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Cholinergic Neurons in the Basal Forebrain Promote
Wakefulness by Actions on Neighboring Non-Cholinergic
Neurons: An Opto-Dialysis Study
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Understanding the control of sleep-wake states by the basal forebrain (BF) poses a challenge due to the intermingled presence of
cholinergic, GABAergic, and glutamatergic neurons. All three BF neuronal subtypes project to the cortex and are implicated in cortical
arousal and sleep-wake control. Thus, nonspecific stimulation or inhibition studies do not reveal the roles of these different neuronal
types. Recent studies using optogenetics have shown that “selective” stimulation of BF cholinergic neurons increases transitions between
NREM sleep and wakefulness, implicating cholinergic projections to cortex in wake promotion. However, the interpretation of these
optogenetic experiments is complicated by interactions that may occur within the BF. For instance, a recent in vitro study from our group
found that cholinergic neurons strongly excite neighboring GABAergic neurons, including the subset of cortically projecting neurons,
which contain the calcium-binding protein, parvalbumin (PV) (Yang et al., 2014). Thus, the wake-promoting effect of “selective” opto-
genetic stimulation of BF cholinergic neurons could be mediated by local excitation of GABA/PV or other non-cholinergic BF neurons. In
this study, using a newly designed opto-dialysis probe to couple selective optical stimulation with simultaneous in vivo microdialysis, we
demonstrated that optical stimulation of cholinergic neurons locally increased acetylcholine levels and increased wakefulness in mice.
Surprisingly, the enhanced wakefulness caused by cholinergic stimulation was abolished by simultaneous reverse microdialysis of
cholinergic receptor antagonists into BF. Thus, our data suggest that the wake-promoting effect of cholinergic stimulation requires
local release of acetylcholine in the basal forebrain and activation of cortically projecting, non-cholinergic neurons, including the
GABAergic/PV neurons.
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(s )

Optogenetics is a revolutionary tool to assess the roles of particular groups of neurons in behavioral functions, such as control of
sleep and wakefulness. However, the interpretation of optogenetic experiments requires knowledge of the effects of stimulation on
local neurotransmitter levels and effects on neighboring neurons. Here, using a novel “opto-dialysis” probe to couple optogenetics
and in vivo microdialysis, we report that optical stimulation of basal forebrain (BF) cholinergic neurons in mice increases local
acetylcholine levels and wakefulness. Reverse microdialysis of cholinergic antagonists within BF prevents the wake-promoting
effect. This important result challenges the prevailing dictum that BF cholinergic projections to cortex directly control wakeful-
ness and illustrates the utility of “opto-dialysis” for dissecting the complex brain circuitry underlying behavior. j

ignificance Statement

brain, were the first BF neurons to be recognized for their role in
cortical EEG desynchronization and arousal (Metherate et al.,

Introduction
The basal forebrain (BF) cholinergic neurons, with their wide-

spread projections to neocortical and paralimbic regions of the
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Dugque, 2003; Jones, 2004; Brown et al., 2012). Indeed, many
neuroscientists currently equate BF behavioral state control with
the cortical projections of cholinergic neurons. However, recent
studies have implicated other cortically projecting BF neurons
releasing GABA or glutamate in control of cortical EEG and
sleep—wake states (Duque et al., 2000; Manns et al., 2003; Anaclet
etal., 2015; Kimetal., 2015; Lin et al., 2015; Xu et al., 2015). Thus,
interactions of cholinergic neurons with non-cholinergic BF neu-
rons may be important in orchestrating arousal.

In the past decade, optogenetics has provided a revolutionary
approach toward establishing causal relationships between spe-
cific neuronal circuits and behavior (Deisseroth, 2015). In partic-
ular, optogenetics has been useful in dissecting out the role of
specific neurotransmitter systems embedded in brain regions
with heterogeneous neuronal phenotypes (Adamantidis et al.,
2007; Han et al., 2014; Irmak and de Lecea, 2014; Kim et al., 2015;
Xuetal.,2015). However, the attribution of effects of optogenetic
stimulation on behavior to activation of particular neurotrans-
mitter systems and release of that neurotransmitter in target areas
is not as simple as it first seems. Many neuromodulatory systems
with long projecting axons also release neurotransmitter(s) lo-
cally through somatodendritic release (Adell and Artigas, 2004)
or through activation oflocal axon collaterals (Duque et al., 2007;
Yang et al., 2014). Thus, the behavioral effects of “selective” op-
togenetic stimulation may be mediated not through release of
neurotransmitter in distal targets but rather due to activation or
inhibition of neighboring neurons.

Recent optogenetic studies reported that selective activation
of BF cholinergic neurons suppresses slow-wave sleep and pro-
motes wakefulness (Han et al., 2014; Irmak and de Lecea, 2014;
Xu et al., 2015). Furthermore, inhibition of cholinergic neurons
prolongs slow-wave sleep and decreases the probability of awak-
ening (Shi et al., 2015). However, these studies did not evaluate
the local neurochemical changes associated with optical stimula-
tion, or investigate the influence of cholinergic stimulation on
neighboring neurons in vivo. Acetylcholine (ACh) levels in BF
are higher during wakefulness and rapid eye movement (REM)
sleep compared with non-REM (NREM) sleep (Vazquez and
Baghdoyan, 2001), suggesting that modulation of neighboring
non-cholinergic neurons may be important in behavioral state
control. Consistent with this idea, a recent in vitro study from our
group (Yang et al., 2014) found that cholinergic neurons strongly
excite neighboring GABAergic neurons, including the subset of
cortically projecting neurons, which contain the calcium-binding
protein, parvalbumin (PV). In vivo optogenetic and pharmaco-
genetic studies showed that stimulation of BF GABAergic, PV or
glutamatergic neurons promotes cortical activation and wakeful-
ness (Anaclet et al., 2015; Kim et al., 2015; Xu et al., 2015). More-
over, lesions of BF cholinergic neurons did not impair the ability
of BF PV neurons to produce cortical activation (Kim et al.,
2015). Together, these results suggest that non-cholinergic neu-
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rons can affect cortical activation and wakefulness independently
of cholinergic neurons. These in vitro and in vivo observations
highlight an important point that interpretation of optogenetic
experiments requires an understanding of the effect of optical
stimulation on neurotransmitter release adjacent to the stimula-
tion site, as well as the effects on neighboring, “unstimulated”
neurons.

To better understand the circuit mechanisms by which BF
cholinergic neurons promote wakefulness, in this study, using a
newly designed mouse “opto-dialysis probe” that couples the op-
tical and microdialysis probe in one unit, we measured local
changes in ACh levels while performing selective optogenetic
stimulation of cholinergic neurons and monitored the effect on
sleep—wakefulness. Furthermore, we performed reverse microdi-
alysis of acetylcholine receptor antagonists to block the effect of
ACh within the BF to determine the importance of its local ac-
tions on neighboring non-cholinergic neurons in sleep-wake
regulation.

Materials and Methods

General methods

Animals. ChAT-ChR2-eYFP mice (strain 014546; The Jackson Labora-
tory), constitutively expressing channelrhodopsin 2 (ChR2) under the
control of the choline acetyltransferase (ChAT) promoter (Zhao et al.,
2011), were bred in-house to generate the animals for this study. Mice of
either sex (8 males and 2 females) were used in our study. Results
were similar in males and females and have been pooled. The mice were
housed under constant temperature (21 = 1°C) in a 12 h light/dark cycle
(9:00 A.M./9:00 P.M.). Food and water were provided ad libitum.

All experiments conformed to Veterans Administration, Harvard
University and National Institutes of Health guidelines on the ethical use
of animals. All efforts were made to minimize the number of animals
used and their suffering. Experimental procedures were approved by the
Institutional Animal Care and Use Committee and Institutional Bio-
safety Committee of the Veterans Administration Boston Healthcare
System.

Opto-dialysis probe design for freely behaving mice. To construct the
opto-dialysis probe, we modified a CMA7 microdialysis guide cannula by
replacing the polyurethane outer tubing, into which the stylus is inserted,
with a stainless steel shaft (5 mm long) to allow a stable attachment of the
implantable fiber optic cannula. At the time of the experiment, the stylus
was removed and replaced by a microdialysis probe with a 1-mm-long
dialysis membrane extending below the guide cannula tip. A fiber optic
cannula (core diameter of 200 wm) was glued to the side of the steel guide
cannula using a biocompatible material EPO-TEK 302-3M (Angstrom-
Bond). As described by Aravanis et al. (2007) and Yizhar et al. (2011), the
light scatter emitted from the optical fiber tip decreases exponentially
with distance from the fiber tip and only ~1% of the initial power density
reaches a penetration of 0.5 mm in brain tissue. Therefore, an important
consideration in our design was the placement of the microdialysis mem-
brane within the area of the scattered light. To achieve this, the tip of the
fiber optic cannula was placed so it extends 0.5 mm beyond the micro-
dialysis cannula. Thus, when the microdialysis probe is inserted, the 1
mm dialysis membrane extends 0.5 mm beyond the tip of the fiber optic
cannula, placing the major part of the active zone of the microdialysis
membrane within the boundaries of the light scatter (Fig. 1a—c). The
fiber optic cannula is connected to a mono fiberoptic patchcord
(MFP_200/240/900-0.22_2m_FC-ZF1.25 from Doric Lenses) via a zir-
conia ferrule and metal flange using a bronze sleeve connector to prevent
light leakage at the connection site (Fig. 1a,d). The maximum diameter of
the implanted portion of the opto-dialysis probe is 1 mm. The size of the
opto-dialysis probe (implanted unilaterally) did not interfere with the
implantation of the EEG electrodes (Fig. 1¢,d) and allowed the mouse to
move freely in the cage (Fig. 1d). As described below, implantation of the
combined opto-dialysis probe allowed both optical stimulation and mi-
crodialysis. Post hoc analysis confirmed the location of the probe tips
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Figure1.

Design of the novel opto-dialysis probe and successful targeting of the BF sleep—wake control center. Diagram (a) and image (b) of the opto-dialysis probe. ¢, Sagittal view of the mouse

brain illustrates placement of the opto-dialysis probe in the BF and recording of cortical EEG activity. d, Image of the opto-dialysis system combined with EEG/EMG in a freely moving mouse. e,
Representative example of correct targeting of the BF in one mouse. The tip of the microdialysis probe is depicted by a black square in the coronal schematic drawing (left) and by a white asterisk in
theimage (right). Cholinergic neurons and fibers exhibit green (EYFP) fluorescence. f, Center of the probe tip (black squares) within BF for all mice (n = 6). All probe tips were located between —0.10
and 0.14 mm from bregma (Franklin and Paxinos, 2008). 3V, Third ventricle; aca, anterior commissure; CPu, caudate-putamen; CTX, cortex; HDB, horizontal limb of the diagonal band; LPO, lateral
preoptic area; MCPO, magnocellular preoptic nucleus; SI, substantia innominata; Tu, olfactory tubercle; VP, ventral pallidum.

within the region of the BF with ChR2-EYFP expressing cholinergic
neurons (Fig. le,f).

Stereotaxic surgery and opto-dialysis probe implantation. Mice were
deeply anesthetized with isoflurane (induction: 3%; maintenance: 1.5%—
2.5%) and placed in a stereotaxic device (Kopf Instruments). After ex-
posing, cleaning, and disinfecting the skull bone, our newly designed
opto-dialysis probe (the microdialysis cannula with optic fiber attached
to its side) was implanted, targeting the BF (AP = 0; ML = 1.5;
DV = —5.6) (Franklin and Paxinos, 2008). Subsequently, two screw
electrodes were fitted into the skull for frontal (AP = 2; ML = 1) and
parietal (AP = —3; ML = 1.5) epidural bipolar recording of the EEG,
referenced to a screw-electrode over the cerebellum (AP = —5; ML = 0).
To record the electromyogram (EMG), two wire electrodes were inserted
into the neck musculature. All electrodes were connected to a prefabri-
cated headmount (catalog #8402, Pinnacle Technology) and were se-
cured in place with acrylic dental cement. After 1 week of recovery from

surgery, the animals were placed in the recording cages in the experiment
room. After 2 d of acclimation, the experiments were started.

Optical stimulation and EEG/EMG recording. Optical stimulation was
performed unilaterally to excite cholinergic BF neurons. Laser light (20
mW) was generated using a fiber coupled 473 nm solid-state laser diode
(MBL-III-473 nm-50mW, OptoEngine), and was delivered via the opto-
dialysis probe (Doric Lenses). Laser light stimulation was driven by
software-generated TTL pulses (WinWCP, Strathclyde Institute of
Pharmacy and Biomedical Sciences, Glasgow). Continuous EEG/EMG
recordings were performed using Sirenia Acquisition Software in com-
bination with a Pinnacle data acquisition unit (8206 system, Pinnacle
Technology). The EEG/EMG signals were amplified (gain 1000), filtered
(high pass: 0.5 Hz, low pass 125 Hz), and sampled at 400 Hz. EEG was
recorded ipsilateral to the opto-dialysis probe.

EEG/EMG analysis. Behavioral states were manually scored in 4 s ep-
ochs using Sirenia Sleep Pro software (Pinnacle Technology) according
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to standard criteria as follows. Wakefulness: low-amplitude, fast EEG
activity with high activity in the EMG; NREM sleep: high-amplitude EEG
6 (0.5—4 Hz) waves and low-amplitude EMG; REM sleep: regular 6 (5-9
Hz) activity in the EEG and low or absent EMG activity. Epochs contain-
ing artifacts or more than one vigilance state were excluded from further
analysis. In all trials that started in NREM sleep, the latency to wakeful-
ness was calculated manually from the start of the stimulation train,
indicated by the TTL pulses that were annotated onto the EEG/EMG
during the recording. EEG power spectra during wakefulness were cal-
culated within the 0.5-50 Hz frequency range by fast Fourier transform
(256; Hanning window, 0.25 Hz resolution). Epochs, including the stim-
ulation train itself, were excluded to prevent contamination of the spec-
tra by event-related potential-type responses occurring during the
stimulation. Power was expressed as percentage of total power (average
of 0.5-20 Hz during the same experimental day for each individual
animal).

In vivo microdialysis. Microdialysis probes (CMA7, membrane length
1 mm, Harvard apparatus/CMA/Microdialysis) were inserted through
the guide cannula 22—24 h before the first experiment. On all experimen-
tal days, microdialysis tubing was connected and perfusion of aCSF (Har-
vard Apparatus) at 1 pl/min was started at Zeitgeber time (ZT) 0.5 and
continued until ZT 6; 1 h samples were collected from ZT 1 onward.
EEG/EMG recordings were started at ZT1. The microdialysis probes
were left in place throughout the experiment and on nonexperimental
days were flushed gently with aCSF. Measurements of neurotransmitter
levels were consistent over the course of the experiment, indicating that
blockade of the probe was not an issue in our experiments.

Liquid chromatography-tandem mass spectrometry (LC-MS/MS). Mi-
crodialysate ACh concentrations were measured using an LC-MS/MS
assay developed from earlier procedures (Keski-Rahkonen et al., 2007;
Prokai et al., 2008). To 10 ul of the collected sample, we added 10 ul of
aCSF solution containing 200 pg/ml ACh-d, chloride (CDN Isotopes) as
an internal standard. After centrifugation at 14,500 rpm for 3 min, the
sample was transferred into a 250 ul plastic autosampler vial that was
sealed using an open-top snap cap with a Teflon/soft silicone septum
(Thermo Scientific). LC-MS/MS analyses were performed using a Sur-
veyor liquid chromatograph system connected to a TSQ Quantum Ultra
triple-quadrupole tandem mass spectrometer (Thermo Scientific). ACh
and the internal standard were eluted isocratically at 300 ul/min and
30°C from a 100 mm X 2.0 mm i.d. Synergi Polar-RP column packed
with 4 um particles (Phenomenex) with a mobile phase of water/aceto-
nitrile/trifluoroacetic acid mixture (98:2:0.05, v/v). We used a 6 port
valve that switched the effluent to enter the ion source between 1.0 and
1.9 min after the injection of 10 ul from the sample by a robotic autosam-
pler of the Surveyor system. The mass spectrometer was operated using
atmospheric pressure spray ionization (Keski-Rahkonen et al., 2007),
and our method relied on selected-reaction monitoring optimized to the
transitions reported previously (Prokai et al., 2008). We prepared cali-
bration samples by serial dilution of 1 ng/ml ACh chloride (Sigma-
Aldrich) stock solution in aCSF as a medium. Concentrations in the
microdialyis samples were determined initially (in pg/ml) of the neu-
rotransmitter from a regression line fitted to ACh concentrations of the
calibration samples versus the corresponding area mass to charge ratios
(m/z) of the selected-reaction monitoring-chromatographic peaks for
ACh (m/z146 —87) and ACh-d, (m/z 150 —91). For statistical analyses
and charting the results, we expressed ACh levels as percentage of its
mean baseline concentration.

Immunohistochemistry. To verify that the optical stimulation activated
cholinergic neurons and to identify the probe location, we stimulated the
BF with a 10 s train of 10 Hz light stimulation every 60 s for 2 h from ZT
2 to ZT 4 and then performed immunohistochemistry for ChAT and for
c-Fos protein, a marker of neuronal activation. Immediately after com-
pletion of optical stimulation, the mice were perfused transcardially with
saline and a 10% formalin solution. Perfused brains were removed, post-
fixed overnight in 10% formalin, and then immersed in a 30% sucrose
solution at 4°C for cryoprotection. 40 wm-thick coronal slices were col-
lected in 1 of 4 wells (series), and stored in PBS at 4°C. For all antibody
stains, control stains were performed in slices where primary antibodies
were omitted. For ChAT/cFos protein colocalization, sections from one
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well were washed in PBS and treated with 0.2% Triton-X for 2 h, and
blocked using 3% normal donkey serum for 1 h. After blocking, rabbit
polyclonal primary antibody, anti-c-Fos (1:2000 dilution, Santa Cruz
Biotechnology, SC-253) was added and incubated overnight on a plat-
form shaker. On the next day, slices were washed and treated with the
secondary antibody, donkey anti-rabbit conjugated to AlexaFluor-568,
red (1:2000; Invitrogen, A10042) for 2 h. Next, the sections were washed
in PBS and incubated overnight with the second primary antibody, a goat
polyclonal anti-ChAT antibody (1:500; Millipore Bioscience Research
Reagents, AB144). The following day, the sections were washed and in-
cubated with donkey anti-goat IgG conjugated to AlexaFluor-488, green
(1:500; Invitrogen, A21467) for 2 h at room temperature. Imaging of cells
at higher magnifications (40X ) were performed using a Zeiss LSM con-
focal microscope. To determine the number of cholinergic neurons that
are activated by optical stimulation, we counted the number of ChAT-
cFos-positive neurons in the BF on both sides of the brain (ipsilateral to
opto-dialysis probe and contralateral side as control). In three mice,
three sections from each mouse between bregma 0.2 um and —0.2 um (1
in 4 series) were used for counting.

Statistical analyses. All values are shown as mean * SEM. Statistical
analyses were performed using SigmaPlot (version 11.0, Systat Software).
For comparisons between two time points within the same group of
animals, we used paired t tests. In situations when the normality assump-
tion failed, a Wilcoxon signed rank test was used. For analyses involving
several time-points and or multiple factors, we used one-way or two-way
repeated-measures ANOVA. All repeated-measures ANOVAs were fol-
lowed by Holm-Sidak post hoc tests.

Experimental protocols

Experiment 1: testing the opto-dialysis probe. In our first set of experi-
ments, we confirmed that the presence of the microdialysis probe did not
prevent optical stimulation and then determined the effect of optical
stimulation on BF cholinergic activity and behavioral state. We initially
used a stimulation frequency of 10 Hz modeled after the firing pattern of
identified cholinergic neurons during wakefulness (Lee et al., 2005) and
previously tested in our in vitro study (Yang et al., 2014) in the same
strain of mice constitutively expressing ChR2 in cholinergic neurons
(Zhao et al., 2011). Experiments were done at ZT 2—4 (i.e., during the
natural sleeping period when ACh levels are normally low) (Vazquez and
Baghdoyan, 2001). To investigate the effect of optogenetic stimulation of
cholinergic neurons on local ACh release surrounding the target of
optical stimulation in the BF, microdialysis samples for subsequent
measurement of ACh were collected on a No-Stimulation day and on a
Stimulation day. EEG was monitored throughout the experiment. After a
1 h same-day baseline period, optical stimulation was performed from
ZT 2 to ZT 4 on the Stimulation day, consisting of 10 s trains of 10 Hz
pulses with a pulse width of 10 ms delivered every minute for 2 h. On the
No-Stimulation day, the experiment was conducted in the same way,
except that the laser was not turned on. The time spent in wakefulness,
NREM sleep, and REM sleep was determined during 2 h of optical stim-
ulation and compared with that of the time matched no-stimulation day.
To compare the changes in extracellular ACh levels during optical stim-
ulation with the changes in ACh occurring during prolonged wakeful-
ness, the mice were sleep-deprived (SD) for 3 h (ZT 2-5) on a different
day, by introducing novel objects into the cage and gently tapping the
cage when necessary to prevent sleep. Samples from the SD day were
collected as a positive control because cholinergic neurons discharge at a
higher rate during wakefulness (Lee et al., 2005); consequently, the level
of ACh in the BF is higher compared with NREM sleep (Vazquez and
Baghdoyan, 2001).

Experiment 2: testing multiple stimulation frequencies. The discharge
frequency of cholinergic neurons varies across sleep/wake states with the
highest mean discharge rate during REM sleep (16.3 Hz), a lower rate of
7.6 Hz during wakefulness, and a greatly reduced rate in NREM sleep
(0.84 Hz) (Lee et al., 2005). While our experiments described above
showed that 10 Hz stimulation was effective in increasing wakefulness,
we wanted to systematically evaluate which stimulation frequency re-
sulted in the highest increase in wakefulness. Thus, next we tested other
stimulation frequencies and train durations (2, 5, 8, and 10 Hz for 5 s and
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8 and 10 Hz for 10 s) within the range of discharge rates of cholinergic
neurons observed during wakefulness and NREM sleep. For each fre-
quency, a train of 5 s was repeated every minute for 2 h starting at ZT
2. For 8 and 10 Hz, in addition to 5 s trains, a 10 s train of the selected
frequency was repeated every minute for 2 h. The amount of wake-
fulness on each Stimulation day was compared with a time-matched
baseline day without optical stimulation (No-Stimulation) day. These
experiments were performed in the same animals and thereby also
ensured that the effect of optical stimulation of BF cholinergic neu-
rons on wakefulness was repeatable and not altered by multiple
rounds of stimulation.

Experiment 3: 8 Hz BF cholinergic stimulation and reverse microdialysis
perfusion of cholinergic receptor antagonists. To explore the possible role of
local ACh release in the BF on the wake-promoting effect of cholinergic
BF stimulation, we used the opto-dialysis system to locally perfuse the
muscarinic receptor antagonist, atropine (50 uM diluted in aCSF; West-
Ward Pharmaceuticals), or a combination of atropine and mecamyl-
amine (nicotinic receptor antagonist; 1 mm diluted in aCSF; Sigma)
during the 2 h optical stimulation period on the No-Stimulation and
Stimulation day. The concentration of the antagonists was determined
based on the doses shown to be effective in blocking cholinergic effects on
GABAergic neurons in our previous in vitro study (Yang et al., 2014) and
an assumption that the 1 mm microdialysis probe allows ~10% of the
drug to reach the target site (Porkka-Heiskanen et al., 2000). Aftera 1 h
same-day baseline period, optical stimulation was performed from ZT 2
to ZT 4 on the Stimulation day and consisted of 10 s trains of 8 Hz pulses
with a pulse width of 10 ms delivered every minute for 2 h.

Results

Optical stimulation of BF cholinergic neurons increased c-Fos
expression, wakefulness, and BF acetylcholine release

Optical stimulation of cholinergic neurons (10 Hz for 10 s/min
for 2 h) followed by post hoc immunohistochemistry revealed that
the protein product of the immediate-early gene, c-Fos, a widely
used marker of neuronal activation was expressed in the nuclei of
58.6 = 3.6% of ChAT* neurons on the side ipsilateral to the
probe (Fig. 2a). This was significantly higher (p < 0.001, n = 3)
than 5.3 = 1.1% of the ChAT * neurons with nuclear ¢-Fos ob-
served on the contralateral side, thus confirming that, as ex-
pected, optical stimulation activated cholinergic neurons.
Analysis of behavioral state in these experiments revealed that
during the 2 h stimulation period, the time spent in wakefulness
was significantly increased by 51 * 24% (paired t test,
ty = —2.935,p = 0.043), whereas NREM sleep was significantly
decreased by 17 = 8% (paired ¢ test, t,y) = 2.968, p = 0.041)
compared with the time-matched period on the No-Stimulation
day (Fig. 2b). There was no significant effect on REM sleep (REM
sleep decreased by 13 * 23%, paired ¢ test, ¢,y = 0.672, p =
0.538). Concurrent with the increase in wakefulness produced by
optogenetic stimulation of BF cholinergic neurons, we observed
an increase in BF ACh levels, measured using the microdialysis
component of the opto-dialysis probe in combination with LC-
MS/MS (Fig. 2¢). There were no differences in the absolute levels
of ACh during the baseline periods on the No-Stimulation day
(74.95 = 19.2 pg/ml) and Stimulation day (76.44 = 33.85 pg/ml)
in the same animals (N = 5). Extracellular BF ACh levels were
significantly increased during the first (46.11 = 11.8%) and the
second hour (66.09 * 12.8%) of optical stimulation of BF cho-
linergic neurons, compared with the prestimulation baseline (set
to 100%, indicated by Fig. 2d, horizontal line). Time of the day
comparison with No-Stimulation day showed that optical stim-
ulation significantly increased ACh levels by 81 £ 14% (paired ¢
test, £,y = —3.962, p = 0.017) and by 86 * 14% (paired ¢ test,
ty = —3.794, p = 0.019) during the first (ZT 2-3) and second
(ZT 3-4) hour, respectively.
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We also compared the optogenetically evoked increase in ACh
to the physiological increase induced by sleep deprivation (SD,
Fig. 2e). The average increase in ACh levels during the 2 h of
optical stimulation (83.5 * 14%, paired ¢ test, t4) = —5.080,p =
0.007) was comparable (no significant difference; n = 5, one-way
repeated-measures ANOVA) to the increase observed during 3 h
of SD (69 * 13%, Wilcoxon signed rank test, p = 0.031). Thus,
optical stimulation increases ACh levels in the BF close to the
maximal physiological levels. The levels returned to baseline val-
ues at the cessation of stimulation, similar to the decreases ob-
served during recovery sleep following SD (Fig. 2d,e).

Together, these experiments were demonstrative of the suc-
cess of our combined opto-dialysis probe design and its use in
conjunction with EEG/EMG assessments of behavioral state.

Behavioral response to multiple stimulation frequencies

To determine the optimal stimulation frequency to elicit the
maximal effect on wakefulness, we used a counterbalanced de-
sign, whereby on different days, stimulation frequencies of 2, 5, 8,
or 10 Hz were tested. We observed that stimulation at all frequen-
cies, other than 2 Hz, led to a significant increase in wakefulness
during the 2 h stimulation period. However, in a repeated-
measures ANOVA versus control group ( post hoc Holm-Sidak),
the 8 Hz 10 s and 10 Hz 10 s stimulation protocols were the
only protocols to reach a significant difference from the No-
Stimulation day. Although not significantly different from the
effects of 10 Hz stimulation the absolute largest increase in wake-
fulness was observed during optical stimulation at 8 Hz, 10 s/min
for 2 h (paired ¢ test, t,) = —3.856, p < 0.05; Fig. 3a). Thus, we
used this paradigm of 8 Hz stimulation for 10 s/min for all
subsequent experiments and analyses. Using this paradigm,
power spectral analysis of wakefulness periods (averaged over the
2 h stimulation period) on the Stimulation day showed no signif-
icant difference compared with periods of spontaneous wakeful-
ness on the No-Stimulation day (n = 6; 0.25 Hz bins; two-way
repeated-measures ANOVA, p > 0.05; Fig. 3b). This finding sug-
gested that optical stimulation of BF cholinergic neurons caused
an increase in physiological wakefulness. There was a trend to-
ward increased 6 (4—8 Hz) activity, consistent with the results of
a previous pharmacological study, which selectively stimulated
BF cholinergic neurons (Cape et al., 2000). However, this trend
did not reach statistical significance. Very few stimulations (2.8 =
0.9) resulted in NREM to REM transitions during 2 h stimulation
period, which was similar to the number of NREM to REM tran-
sitions observed on time-matched No-Stimulation day (1.6 *
0.5; p = 0.28, n = 5; paired t test, t,y= — 1.238, p = 0.284).

Cholinergic stimulation increased the probability and
decreased the latency for transitions from NREM to
wakefulness

Optical stimulation of BF cholinergic neurons at 8 Hz resulted in
a 84 = 9% increase in wakefulness compared with the same time
on the No-Stimulation day (paired ¢ test, t5, = —3.817, p =
0.012; Fig. 4a). The probability of NREM to wake transitions
increased, especially in the first 10 s after the start of stimulation
(298 = 74% increase in transitions from NREM sleep to wake,
paired ¢ test, t5, = —3.579, p = 0.016; Fig. 4b—d). The mean
latency for NREM sleep to wake of 25.6 s on the baseline No-
Stimulation day decreased to 13.5 s on the stimulation day (Wil-
coxon signed rank test, p < 0.001; Fig. 4¢).
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Optogenetic stimulation of BF cholinergic neurons activates cholinergic neurons, increases wakefulness, and increases local ACh levels surrounding the opto-dialysis probe. a,

Optogenetic stimulation activates BF cholinergic neurons (green, stained with ChAT). Staining of the immediate early gene product, c-Fos (red) illustrates neuronal activation in the nuclei of BF
cholinergic neurons (overlay). b, The percentage of wakefulness significantly increased and NREM sleep decreased during the 2 h optogenetic stimulation period, compared with the same time
period on the baseline (No Stim) day. ¢, Representative traces of LC-MS/MS measurements showing the increase in local BF ACh levels (mass to charge ratio, m/z) produced by optogenetic
stimulation.* unknown constituent of the microdialysates that generates an isobaric ion with ACh but separated from ACh chromatographically. d, Extracellular BF ACh levels were significantly
increased during the first and the second hour of optical stimulation of BF cholinergic neurons, compared with the baseline (No Stim) day and compared with the prestimulation baseline (BL, set to
100%, indicated by the horizontal line). ACh levels returned to BL levels immediately after stimulation ended. e, The increased ACh levels caused by optogenetic stimulation are comparable with
levels seen during a 3 h sleep deprivation (SD) period. Optogenetic stimulation paradigm: 10 Hz, 10 s repeated every minute for 2 h; n = 6 (BL), 5 (Stim/SD). *p << 0.05 (paired t test/one-way

repeated-measures ANOVA post hoc Holm—Sidak). Data are mean = SEM). Stim, Stimulation.

Reverse microdialysis of ACh receptor antagonists blocked
the increase in wakefulness produced by optical stimulation
of cholinergic neurons

Although BF cholinergic stimulation was effective in promoting
transitions to wakefulness, it was notable that the latency to wake-
fulness was prolonged (mean latency 13.5) compared with the
effect of optogenetic stimulation of other neurotransmitter sys-
tems (e.g., noradrenergic locus ceruleus neurons, <5s) (Carter et
al., 2010), suggesting that an intermediate step may be required.
Our microdialysis experiments showed thatlocal ACh levels were
increased by optical stimulation and, as discussed above, cholin-
ergic neurons activate neighboring non-cholinergic neurons
(Yang et al., 2014; Xu et al., 2015), which may also play a role in
cortical activation (Duque et al., 2000; Manns et al., 2003; Lin et

al., 2006; Anaclet et al., 2015; Xu et al., 2015). Thus, in our final
series of experiments, we investigated the functional effects of
increased BF ACh levels on sleep and wakefulness.

Using our newly designed opto-dialysis system, we locally ap-
plied the muscarinic receptor antagonist, atropine, during optical
stimulation, by reverse microdialysis. Strikingly, application of
atropine (50 uMm) blocked the increase in wakefulness and de-
crease in NREM sleep produced by stimulation of cholinergic
neurons (Fig. 5). Application of atropine to the BF during a base-
line No-Stimulation day had no effect on sleep-wake states
(Stimulation day significantly different from: No-Stimulation
baseline day, No-Stimulation day + atropine, and Stimulation
day + atropine, n = 6, one-way repeated-measures ANOVA, post
hoc Holm-Sidak, Wake: F 5,4y = 9.393, NREM: F 5 ,,, = 10.038,
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Figure3. Increased wakefulness induced by optogenetic stimulation of BF cholinergic neu-
rons has a similar spectral profile to spontaneous wakefulness. a, The total amount of wakeful-
nessincreased during the stimulation period when BF cholinergic neurons were stimulated at 5,
8,0r 10 Hz; but not at 2 Hz. The largest effect on wake was seen at 8 Hz 10 s. This frequency and
duration were used for all further experiments (n = 5). *p << 0.05 (paired ¢ test). Data are
mean = SEM. b, During the 2 h stimulation period on the baseline (No Stim) day and Stim day,
power spectra of wakefulness periods were not significantly different, indicating that induced
wakefulness was not different from spontaneous wakefulness (n = 6;0.25 Hz bins). EEG power
expressed as percent of total power (0.5-20 Hz) during the same experiment day for each
animal. p > 0.05 (two-way repeated-measures ANOVA).

p < 0.001; Fig. 5a). The probability of NREM sleep to wake
transitions decreased when optical stimulation was combined
with simultaneous atropine perfusion, compared with optical
stimulation alone, and the mean latency to wakefulness increased
(Optical stimulation, 13.5 s; Stimulation + atropine, 20.9 s). Al-
though both measures were significantly different compared with
optical stimulation alone (n = 6, one-way repeated-measures
ANOVA, post hoc Holm-Sidak, transition to wake within 10 s:
Fs.13 = 9.863, p = 0.001, mean latency: F5 5y = 9.189, p =
0.002) and did not significantly differ from the No-Stimulation
day, a small residual effect of stimulation remained (Fig. 5b—d).
Reverse microdialysis of a mixture of muscarinic and nicotinic
ACh receptor antagonists, atropine and mecamylamine (50 um
and 1 mw, respectively) further decreased the probability and
increased the latency of NREM sleep to wake transitions (23.95 s)
to values comparable (not statistically different, n = 4, one-way
repeated-measures ANOVA, mean latency: p = 0.81) with those
on the drug-free baseline No-Stimulation day (Fig. 5b—d).
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Discussion

In this report using our novel opto-dialysis probe, we performed
combined optical manipulation and local in vivo microdialysis,
simultaneously in freely behaving mice. We observed that the
optical stimulation of BF cholinergic neurons increased local
ACh levels and increased wakefulness. Blocking the effects of
ACh by reverse microdialysis of cholinergic antagonists within
the BF prevented the wake-promoting effect of cholinergic stim-
ulation. Thus, our results present evidence for a paradigm shift in
our understanding of BF control of cortical activity, challenging
the prevailing dictum that BF cholinergic activity directly pro-
motes wakefulness via projections to the cortex.

Design of a novel combined opto-dialysis probe

To be useful, a combined opto-dialysis probe must fulfill certain
requirements. First, the probe must be small enough and stable
enough to be implantable in the mouse brain without significant
damage to the brain and must allow normal behavior. Indeed,
our opto-dialysis probe is sized to fit the mouse brain, allows
implantation of EEG electrodes and free movement of the mouse.
Baseline recordings confirmed that the distribution of sleep—
wake states was similar to those in wild-type animals. Second, the
microdialysis probe must not interfere with the function of the
fiber optic cannula and vice versa. Our experiments here show
that optical stimulation of cholinergic neurons increased wake-
fulness and increased the ACh concentration to levels similar to
those measured during sleep deprivation, and thus are consistent
with this second requirement.

Using this device, our data represent the first in vivo demon-
stration of the local release of ACh in response to the optical
stimulation of BF cholinergic neurons. Previous work performed
in rats describes the use of reverse microdialysis of pharmacolog-
ical agents during optical stimulation (Taylor et al., 2014). Al-
though technically impressive, this study necessitated the use of a
large implant assembly consisting of a separate optical probe and
microdialysis cannula. Additionally, technically challenging an-
gular implantation techniques were required to ensure proper
placement of the optical fiber tip adjacent to the microdialysis
probe. Thus, the opto-dialysis probe described here represents a
significant technological advance in its combination of the optic
fiber cannula and microdialysis into a single unit suitably sized
for work in mice.

A potential drawback of optogenetic stimulation is that syn-
chronized activation of the targeted neuronal population might
raise neurotransmitter concentrations to unphysiological levels.
However, the observed 83% increase in ACh levels in this study
was not significantly different from the physiological 69% in-
crease we observed during sleep deprivation. Additionally, cessa-
tion of optical stimulation decreased ACh values to basal levels, as
was also observed during recovery sleep after prolonged wakeful-
ness (Fig. 2e). We conclude that our optical stimulation paradigm
induced variations in ACh concentration and kinetics compara-
ble with state-dependent changes reported previously in BF
(Vazquez and Baghdoyan, 2001).

Optical stimulation of BF cholinergic neurons promotes
NREM-wake transitions

In accord with three reports on the arousal effects of optical stim-
ulation of BF cholinergic neurons using conventional optogenet-
ics (Han et al., 2014; Irmak and de Lecea, 2014; Xu et al., 2015),
8-10 Hz stimulation increased time spent in wakefulness during
2 h of optical stimulation compared with the time-matched pe-
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Figure4.

Optogenetic stimulation of BF cholinergic neurons increases wakefulness, increases the probability of NREM to wake transitions, and reduces the latency to wakefulness. a, Optogenetic

stimulation (8 Hz, 10 s/min, 2 h) increased wakefulness and decreased NREM sleep compared with the baseline (No stim) day. b, The cumulative probability distribution of NREM sleep to wakefulness
transition latencies shows an increased probability to wake on the Stim day compared with the baseline day (513 and 402 trials starting in NREM for No Stim and Stim conditions, respectively). ¢,
NREM sleep to wake latency decreased during the stimulation period compared with the same period on the baseline day. d, Transitions from NREM sleep to wakefulness within 10 s of the start of
stimulation increases compared with the baseline day (n = 6). *p << 0.05 (paired t test/Wilcoxon signed rank test). Data are mean = SEM.

riod on the No-Stimulation day. Our parametric experiments
showed that 8 Hz stimulation was most effective in inducing
wakefulness, similar to the results of Irmak and de Lecea
(2014). Spectral analysis confirmed that the wake-EEG param-
eters during the 2 h of optical stimulation period remained
unchanged, compared with natural wakefulness, suggesting
that optical stimulation induced transitions to a physiological
state of wakefulness.

Cholinergic stimulation facilitated the probability of NREM
to wakefulness transitions and decreased their latency as reported
previously (Han et al., 2014; Irmak and de Lecea, 2014; Xu et al.,
2015). In our study, optical stimulation of BF cholinergic neu-
rons reduced the mean latency to wakefulness by ~50% (to
13.5 s) compared with the average latency observed on the No-
Stimulation day (TTL pulse without laser, 25.6 s). This value is
lower than the latencies reported (~25-45 s) by Irmak and de
Lecea (2014). This difference in the latency may be attributable to
the percentage of cholinergic neurons expressing ChR2 and to the
basal cholinergic tone in the mouse models used in the two
studies. Irmak and de Lecea (2014) used ChAT-Cre mice in com-

bination with AAV-ChR2-EYFP viral injections to transduce
~64% of the BF cholinergic neurons. Han et al. (2014) used a
BAC transgenic strain of ChAT-ChR2-EYFP mice with constitu-
tive ChR2 expression in >90% of BF cholinergic neurons (Yang
etal., 2014). This is the same strain of mice used in our work, and
its increased cholinergic tone (Kolisnyk et al., 2013) may account
for the shorter observed state transition latencies (<15 s) that we
and Han et al. (2014) found, in contrast to the findings of Irmak
and de Lecea (2014). It is unlikely that the difference in latency is
due to stimulation of brainstem cholinergic neurons since in the
ChAT-ChR2 mice line used in this study the expression of ChR2-
EYFP was minimal in the brainstem cholinergic neurons (Yang et
al., 2014).

The wake-promoting effect of BF cholinergic stimulation
requires activation of neighboring non-cholinergic neurons
The most important biological result of this study is that si-
multaneous reverse microdialysis of ACh receptor antagonists
into BF prevented the increased NREM to wakefulness state
transitions in response to light stimulation, suggesting that
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Figure5.

The wake-promoting effect of cholinergic stimulation is strongly attenuated by simultaneous reverse microdialysis of cholinergic receptor antagonists into the BF. Reverse microdialysis

of atropine (atr, 50 pum), or a mixture of atropine (50 pm) and mecamylamine (mec, 1 mm) into the BF during optogenetic stimulation of cholinergic neurons abolishes the effect on the following:
a, wakefulness; b, probability of NREM sleep to wakefulness transitions; ¢, NREM sleep to wakefulness latency; and d, transitions from NREM sleep to wakefulness within 10 s of the start of
stimulation (Stim+ atr, n = 6; Stim day + atr and mec, n = 4). *p << 0.05 (one-way repeated-measures ANOVA post hoc Holm-Sidak). Data are mean == SEM.

these state transitions require local ACh activation of neigh-
boring non-cholinergic, wakefulness-promoting neurons.
Lesion experiments suggest that both cholinergic and non-
cholinergic neurons in BF are required for cortical arousal
(Semba, 2000; Kaur et al., 2008; Fuller et al., 2011). Among the
non-cholinergic neurons, neuroanatomical (Freund and
Meskenaite, 1992) and electrophysiological recording (Duque
etal., 2000; Henny and Jones, 2008; Hassani et al., 2009; McK-
enna et al., 2013) experiments suggested that BF GABAergic
neurons may be particularly important in controlling cortical
activation and wakefulness. Recent experiments using slower-
acting, pharmacogenetic techniques suggested that activation
of BF GABAergic neurons strongly promotes wakefulness,
whereas inhibition promoted sleep (Anaclet et al., 2015). In
contrast, the effect of pharmacogenetic activation of BF gluta-
matergic or cholinergic neurons on wakefulness was less pro-
nounced. Furthermore, optogenetic studies using both gain-
and loss-of-function experiments provided compelling evi-
dence that BF GABAergic/PV neurons control cortical fast
activity typical of wakefulness (Kim et al., 2015). Cholinergic
terminals from local collaterals and brainstem cholinergic
neurons are located in close proximity of BF non-cholinergic
neurons (Martinez-Murillo et al.,, 1990; Zaborszky and
Duque, 2000; Duque et al., 2007). Specifically, cholinergic fi-

ber varicosities appose GABAergic/PV neurons in BF (Yang et
al., 2014). In vitro studies from our group demonstrated an
excitatory effect of the cholinergic agonist carbachol on iden-
tified BF GABAergic and PV neurons (Yang et al., 2014). Fur-
thermore, in vitro optical stimulation of cholinergic neurons
in the same line of ChAT-ChR2-EYFP mice used here reliably
elicited an inward current in non-cholinergic neurons with
the same intrinsic membrane properties as cortically project-
ing GABAergic/PV neurons (Yang et al., 2014). Xu et al.
(2015) confirmed these excitatory effects of cholinergic neu-
rons on BF PV neurons using optogenetic techniques. Thus,
these experiments suggest that cholinergic stimulation-
induced state transitions from NREM to wakefulness are me-
diated via local ACh effects on the activity of cortically
projecting BF GABAergic neurons, including the subset that
contains PV. Although optogenetic stimulation of BF gluta-
matergic (vesicular glutamate transporter type 2, vGluT2 ™)
neurons promoted wakefulness (Xu et al., 2015), pharmaco-
logical or optogenetic stimulation of the BF cholinergic system
in vitro strongly inhibited vGluT2 * neurons in vitro (Xu et al.,
2015; Yang et al., 2015), suggesting that local activation of BF
glutamatergic neurons is an unlikely mediator of the wake-
promoting effects of cholinergic stimulation. The opto-
dialysis technique described here will be useful in the future
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for disentangling local versus distal effects of stimulation of BF
GABAergic and vGIuT2 ™ neurons.

In conclusion, this report demonstrates the design and util-
ity of a combined opto-dialysis probe, which allows measure-
ment of local neurotransmitter levels during optical
stimulation and the ability to locally apply pharmacological
agents. The combined opto-dialysis system described here is
likely to be useful in dissecting the role of specific neuronal
populations and their interaction with their neighbors in the
control of a wide variety of behaviors. Interestingly and im-
portantly, we show that increased wakefulness produced by
optical stimulation of BF cholinergic neurons requires cholin-
ergic actions on neighboring non-cholinergic neurons. Thus,
BF cholinergic neurons may affect behavioral state, not via
direct actions on the cortical mantle but via activation of
wake-promoting BF non-cholinergic neurons, in particular
cortically projecting GABA/PV neurons.
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