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Abstract

Objective To retrospectively compare image quality of a
lowered dose CT protocol to a standard CT protocol in chil-
dren with suspicion of craniosynostosis.

Methods Forty-eight patients (age 0- 35 months), who pre-
sented with a cranial deformity underwent cranial 3D CT to
assess sutural patency: between 2009 — 2010, 24 patients were
imaged with a standard protocol (CTDIvol 32.18 mGy), from
2011-2012, 24 underwent a low dose protocol (0.94 mGy)
combined with iterative reconstruction. Image quality was
evaluated by both expert reading and objective analysis.
Differences were assessed by independent t-test and
Mann-Whitney U test, interreader agreement by Cohen's
Kappa test.

Results Effective dose of the low dose protocol was 0.08 mSy,
corresponding to a reduction of 97 %.Image quality was sim-
ilar in both groups in terms of overall diagnostic acceptability,
objective noise measurements, subjective cranial bone edge
sharpness and presence of artefacts. For objective sharpness
of cranial bone-brain interface and subjective perception of
noise, the images of the low dose protocol were superior.
For all evaluated structures, interreader agreement was mod-
erate to almost perfect.

Conclusion In the diagnosis of craniosynostosis in children
with cranial deformities, a dedicated sub 0.1 mSv cranial
3DCT protocol can be used without loss in image quality.
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Key Points

* 3DCT is used for the diagnosis of craniosynostosis.

* Imaging protocols should be optimized to minimize radiation
exposure to children.

» Combining 80 kVp with iterative reconstruction can help to
reduce dose.

* A sub 0.1 mSv cranial 3DCT protocol can be used without
loss of diagnostic quality.

Keywords Multidetector Computed Tomography - Iterative
reconstruction - Infant - Radiation protection -
Craniosynostosis

Abbreviations
ASIR  Adaptive Statistical Iterative Reconstruction
CT Computed Tomography

CTDI Computed Tomography Dose Index is the current
standard for CT dosimetry
CTDI weighted average measurement in a reference

vol phantom divided by the CT pitch factor CTDIvol is
used to estimate the relative dose for an exam. It is
expressed in milliGrays.

DLP Dose Length Product : product of the CTDIvol and
the scan length. It is expressed in milliGray *
centimetres

ED Effective Dose measured in Sieverts

FBP Filtered Back Projection the standard used recon-
struction technique in CT.

HU Hounsfield Units unit of signal measurements

IR Iterative Reconstruction

IN image noise

1Q image quality

mSv milliSievert unit of effective dose

MBIR  Model Based iterative reconstruction

MDCT  MultiDectector Computed Tomography
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SD Standard Deviation
SNR signal to noise ratio

Introduction

Craniosynostosis is the premature fusion of one or more cra-
nial sutures. It occurs in 3.1 to 4.8 per 10,000 live births and
results in cranial deformity and sometimes function impair-
ment due to increased intracranial pressure and restricted brain
growth. Early clinical recognition and accurate diagnostic
confirmation is essential to ensure proper management of this
condition. Imaging studies have traditionally played an impor-
tant role in the diagnosis and characterization of
craniosynostoses. Patency of the major sutures is currently
evaluated by three-dimensional Computed Tomography
(3DCT). This technique is essential for accurate diagnosis,
therapy planning (conservative or surgical), and postoperative
follow-up [1-3]. Given that children are two to ten times more
radiosensitive than adults, the application of the “as low as
reasonably achievable “(ALARA) principle in CT is essential
[1, 4-11].

To reduce radiation dose in children, several strategies and
techniques are currently available, including iterative recon-
struction techniques [6, 11-13].

The introduction of a novel iterative reconstruction tech-
nique, Model Based Iterative reconstruction (MBIR), in our
institution allowed us to develop an optimized low-dose CT
protocol.

By modelling the complete optics and noise statistics of the
CT system, this technique reduces image noise considerably
and improves image quality in terms of spatial resolution and
artefacts [13—19]. Applying MBIR technique, we lowered ra-
diation dose while maintaining image quality. This was ac-
complished by lowering both tube potential and current to
the lowest settings currently possible.

The aim of this study was to retrospectively compare the
image quality of this protocol to that of the standard protocol
in children with a suspicion of craniosynostosis.

Materials and methods

This retrospective study was approved by our institutional
medical ethics board; informed consent was waived. Inclusion
criteria were all children who suffered from isolated non-
syndromic cranial deformity, with an age between 0 and
35 months, and referral for cranial 3DCT.

CT protocols and image reconstruction

From August 2009 to December 2010, 24 consecutive
patients underwent a standard cranial 3DCT protocol

(which we further designate protocol A) on a Philips
system (Brilliance CT 64, Philips, Best,
The Netherlands). The acquisition parameters were as
follows: collimation, 16x0.625 mm; rotation time, 0.5 s
; tube voltage, 120 kVp; fixed tube current of 276 mA;
pitch factor, 0.69, filter type D, and convolution kernel
D. Raw data were reconstructed with Filtered Back Pro-
jection (FBP).

From August 2011 to December 2012, 24 other con-
secutive patients, were imaged using an investigative
protocol (which we further designate protocol B) on a
64-row detector MDCT (Discovery 750HD, GE
Healthcare, Milwaukee, WI). The acquisition parameters
were: collimation , 32x0.625 mm; rotation time, 0.8 sec;
tube voltage, 80 kVp; fixed tube current of 10 mA; pitch
factor, 0.53; head filter; and the best fitting reconstructed
field of view (FOV) for every patient. The raw data were
reconstructed by using MBIR technique. (VEO ®, GE
Healthcare; Milwaukee, WI).

All patients were imaged from vertex to skull base with the
best fitting reconstructed FOV according to the patient’s
anatomy.

Radiation dose assessment

CTDIvol and DLP (for a 16 cm phantom) were recorded
for every CT examination. An estimate of the effective
dose (ED) was based on the details of the scan protocol
and obtained by CT dosimetry software using the organ
weighting factors of ICRP 103 (Impact CT dosimetry cal-
culator 1.04, impact, St George Healthcare, NHS, London,
UK).

Subjective image quality

Subjective image quality was independently evaluated by
two board-certified radiologists (C.E. and D.B. with re-
spectively 15 and 6 years of experience). Prior to this eval-
uation, ten cases (not included in the study) were evaluated
by consensus agreement to improve conformity between
the readers. After anonymization, the studies were evalu-
ated by the readers in a blinded fashion and random order.
The dose-related data were not available for this reading.
The images were evaluated on a PACS system (Impax
6.4.0, Agfa® HealthCare, Mortsel, Belgium) on a 3 mega-
pixel viewing station at bone window settings (window
width, 1500 HU; window level, 500 HU). To assess image
quality, all images were reviewed at a slice thickness of
1 mm.

Subjective image quality was scored on a 4 or 5 point scale
as described in Table 1 [1, 20, 21]. Parameters that were
assessed included image noise, image sharpness, overall diag-
nostic acceptability, and artefacts.
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Table 1  Scoring list of subjective image quality

Score Image noise Image sharpness

Overall Diagnostic acceptability Artifacts

1 No noise/very low Structures are well defined with sharp contours Excellent No artifacts
2 Low (normal) Contours are not fully sharp, but structures Good Minor artifacts
are defined
3 Considerable with preserved ~Structures can be seen, but contours are Suboptimal, but still diagnostic =~ Moderate artifacts
diagnostic image quality barely sharp enough
4 High, causing nondiagnostic ~Although structures can be visualized, Unacceptable and nondiagnostic Major artifacts but
image quality contours are blurred and images are interpretable
insufficient for diagnostic reporting
5 Structures cannot be identified Artifacts make image

interpretation impossible

The edges of the cranial bones were evaluated to grade
image sharpness. To determine image sharpness, the inner
ear structures and the medial orbital margin were also
assessed. However, these structures are not important in the
diagnosis of craniosynostosis. The overall diagnostic accept-
ability was graded both for axial and 3D reconstructions.

Grades for subjective image quality were averaged for both
readers before further analysis was performed.

Objective image quality- quantitative measurements

The signal-to-noise ratio (SNR) at the level of the clivus
and sharpness of the cranial bone-brain interface were
assessed.

Circular Regions Of Interest (ROIs) with a size of 10 to
15 mm? were placed on the clivus to obtain a homogenous
area. CT numbers (HU values) and noise (standard deviation
SD) were measured and SNR was calculated by dividing the
CT number by the noise.

To determine the sharpness of the bone-brain interface, in
every patient a CT value profile was obtained in image J
(National Institutes of Health, USA) along a straight line. This
line was perpendicular to the interface at the lateral margin of
the left orbit.

Sharpness was based on the slope of this profile, as shown
in Fig. 1.

Fig. 1 Sharpness of bone-brain b

interface. The sharpness of the

interface was based on the slope

of the transition curve between

15 % and 80 % of maximum CT 2

number (HU) with bone being the 5

maximal and brain the minimal E

CT number H
G
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Statistical analysis

Statistical analysis was performed using SPSS® (Version
19.0 for Windows, SPSS, Chicago,). Normal distribution
and homogeneity of variance were tested using the
Shapiro-Wilk's W test and Levene's test, respectively. In-
dependent samples t tests were used to compare continuous
and normally distributed variables such as SNR, sharpness,
patient characteristics and radiation dose. Gender was
compared using a chi-square test. A non- parametric
(Mann-Whitney-U) test was used to analyze discrete vari-
ables such as the results obtained with the subjective image
quality assessment. This was also done when the continu-
ous variables were not normally distributed. A significance
threshold of p-value<0.05 was used. Interreader agreement
was assessed with Cohen's Kappa test and interpreted ac-
cording to Landis and Koch (1977). When kappa was <0,
this indicated poor agreement; slight agreement if 0.0-0.20;
fair agreement if 0.21-0.40; moderate agreement if 0.41-
0.60; substantial agreement if 0.61-0.80, and almost per-
fect agreement if 0.81-1 [22].

Results

Cranial 3DCT was performed in 48 consecutive patients
(Table 2). Table 3 shows the distribution of pathology for

1000 x
80% —f%
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Table 2  Patient characteristics and radiation dose. Mean=SD is
given for age, DLP, CTDI and ED. A median for most results is
given between rounded brackets and age range between square

brackets. Statistical analysis was performed using independent T
test and Chi-square test (gender). P-values are listed. If results are
significant, they are indicated by *

Protocol A Protocol B P- value
Age (months) 7.3+4.8 [2-24] 8.1+£7.3 [0-35] 0.626
Gender (male/female) 15/9 (62.5 %/37.5 %) 17/7 (71 %/29 %) 0.759
DFOV (mm) 175+£23 (171) 177+£24 (179) 0.779
CTDIvol (mGy) 32.18+0.04 (32.19) 0.94+0.01 (0.93) <0.001*
DLP (mGy*cm) 487.48+33.14 (486.70) 15.04+2.25 (14.28) <0.001*
Effective dose (mSv) 3.07+0.16 (3.13) 0.08+0.00 (0.08) <0.001*

group A and B separately and the total for both groups. Forty-
four percent of the children were diagnosed with postural
plagiocephaly, 47.9 % with craniosynostosis, and 6.2 % with
a fracture/calcified cephalic hematoma. In 2.1 % bone struc-
tures were normal.

Patient characteristics and radiation dose

Both groups were similar with regard to age, gender, and
displayed field of view (DFOV).

The radiation dose was reduced by approximately 97 %:
CTDlvol of protocol B was 2.9 % of CTDIvol of protocol A,
DLP 3.1 %, and estimated effective dose 2.6 % (Table 2).

Subjective image quality

Figure 2 provides an illustration of images of protocols
A and B. Table 4 shows the results of the image quality
assessment.

Overall diagnostic acceptability for axial and 3D images
(“excellent™) was similar for both protocols. A ‘lego’ effect
was noted on the 3D images of protocol B without affecting
the diagnostic acceptability [23].

A lower amount of noise was perceived for protocol B
(“no/very low image noise”) compared to protocol A
(“normal /low image noise”).

Sharpness of cranial bone edges was similar for both
groups (“well defined with sharp contours”). Sharpness of
inner ear structures and medial orbital margin was better for
protocol A than B.

There was no difference in amount and impact of image
artefacts (“minor artefacts”). The type of artefacts was differ-
ent, however. Beam hardening artefacts were present in both
groups, but staircase artefacts were only seen in group B.
Staircase artefacts (17) were more pronounced along the infe-
rior border of the orbit and at the interface between soft tissue
and bone as shown in Fig. 3.

Interobserver agreement (Table 5) varied from substantial
to almost perfect, depending on the structures and criteria that
were evaluated.

Objective image quality

In one patient, bony structures were too small for a
meaningful measurement, and this patient was excluded
from analysis.

In terms of noise no significant difference was seen be-
tween protocols A and B. Protocol B resulted in higher CT
numbers leading to a higher SNR (Fig. 4, Table 6).

The mean slope of the edge profile between bone and brain
parenchyma was -923.0+£175.8 in protocol A and -1592.3+
364.3 in protocol B (P=<0.001) as illustrated in Fig. 4.

Table 3 Distribution of

pathology for group A and B Type of pathology Group A Group B Total

separately and the total for both

groups No pathology 0 1 (4.2 %) 1(2.1 %)
Bilamdoid synostosis 0 1(4.2 %) 1(2.1 %)
Unilambdoid synostosis 0 0 0
Sagittal synostosis 0 2 (8.3 %) 2(4.2 %)
Unicoronal synostosis 2 (8.3 %) 3 (12.5 %) 5(10.4 %)
Bicoronal synostosis 0 0 0
Metopic synostosis 6 (25 %) 9 (37.5 %) 15(31.2 %)
Fracture/ calcified cefalhematoma 2 (8.%) 1 2.1 %) 3(6.2 %)
Plagiocephaly 14 (58.3 %) 7 (29 %) 21 (43.8 %)
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Fig.2 A and C show
respectively a protocol A axial
plane and a 3D image in a patient
suffering from right sided coronal
craniosynostosis. B and D show
respectively a protocol B axial
plane and a 3D image in a patient
suffering from left sided coronal
craniosynostosis

Discussion

Diagnostic reference levels (DRLs) are a practical tool to pro-
mote the assessment of existing scan protocols and appropri-
ate development of new and improved protocols by facilitat-
ing the comparison of doses. For adult head CT, recommend-
ed reference levels in Europe vary between 60 and 75 mGy
[24]; for children, European reference levels are not available
now but soon to be expected within the Pi DRL project of the

Table 4 Results of subjective image quality assessment, statistically
analyzed by the Mann Whitney U test Median with range between
square brackets . If results are significant, they are indicated by *

Criteria Protocol A

ProtocolB P

Overall diagnostic acceptability 1 [1, 2]
(axial images) (1 —4)

Overall diagnostic acceptability 1.0 [1.0-1.0]
3D reconstruction (1 —4)

Noise (1 —4) 2.0 [2.0-2.0]

Sharpness of cranial bone edge 1.0 [1.0-2.0]
1-5)

Sharpness of inner ear structures 2.0 [1.0-2.0]
1-5)

Sharpness of medial orbital 1.0 [1.0-2.0]
margin (1 —5)
Artifacts (1 —5) 2.0 [2.0-2.0]

1[1,2]
1.0 [1.0-1.0]

1.0 [1.0-1.0]
1.0 [1.0-2.0]

2.0 [1.0-3.0]
2.0 [1.0-2.0]

2.0 [2.0-2.0]

0.161

1

<0.001*
0.161

0.004*

0.002*

1

@ Springer

European Society of Radiology [25]. Some previous studies
investigated the impact of dose reduction on image quality for
specific 3DCT protocols used in the setting of craniosynosto-
sis. Vasquez et al., optimized dose with CTDIvol from
18.8 mGy to 2.3 mGy by using a combination of 80 kV and

Fig. 3 Protocol B CT image. Presence of staircase artefacts at the frontal
and right temporal bone and at the medial orbital margin. The artefacts
can be seen at the bone-soft tissue interface
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Table5 Interobserver agreement of all evaluated criteria for protocol A
and B, assessed with the Cohen’s Kappa test

Table 6 Objective image quality assessment of protocol A and B in the
clivus analyzed by independent samples T tests. Mean+SD is mentioned
for the bony structures. Significant P-values are indicated by * and the

Criteria Protocol A Protocol B group that is in favor is mentioned between, ()

Noise NA NA Structure Protocol A Protocol B P-value
Sharpness of inner ear structures 0.75 0,84 ]

Sharpness of cranial bone edge 1.00 1,00 Clivus CT numbers (HU)  360.6+66.5 543.1+704 <0.001*
Sharpness of medial orbital margin 0.86 0.67 noise (HU) 36.9%9.6 34.9£15.2 0600 .
Overall diagnostic acceptability axial images 1.00 1.00 SNR 10329 18378 <0001
Overall diagnostic acceptability 3D NA NA

artifacts NA NA

<0 : poor agreement; 0.0-0.20: slight agreement; 0.21-0.40: fair agree-
ment; 0.41-0.60: moderate agreement; 0.61

0.80:substantial agreement; 0.81-1: almost perfect agreement; NA: not
available due to lack of intrareader variance

increased noise index setting. Iterative reconstruction was not
applied [1]. Khanna et al., halved the dose of their 120 kV
adult scan protocol down to a CTDIvol of 31.25 mGy by only
adjusting the tube current [2]. Badve et al., reported a half and
quarter dose strategy with a 120 kV protocol at CTDIvol’s of,
respectively. 11.36 mGy and 5.86 mGy, by also reducing only
tube current [3]. Applegate et al., reported one case example
scanned at 80 kV with CTDIvol of 1.98 mGy [26]. The dif-
ference of our scan protocol compared to these reported data is
that we included iterative reconstruction in order to achieve
further dose reductions. By combining 80 kV with IR, we
achieved a median CTDIvol of only 0.94 mGy (97 % dose
reduction compared to our standard protocol) without

1800

compromising image quality. To our knowledge, this is the
lowest dose ever reported in a study of head CT performed
for the investigation of cranial deformation. Also, we are the
first institution that reported the use of the MBIR technique in
this setting.

Subjective overall diagnostic acceptability is clinically
the most important factor of image quality. We found that,
even at this very low dose of 0.08 mSv, the diagnostic
acceptability was excellent and not different from the
standard protocol.

For image noise, a difference was found between objective
and subjective evaluation. Although no difference in mea-
sured noise (SD) was present, the images of protocol B were
perceived to be less noisy (“no/very low image noise” vs.
“normal /low image noise”). Besides their impact on standard
deviation of noise, MBIR algorithms also have an impact on
image texture. We speculate that this altered texture, typically

Fig. 4 Mean slope of the edge
profile between bone and brain

parenchyma. The mean slope, 1600

defined as Ay/Ax, of protocol B
is higher than in protocol A,

meaning a sharper edge. Note the 1400

higher CT number (HU) of bony

structures in protocol B and a
1200

higher contrast (relative signal)
between bone and brain.

1000
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CT number (HU)
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described as “plastic, pixilated blotchy appearance”, has an
impact on the perception of noise [14, 15].
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Sharpness of the cranial bone edge was subjectively eval-
uated as similar in both groups (“well defined with sharp
contours”). Objective measurements (the slope of the transi-
tion curve bone-brain), however, showed a slightly steeper
and, thus, sharper cranial bone edge with protocol B. The
difference in slope between the protocols was too small to
be subjectively detectable.

The inner ear structures and medial orbital margin were
evaluated as less sharp (although still acceptable) with proto-
col B. However, these structures are not important in the di-
agnosis of craniosynostosis. In addition, it is accepted that a
dedicated high resolution CT is necessary to assess inner ear
structures. We emphasize that protocol B is only suitable for
evaluation of cranial bones and sutures and not for brain pa-
renchyma or other structures. CT protocols need to be tailored
to a specific indication.

When reducing kVp and/or mA, artefacts including photon
starvation and beam hardening increase [27, 28]. The impact
of artefacts on diagnostic quality was similar (“minor
artefacts” for both protocols despite the major difference in
radiation dose (97 % dose reduction in protocol B). This is
likely related to the use of MBIR, which decreases artefacts in
equal dose settings [17, 18].

The number and impact of artefacts was similar for both
protocols, but the type was different. Beam hardening was
present in both groups, but staircase artefacts were only seen
on images of protocol B.

Interreader agreement was found to be substantial to almost
perfect for both groups.

Some limitations of our work have to be considered. Most
importantly, our results only apply to protocol B with the
MBIR algorithm and cannot be extrapolated to other types
of IR technique with similar dose reductions. Despite efforts
to blind the readers to the protocol that was used, they could
easily distinguish MBIR from FBP series due their typical
image appearance. Also, only the sutural anatomy of the major
sutures was analyzed; hence, no information concerning the
identification of the skull base sutures (‘minor sutures’) can be
provided [29]. Further, since the therapeutic follow-up of the
patients was not included in this study, no information
concerning the concordance between radiological evaluation
and surgery findings can be given. Finally, our sample size
was relatively small.

In summary, with a dose reduction of 97 % to a CTDIvol of
0.94 mGy, image quality remained similar in terms of overall
diagnostic acceptability, objective noise, subjective cranial
bone edge sharpness, and number and impact of artefacts. In
addition, protocol B was superior with regard to objective
sharpness of bone-brain interface and subjective noise.

We conclude that, in the diagnosis of craniosynostis in
children with cranial deformities, a dedicated sub 0.1 mSv
cranial 3DCT protocol can replace the standard protocol with
similar to superior image quality.
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