method for the tasks of clinical status identification 

and clinical scores prediction in AD diagnosis. Since the ℓ2,1-norm penalization couples the 

multiple response variables in finding the optimal coefficients, the sparse regression with an 

ℓ2,1-norm regularizer is regarded as a sparse Multi-Task Learning (MTL) method. 

Mathematically, the sparse MTL model is formulated as follows:

(1)

where Y, X, and W denote, respectively, a response matrix, a regressor matrix, and a weight 

coefficient matrix, and ν is a sparsity control parameter. The ℓ2,1-norm ||W||2,1 drives some 

rows in W to be zeros, based on which we can discard the corresponding features whose 

weight coefficients are zero or very small (Zhu et al. 2013b, 2014b).

Recently, the studies of neuroimaging-based AD diagnosis showed that different modalities 

provide different pieces of information, such as structural brain atrophy by Magnetic 
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Resonance Imaging (MRI) (De Leon et al. 2007; Fjell et al. 2010) and metabolic alterations 

in the brain by Positron Emission Tomography (PET) (Morris et al. 2001; Santi et al. 2001). 

Moreover, it has also been shown that AD significantly affects both structures and functions 

of the brain (Greicius et al. 2004; Guo et al. 2010) and the utilization of data from multiple 

modalities can complement each other in AD diagnosis (Wang et al. 2011; Zhang and Shen 

2012). In this regard, the sparse MTL method has been used for multimodality data (such as 

MRI and PET) to improve the performance of AD diagnosis in the literature (Cho et al. 

2012; Cuingnet et al. 2011). Furthermore, recent studies on joint disease status identification 

and clinical scores prediction successfully used the sparse MTL in a unified framework by 

taking account of the clinical scores in classification and also the clinical label information 

in regression (Wang et al. 2011; Zhang and Shen 2012). However, it is limited for the 

conventional sparse MTL (Perrin et al. 2009; Westman et al. 2012) to apply for a multi-

modality fusion, e.g., MRI and PET, because it does not efficiently utilize the feature 

correlation across modalities, which could be a good indicator for AD diagnosis.

In the spectrum between normal aging and AD, the clinical scores such as ADAS-Cog and 

MMSE are often used as indicators of symptom severity. However, these clinical scores are 

highly variable between evaluations mostly due to various psychophysical factors, thus it is 

very challenging to estimate them precisely. To tackle this problem, in this work, we 

leverage the intrinsic relation between diagnostic status and clinical scores, which measure 

an individual’s neurological pathology from different aspects, by means of joint estimation 

of all these quantities. Concretely, it is believed that the structural and functional information 

of a brain useful to identify disease status is also informative to predict clinical scores. 

Unlike existing methods in the literature that typically treat disease status classification and 

clinical score prediction as independent problems, we estimate them jointly, thus allowing 

their common information to boost each other for robust estimation. Specifically, in this 

paper, we propose a novel canonical feature selection method1 that efficiently integrates the 

relational information between modalities into a sparse MTL along with a new regularizer. 

Specifically, we first employ Canonical Correlation Analysis (CCA) to project the multi-

modality data into a common canonical space, in which the features of different modalities 

become comparable to each other and thus the modality-fusion becomes more 

straightforward. Note that in the original feature space, the features of different modalities 

are inhomogeneous and it is, thus, difficult to find their relations, which may be helpful to 

improve classification and regression performances. We call the features projected to the 

common canonical space as canonical representations. We then perform a sparse MTL for 

feature selection2 by using the canonical representations as regressors. To further utilize 

their relational characteristics, we also define a new canonical regularizer that penalizes the 

pair of less correlated features more. With the use of the canonical representations and also a 

canonical regularizer, the proposed method selects canonical-cross-modality features that are 

useful for the tasks of clinical scores regression and clinical status identification. We validate 

the effectiveness of the proposed method by applying it to the tasks of regressing clinical 

scores of ADAS-Cog and MMSE, and identifying a multi-stage clinical status on the ADNI 

1Compared to the preliminary version of this work that appeared in (Zhu et al. 2014a), we carried out more extensive analysis of the 
results on the ADNI dataset, and thus provided better insights into the proposed method.
2Note that it is difficult to interpret the features selected and used for classification with the proposed ‘subspace learning’ method.
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dataset. It is noteworthy that, unlike the previous work (Wang et al. 2011; Zhang and Shen 

2012) that mostly considered binary classes such as AD vs. Normal Control (NC) or MCI 

vs. NC, we focus on multi-class scenarios of (1) AD vs. MCI vs. NC and (2) AD vs. MCI 

converter vs. MCI non-converter vs. NC for more practical applications.

Materials and image preprocessing

In this work, we use the publicly available dataset–ADNI3 for performance evaluation. The 

ADNI was launched in 2003 by several organizations, including the National Institute on 

Aging (NIA), the National Institute of Biomedical Imaging and Bioengineering (NIBIB), the 

Food and Drug Administration (FDA), private pharmaceutical companies, and non-profit 

organizations. The initial goal of ADNI was to test if serial MRI, PET, other biological 

markers, and clinical and neuropsychological assessment can be combined to measure the 

progression of MCI and early AD. To this end, over 800 adults (aged 55 to 90) participated 

in the ADNI research. The research protocol was approved by each local institutional review 

board and written informed consent was obtained from each participant.

Subjects

The general inclusion/exclusion criteria of the subjects are briefly described as follows:

1. The MMSE score of each NC subject is between 24 and 30, with Clinical 

Dementia Rating (CDR) of 0. Moreover, the NC subject is non-depressed, 

non MCI, and non-demented.

2. The MMSE score of each MCI subject is between 24 and 30, with CDR of 

0.5. Moreover, each MCI subject is an absence of significant level of 

impairment in other cognitive domains, essentially preserved activities of 

daily living, and an absence of dementia.

3. The MMSE score of each Mild AD subject is between 20 and 26, with the 

CDR of 0.5 or 1.0.

We used the baseline MRI and PET data obtained from 202 subjects including 51 AD 

subjects, 52 NC subjects, and 99 MCI subjects.4 The detailed demographic information is 

summarized in Table 1.

MRI and PET

MRI—We downloaded raw Digital Imaging and COmmunications in Medicine (DICOM) 

MRI scans from the public ADNI website.5 The MRI scans have been reviewed for quality, 

and automatically corrected for spatial distortion caused by gradient nonlinearity and B1 

field inhomogeneity.

PET—We downloaded the baseline PET data from the ADNI web site.6 The PET images 

were acquired 30–60 minutes post-injection. They were then averaged, spatially aligned, 

3www.loni.ucla.edu/ADNI.
4Including 43 MCI converters and 56 MCI non-converters.
5www.loni.ucla.edu/ADNI/Research/Cores/index.shtml.
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interpolated to a standard voxel size, intensity normalized, and smoothed to a common 

resolution of 8 mm full width at half maximum.

Image analysis

We conducted the image processing of all MR and PET images by following the same 

procedures in (Zhang and Shen 2012). First, we used MIPAV software7 on all images to 

perform anterior commissure-posterior commissure correction, and then utilized the N3 

algorithm (Sled et al. 1998) to correct the intensity inhomogeneity. Second, we extracted the 

brains on all structural MR images using a robust skull-stripping method, by which we then 

conducted manual edition and intensity inhomogeneity correction (if needed). Third, we 

removed cerebellum based on registration and intensity inhomogeneity correction by 

repeating N3 algorithm three times, and then used FAST algorithm (Zhang et al. 2001) to 

segment the structural MR images into three different tissues: Gray Matter (GM), White 

Matter (WM), and CerebroSpinal Fluid (CSF). Next, we used HAMMER software (Shen 

and Davatzikos 2002) to conduct registration and obtained the Region-Of-Interest (ROI)-

labeled image based on the Jacob template, which dissects a brain into 93 ROIs (Kabani 

1998). For each of all 93 ROI regions in the labeled image of one subject, we computed the 

GM tissue volumes in the ROI region by integrating the GM segmentation result of this 

subject. And, for each subject, we first aligned the PET image to its respective MR T1 image 

using affine registration and then computed the average intensity of each ROI in the PET 

image.

Finally, for each subject, we obtained a total of 93 features from MRI and 93 features from 

PET.

Method

In this section, we describe the proposed canonical feature selection method that effectively 

integrates the ideas of CCA and sparse MTL into a unified framework. Figure 1 presents a 

schematic diagram of our framework for clinical scores prediction and a class label 

identification. Given the MRI and PET data, we first extract modality-specific features 

separately, preceded by the image preprocessing as described in section “Image analysis”. 

We then transform the features into a common space via CCA and find their canonical 

representations. By taking the canonical representations along with their respective clinical 

scores and the class labels as observations, we perform feature selection with the proposed 

method that integrates the newly designed canonical regularizer and an ℓ2,1-norm regularizer 

in sparse least square regression. We finally build clinical score regression models with 

Support Vector Regression (SVR) and a clinical label identification model with Support 

Vector Classification (SVC), respectively.

Notations

We denote matrices as boldface uppercase letters, vectors as boldface lowercase letters, and 

scalars as normal italic letters, respectively. For a matrix X = [xij], its i-th row and j-th 

6www.loni.ucla.edu/ADNI.
7http://mipav.cit.nih.gov/clickwrap.php.

Zhu et al. Page 5

Brain Imaging Behav. Author manuscript; available in PMC 2016 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://mipav.cit.nih.gov/clickwrap.php


column are denoted as xi and xj, respectively. The Frobenius norm and an ℓ2,1-norm of a 

matrix X are denoted as  and 

, respectively. We denote the transpose operator, the trace 

operator, and the inverse of a matrix X as XT, tr(X), and X−1, respectively.

Canonical correlation analysis (CCA)

Since imaging data of different modalities can provide complementary perspectives on the 

complex nature of brain disorders, it is crucial to fuse information from different imaging 

modalities for more accurate diagnosis of the neurodegenerative disease. However, most 

existing fusion methods often extract features independently from each modality, and then 

simply concatenate them into a long vector, with no consideration of the heterogeneity in the 

spaces and their distributions. To cater the heterogeneous and complex feature distributions 

from different modalities, we seek a set of linear transforms that project the features of 

different modalities to a common space so that they can be comparable.

Assume that we have a number n of d-dimensional samples from two different modalities: 

X(1) ∈ ℝd×n and X(2) ∈ ℝd×n. Let X = [X(1), X(2)] ∈ ℝd×2n and  denote 

a multi-modal feature matrix and its covariance matrix, respectively, where Σkl = X(k) (X(l))T 

and k, l = {1, 2}. To find a common space, in which we can effectively compare the features 

of different modalities and thus find complementary information, we exploit a CCA method 

(Duda et al. 2012). Specifically, it seeks two sets of basis matrices B(1) and B(2) such that the 

correlations between the projections of X(1) and X(2) onto the new common space spanned 

by these basis matrices are mutually maximized (Hardoon et al. 2004; Zhu et al. 2012):

(2)

where I ∈ ℝd×d is an identity matrix, l ≠ k, and i ≠ j. We can effectively solve this problem 

by means of a generalized eigen-decomposition (Duda et al. 2012; Zhu et al. 2012), 

obtaining the optimal solution (B̂(1), B̂(2)) and the corresponding correlation coefficients 

{λj}j=1:d, without loss of generality 1 ≥λ1 ≥λ2 ≥ … ≥λd ≥0. Although, in general, B(m) ∈ 
ℝd×d′, m ∈ {1, 2}, d′ = min {rank(X(1)), rank(X(2))}, we set d = d′ for simplicity in this 

paper. In our practical implementation of CCA, we applied a shrinkage technique for Σ11 

and Σ22 to avoid a possible singularity problem.

The projections of the original features onto their respective canonical bases can be 

considered as new representations:

(3)
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where , and m ∈ {1, 2}. We call these projected 

vectors as ‘canonical representations’. It is noteworthy that the canonical representations in 

the common space satisfy the following properties:

•
Orthogonality: 

•
Correlation: 

where a] denotes an expectation of a random variable a and δ(·, ·) is a Kronecker delta 

function.8 That is, canonical features of a modality are orthogonal to each other and the 

canonical features of different modalities are mutually correlated as the amount of λj in an 

element-wise manner.

Canonical feature selection

According to Kakade and Foster’s work (Kakade and Foster 2007), it was shown that a 

model can precisely fit data with the guidance of the canonical information between 

modalities. In this regard, we propose a new feature selection method by exploring the 

correlations of features of different modalities in a canonical space and also defining a new 

canonical regularizer. Let Y ∈ ℝc×n denote a response matrix with the number c of the 

response variables.9 We first formulate a sparse multi-class linear regression model in an 

MTL framework by using our canonical representations Z = [Z(1); Z(2)] ∈ ℝ2d×n as 

regressors:

(4)

where W ∈ ℝ2d×c is a regression coefficient matrix and β is a tuning parameter controlling 

the row-wise sparsity of W. It should be emphasized that, due to the ℓ21-norm regularizer in 

Eq. 4, we simultaneously consider both the relationships among response variables and the 

inter-modality relations via the canonical representations Z.

Based on the sparse MTL regression model, we further penalize the loss function with a 

canonical norm of the regression coefficients, by which it is encouraged to encompass multi-

modal features of high correlation. A canonical norm over a vector p = [pj] ∈ ℝd is defined 

(Kakade and Foster 2007) as follows:

8 
9In our work, the response variables correspond to ADAS-Cog, MMSE, and a multi-class label coding vector. For the multi-class label 
representation, we here use a 0/1 encoding scheme.
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(5)

where {λj}j=1:d is a set of canonical correlation coefficients. The canonical norm in Eq. 5 

becomes small for a vector with high correlation coefficients while it becomes large for a 

vector with low correlation coefficients. We utilize this characteristic in feature selection. 

That is, in Eq. 4, we concatenate both Z(1) and Z(2) to obtain the canonical representations 

Z, in which the correlated features (e.g.,  and ) share the correlation coefficient λj, j = 

1, …, d. Note that while we use canonical representations, Eq. 4 doesn’t guarantee the 

correlated features to be selected jointly. To better utilize the inherent correlational 

information between modalities, we use the canonical norm in Eq. 5 and extend to a matrix 

as follows:

(6)

Note that two rows in W, i.e., wi and wi+d, each of which corresponds to different 

modalities, share the same coefficient λi.

In the canonical regularizer of Eq. 6, the correlation coefficients play a role of controlling 

the penalty level of the corresponding features. A small correlation coefficient penalizes less 

on weights and thus helps induce the corresponding features to be selected. Concretely, the 

proposed canonical regularizer enforces the highly correlated canonical representations of 

modalities, i.e., large canonical correlation coefficients, to be selected; while the merely or 

uncorrelated canonical representations between modalities, i.e., small canonical correlation 

coefficients, to be unselected. Equipped with our canonical regularizer, we define a novel 

canonical feature selection model as follows:

(7)

where β and γ are the tuning parameters. To find the optimal solution of Eq. 7, which is 

convex but non-smooth, we use the accelerated proximal gradient method (Zhu et al. 2013b, 

2015). We summarize the implementation details of the proposed method in Algorithm 1. 

Please refer to Appendix A for the proof of the convergence.
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Algorithm 1

Pseudo code of the proposed method

 Input: X(1) ∈ ℝd×n, X(2) ∈ ℝd×n, Y ∈ ℝc×n, β, γ

 Output: W

1 Conduct CCA to obtain (B̂(1), B̂(2)) and λ1, …, λd

2 Generate canonical representations by Eq. 3: Z = [Z(1); Z(2)] ∈ ℝ2d×n

3 Define the canonical regularizer according to Eq. 6

4 Optimize Eq. 7 via Algorithm 2 in A

Unlike the sparse MTL-based feature selection methods (Zhang and Shen 2012) that 

employed the least square loss function by using the original features as regressors in an 

ambient space, the proposed feature selection model is defined in a canonical space, in 

which we can naturally handle the problem of heterogeneity between different modalities. 

First, the canonical regularizer in Eq. 7 ensures that the larger the correlation between two 

features of different modalities, the smaller the penalty on the corresponding weight 

coefficient vector. As a result, the canonical regularizer helps keep the canonical-cross-

modality features, which contain much information and benefit for improving the learning 

ability. Second, the canonical loss function (i.e., the first term in Eq. 7) has been discovered 

to better fit data achieving smaller estimation errors (Kakade and Foster 2007), than the 

conventional sparse MTL framework. Furthermore, the CCA converts the original features X 
into the canonical representations Z in a common space B, in which the concatenation of the 

representations in Z are more comparable than those in X, which are often heterogeneous in 

real applications. Therefore, the proposed model in Eq. 7 should be more predictive than the 

previous sparse MTL framework (Kakade and Foster 2007; McWilliams et al. 2013; Zhu et 

al. 2013a). Last but not least, regarding both MRI and PET data, either the conventional 

MTL framework or our proposed method has the same number of samples. However, the 

conventional MTL framework using the original multi-modality features (i.e., simply 

concatenating both MRI and PET into a long vector) has almost double number of features, 

while our proposed method aligning both MRI and PET features to the CCA space 

significantly reduces the number of features and more importantly the complexity of 

distribution of features. In this way, the conventional MTL framework makes the HDLSS 

issue more serious, while our proposed CCA based method helps significantly improve the 

performance.

Experimental results

To validate the effectiveness of the proposed method, we considered the Joint clinical scores 

Regression and Multi-class AD status Identification (JRMI) problem on a subset of the 

ADNI dataset (‘http://www.adni-info.org’), where we consider two modalities of MRI and 

PET. Specifically, we conducted two sets of experiments: (a) AD vs. MCI vs. NC (3-JRMI), 

where we regarded both MCI-C and MCI-NC as MCI, and (b) AD vs. MCI-C vs. MCI-NC 

vs. NC (4-JRMI). For each JRMI problem, we followed the same steps: (1) feature reduction 

by the competing methods; (2) learning SVR models for ADAS-Cog and MMSE, 

respectively, and a SVC model for disease status identification using the LIB-SVM 
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toolbox10; (3) evaluating the performances with the metrics of Correlation Coefficient (CC) 

and Root Mean Squared Error (RMSE) in regression and the classification ACCuracy (ACC) 

in classification.

Experimental setting

We compared the proposed method with different types of conventional dimensionality 

reduction methods, namely, Fisher Score (FS) (Duda et al. 2012), Principal Component 

Analysis (PCA) (Jolliffe 2005), and CCA (Hardoon et al. 2004).

• Fisher Score (FS): This method searches for a subset of features, by which 

the similarity between any pair of data points in different classes is large, 

while the similarity between any pair of data points in the same class is 

small.

• Principal Component Analysis (PCA): This method seeks the bases such 

that the derived features keep maximal variance.

• Canonical Correlation Analysis (CCA): This method transforms two 

feature matrices/variables to a common space, where they are maximally 

correlated.

For these three methods, we used a generalized eigen-decomposition method and determined 

dimensions based on the eigenvalues. For both FS and PCA, we fused the modalities of MRI 

and PET by concatenating their features into a single long vector before the dimensionality 

reduction. As for CCA, we regarded each modality of MRI and PET as separate view, and 

then extracted the canonical representations by maximizing the correlation of MRI and PET 

(Hardoon et al. 2004).

In our experiments, we also compared with the following state-of-the-art feature selection 

methods:

• Multi-Modal Multi-Task (M3T) (Zhang and Shen 2012): This method 

selects a set of features that are jointly used to represent the multiple target 

response variables by solving Eq. 1 but using the original features as 

regressors.

• Sparse Joint Classification and Regression (SJCR) (Wang et al. 2011): 

This method simultaneously uses the logistic loss function and the least 

square loss function along with an ℓ2,1-norm for multi-task feature 

selection.

For M3T and SJCR, we followed the corresponding literatures to build their feature 

selection models in the sparse based multi-task learning framework by using clinical scores 

(i.e., ADAS-Cog and MMSE) and class labels as response variables. Note that, unlike these 

competing methods, our method operated with canonical representations rather than the 

original feature vectors.

10Available at ‘http://www.csie.ntu.edu.tw/~cjlin/libsvm/’
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After dimension reduction or feature selection, we built one multi-class classifier and two 

regression models via the LIBSVM toolbox. There are two approaches for multi-class 

classification (Suk and Lee 2013; Zhang and Shen 2012), such as one-against-rest and one-

against-one. The ‘one-against-rest’ method builds c binary classifiers (here c is the number 

of classes) and each binary classifier fi (i = 1, …, c) is built between the i-th class and the 

other (c − 1) classes, while the ‘one-against-one’ method builds  binary classifiers and 

each binary classifier fi,j (i, j = 1, …, c) is built between the i-th class and the j-th class (i ≠ 

j ). With the consideration of both the computational efficiency and the training cost, in this 

work, we used ‘one-against-one’ approach, which classifies a test sample xte according to 

the following rule:

(8)

We applied a 10-fold cross-validation technique to compensate for the small sample size in 

our dataset and conducted 5-fold inner cross-validation for model selection. We repeated the 

process 10 times to avoid the possible bias occurring in data partitioning for cross-

validation. The final performances were reported by averaging the repeated cross-validation 

results. We conducted a line search for model selection with β ∈ {10−5, …, 105} and γ ∈ 
{10−3, …, 108} in Eq. 7, and C ∈ {2−5, …, 25} for the SVR/SVC models. The parameters 

that resulted the best performance in the inner cross-validation were finally used in testing.

Results

Classification

Table 2 shows the classification performance for the competing methods as well as our 

method. The proposed method achieved the best classification performance in both 3-JRMI 

and 4-JRMI problems. Concisely, in the 3-JRMI problem, the proposed method improved 

5.3 %, compared to SJCR that achieved the best performance among the competing 

methods. For the 4-JRMI problem, the classification performance improvements by the 

proposed method were 10.2 %, compared to FS that achieved the worst, and 6.0 %, 

compared to SJCR that achieved the best among the competing methods. These 

experimental results demonstrate that the use of canonical information, i.e., canonical 

representations and the canonical regularizer, in the proposed method helps improve the 

performances in the JRMI problems.

Regression

Tables 3 and 4 show the regression performance of all the methods on the 3-JRMI and 4-

JRMI, respectively. In Table 3, we can see that our method consistently achieved the best 

performance on both CC and RMSE in the prediction of ADAS-Cog and MMSE scores, 

compared to the other competing methods. For example, the proposed method obtained the 

CCs of 0.740 and 0.675, respectively, and the RMSEs of 3.727 and 1.800, respectively, for 

the prediction of ADAS-Cog and MMSE scores, respectively. The best performance among 

the competing methods was 0.716 (ADAS-Cog) and 0.655 (MMSE) in CC, and 4.391 

(ADAS-Cog) and 2.116 (MMSE) in RMSE, respectively, while the best performance among 
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all competing methods was 0.716 and 0.655 (CCs), and 4.336 and 2.107 (RMSEs), 

respectively.

For the 4-JRMI problem in Table 4, compared to FS that achieved the worst, the proposed 

method improved by 0.062 and 1.833, respectively, in CC, and 0.127 and 0.437, respectively 

in RMSE, for ADAS-Cog and MMSE. Compared to M3T that achieved the best among the 

competing methods, the proposed method improved by 0.032 and 0.03, respectively, in CC, 

and 1.526 and 0.392, respectively, in RMSE, for ADAS-Cog and MMSE.

Discussion

In this section, we justify the rationale of using both the canonical loss function and the 

canonical regularizer. To do this, we further consider the Canonical Spare Regression (CSR 

for short) in Eq. 4 and summarize its performance on both 3-JRMI and 4-JRMI in Table 5. 

Note that CSR uses the canonical representation Z to replace the original representation X in 

M3T and does not have the canonical regularizer compared to our method.

From Tables 2, 3, 4 and 5, we can see that in comparison with M3T, CSR, on average, 

improved by about 1.2 % in classification accuracy, 0.009 and 0.007 in CC for the prediction 

of ADAS-Cog and MMSE, respectively, and 0.320 and 0.044 in RMSE for the prediction of 

ADAS-Cog and MMSE scores, respectively. This indicates that the canonical loss function 

outperforms the least square loss function, due to the use of the canonical representations of 

modalities. On the other hand, CSR is inferior to our method, by having a lower 

classification error of 5.0 %, lower CCs of 0.023 and 0.027 for the prediction of ADAS-Cog 

and MMSE, respectively, and higher RMSEs of 0.778 and 0.311 for the prediction of 

ADAS-Cog and MMSE scores, respectively. This supports the benefit of adding canonical 

information of the data into the sparse canonical feature selection framework. Specifically, 

the canonical information, as the penalty of variables, pushes the the regression towards to 

selecting useful features across the modalities.
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Algorithm 2

Pseudo code to find the solution of Eq. (7).

In this regard, we argue that the selected features by the proposed method are more powerful 

in predicting the target response variables than either CSR and the conventional sparse 

MTL-based feature selection method, i.e., M3T.

Conclusion

In this work, we focused on multi-modality feature selection for a joint regression and multi-

class classification problem and proposed a canonical feature selection method by explicitly 

using the correlation between modalities. Specifically, we discovered canonical 

representations of the original inputs by projecting them into a common space spanned by 

the canonical bases obtained by CCA. In a sparse MTL framework, we set the regressors 

with our canonical representations and further penalized it with a newly defined canonical 

regularizer. In our experiments on the ADNI dataset, we achieved the best performances for 

the joint clinical scores regression and multi-class clinical status identification. Although it 

is not performed in this work, we would like to emphasize that the proposed method can be 

easily extended to more than two modalities via multi-view CCA (Hardoon et al. 2004).
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Appendix A: Convergence

In this work, we solve Eq. 7, which is a convex but non-smooth function, by designing a new 

accelerated proximal gradient method (Nesterov 2004). We first conduct the proximal 

gradient method on Eq. 7 by letting

(9)

(10)

where Q ∈ ℝ2d×2d is a diagonal matrix with the j-th diagonal element set to 

, j = 1, …, d. Note that f (W) is convex and differentiable, while β||

W||2,1 is convex but non-smooth (Nesterov 2004). To optimize W with the proximal gradient 

method, we iteratively update it by means of the following optimization rule:

(11)

where , 

∇f (W(t)) = (ZZT + γQ)W(t) − ZYT, and η(t) and W(t) are, respectively, a parameter and 

the value of W obtained at t-iteration.

By ignoring the terms independent of W in Eq. 11, we can rewrite it as

(12)

where  and πη(t)(W(t)) is the Euclidean projection of W(t) onto 

the convex set η(t),  is the stepsize and η(t) is determined by the line search (with detail 

given in the literature (Liu et al. 2009)). Thanks to the separability of W(t + 1) on each row, 

i.e., wi (t + 1), we can update the weights for each row individually:

(13)
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where  and wi (t) are the i-th row of U(t) and W(t), respectively. 

According to Eq. 13, wi (t + 1) takes a closed form solution (Liu et al. 2009) as follows:

(14)

Meanwhile, in order to accelerate the proximal gradient method in Eq. 11, we further 

introduce an auxiliary variable V(t + 1) as:

(15)

where the coefficient α(t + 1) is usually set as  (Nesterov 2004). Finally, 

we list the pseudo of our proposed optimization method in Algorithm 2 and its convergence 

in Theorem 1.

Theorem 1

(Nesterov 2004) Let {W(t)} be the sequence generated by Algorithm 2, then for ∀ t ≥ 1, the 
following holds

where μ is a positive predefined constant, L is the Lipschitz constant of the gradient of f (W) 

in Eq. 10, and .

Theorem 1 shows that the convergence rate of the proposed accelerated proximal gradient 

method is , where t is the count number of iterations in Algorithm 2 (Nesterov 2004).
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Fig. 1. 
The framework of AD/MCI diagnosis with the proposed feature selection method
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Table 1

Demographic information of the subjects

AD (51) NC (52) MCI-C (43) MCI-NC (56)

Female/male 18/33 18/34 15/28 17/39

Age 75.2 ± 7.4 75.3 ± 5.2 75.8 ± 6.8 74.8 ± 7.1

Education 14.7 ± 3.6 15.8 ± 3.2 16.1 ± 2.6 15.8 ± 3.2

MMSE (baseline) 23.8 ± 2.0 29.0 ± 1.2 26.6 ± 1.7 28.4± 1.7

ADAS-Cog (baseline) 18.3 ± 6.0 7.3 ± 3.2 12.9 ± 3.9 10.2± 4.3

The numbers in parentheses denote the number of subjects in each clinical category. (MCI-C: MCI Converters; MCI-NC: MCI Non-Converters)

Brain Imaging Behav. Author manuscript; available in PMC 2016 September 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhu et al. Page 20

Table 2

Comparison of the classification ACCuracy (ACC) of all methods with bi-modality data on 3-JRMI (the 

second column) and 4-JRMI (the last column), respectively

Method ACC (3-JRMI) ACC (4-JRMI)

FS 0.628 ± 1.30 0.517 ± 1.54

PCA 0.646 ± 1.59 0.525 ± 2.21

CCA 0.648 ± 1.81 0.536 ± 1.29

SJCR 0.676 ± 1.68 0.559 ± 1.64

M3T 0.679 ± 1.67 0.545 ± 1.61

Proposed 0.729 ± 1.38 0.619 ± 1.54

The boldface denotes the best performance of each column
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Table 3

Comparison of the regression performance of all methods with bi-modality data on 3-JRMI, i.e., AD/MCI/NC

Methods ADAS-Cog MMSE

CC RMSE CC RMSE

FS 0.695 ± 0.16 5.193 ± 1.15 0.594 ± 0.14 2.290 ± 0.35

PCA 0.698 ± 0.12 4.988 ± 1.06 0.599 ± 0.13 2.159 ± 0.32

CCA 0.702 ± 0.22 44.760 ± 0.90 0.602 ± 0.19 2.107 ± 0.32

SJCR 0.716 ± 0.38 4.391 ± 0.86 0.655 ± 0.37 2.116 ± 0.35

M3T 0.709 ± 0.92 4.336 ± 0.86 0.647 ± 0.28 2.118 ± 0.34

Proposed 0.740 ± 0.18 3.727 ± 0.170 0.675 ± 0.23 1.800 ± 0.13

The boldface denotes the best performance of each column. (CC: Correlation Coefficient; RMSE: Root Mean Squared Error) Brain Imaging and 
Behavior

Brain Imaging Behav. Author manuscript; available in PMC 2016 September 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhu et al. Page 22

Table 4

Comparison of the regression performance of all methods with bi-modality data on 4-JRMI, i.e., AD/MCI-C/

MCI-NC/NC

Methods ADAS-Cog MMSE

CC RMSE CC RMSE

FS 0.491 ± 0.34 5.759 ± 1.05 0.440 ± 0.16 2.366 ± 0.38

PCA 0.510 ± 0.56 5.647 ± 0.97 0.453 ± 0.47 2.390 ± 0.27

CCA 0.522 ± 0.25 5.531 ± 0.91 0.462 ± 0.53 2.334 ± 0.31

SJCR 0.538 ± 0.85 5.639 ± 0.97 0.493 ± 0.33 2.389 ± 0.30

M3T 0.521 ± 0.71 5.452 ± 1.01 0.528 ± 0.32 2.321 ± 0.27

Proposed 0.553 ± 0.34 3.926 ± 0.19 0.567 ± 0.23 1.929 ± 0.13

The boldface denotes the best performance of each column. (CC: Correlation Coefficient; RMSE: Root Mean Squared Error)
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