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Abstract

Conformational changes in nucleic acids play a key role in the way genetic information is stored, 

transferred, and processed in living cells. Here, we describe new approaches that employ a broad 

range of experimental data, including NMR derived chemical shifts and residual dipolar 

couplings, small angle X-ray scattering, and computational approaches such as molecular 

dynamics simulations, to determine ensembles of DNA and RNA at atomic resolution. We review 

the complimentary information that can be obtained from diverse sets of data and the various 

methods that have been developed to combine these data with computational methods to construct 

ensembles and assess their uncertainty. We conclude by surveying RNA and DNA ensembles 

determined using these methods, highlighting the unique physical and functional insights that have 

been obtained so far.

Keywords

SAXS; Au-SAXS; RDC; chemical shifts; NMR; DNA; RNA

1. Introduction

There is growing interest in the dynamic properties of nucleic acids because changes in the 

structure and dynamics of RNA(1; 2) and DNA(3; 4) play essential roles in how genetic 

information is stored, accessed, transferred, and processed in living cells. Insights into the 

dynamic properties of nucleic acids is also important for achieving a predictive 

understanding of how a polynucleotide chain folds into a 3D structure(5), and also for 

realizing a number of important biotechnological applications, including the design of 

nucleic acid-targeting therapeutics and nucleic-acid based devices(6–8).

Much of the dynamic properties that are of interest are encoded in the free energy landscape, 

which provides a thermodynamic and kinetic description of the ensemble of conformations 

that are sampled by a nascent nucleic acid in solution(2; 9). The population of a given 

conformation is dependent on its relative free energy, while the rates at which two 

conformations inter-convert is dictated by their free energy barrier of separation. Cellular 
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cues perturb the free energy landscape, and thereby effect changes in nucleic acid structure 

and dynamics that lead to desired biological outcomes.

Important insight into the free energy landscape can be obtained by measuring internal 

motions in the nucleic acid over a broad range of timescales. This can provide direct 

information regarding the populations of different conformations and their rates of inter-

conversion. Determining the entire free energy landscape and every aspect of the 

conformational ensemble through such dynamics measurements is generally not feasible, 

because it is hard to measure the rates of transitions between each and every conformations 

and also due to the fact that many conformations exist in low abundance and/or for short 

periods of time, thus evading experimental detection. Instead, studies have attempted to 

describe the distribution of the most populated conformations (typically >1%) representing 

the lowest energetic minima along the free energy landscape. The focus has been on the 

structure and populations of these states, and less so the rates at which they interconvert, 

which proves difficult to measure experimentally. Throughout this review, we will refer to 

this reduced thermodynamic description as a ‘conformational ensemble’.

Determining conformational ensembles for complex biomolecules at atomic resolution 

presents a significant challenge compared to other high-resolution structure characterization 

techniques such as X-ray diffraction. First, a much larger number of parameters need to be 

defined as compared to a static structure, and measuring these parameters can prove 

arduous, particularly for highly disordered systems. Second, as mentioned above, many 

conformers in a dynamic ensemble exist in low abundance or for very short periods of time, 

and therefore, are hard to detect experimentally. Finally, it can be difficult to assess the 

accuracy and precision of a determined ensemble. Here, we review recent advances that start 

to address these challenges culminating in the determination of DNA and RNA ensembles at 

near atomic resolution.

2. Experimental data

There are three important considerations in selecting experimental data to determine 

conformational ensembles. First, the data has to be sensitive to the structural degrees of 

freedom that are of interest. In general, the experimental parameters measured may be 

sensitive to different aspects of structure, e.g. global versus local structure, or rotational 

versus translation degrees of freedom. Obtaining an accurate all-atom ensemble will often 

require the combination of different types of data, and this in it of itself, can be a challenge 

(vide infra). Second, it must be possible to compute the experimental data for a given 

conformational ensemble. Depending on the type of data, it may be necessary to have 

additional information regarding constants that factor into the measurements, or the rates at 

which the conformers interconvert. The inverse problem, solving the “real ensemble” from a 

set of experimental data, or the range of ensembles that satisfy a given set of experimental 

observables, is generally difficult to address. Finally, different types of data may experience 

averaging at different timescales, complicating their combination in the ensemble 

determination. Other factors that can complicate combination of different data include use of 

different sample concentrations and attachment of different chemical probes that may 

differentially interfere with the nucleic acid conformational ensemble.
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In what follows, we review the different types of experimental data that have been used in 

determining ensembles of nucleic acids, and also provide a brief overview of other types of 

data that may potentially be used in the ensemble determination in the future.

2.1 Small Angle X-ray Scattering

Small-Angle X-ray Scattering (SAXS) is an ideal tool to characterize global aspects of 

nucleic acid conformational ensembles. SAXS is a technique in which the elastic scattering 

of X-rays is measured at very low angles (typically 0.1º-10º), thus providing information 

about the overall shape and size of biomolecules that are 5 nm to 25 nm in size, with lower 

scattering angles allowing even larger dimensions to be resolved. Unlike X-ray 

crystallography, SAXS does not require a crystalline sample and can be performed under a 

variety of solution conditions(10). However, owing to the random reorientation of 

molecules, ensemble averaging leads to lower resolution structural information as compared 

to X-ray crystallography.

The SAXS scattering profile Δρ(r) is derived from the difference in scattering between the 

averaged electron density of the biomolecule ρ(r) and the bulk solvent ρS(r) and reflects the 

sum of scattering profiles for each atom-pair (Figure 1A). In principle, higher sample 

concentrations would give rise to more intense scattering profiles, however, in practice, 

experiments are performed under sufficiently dilute solutions to avoid non-specific 

aggregation. Fortunately, nucleic acids are ideal molecules for SAXS measurements because 

electron rich phosphate groups provide favorable contrast allowing use of much lower 

sample concentrations as compared to proteins(11–13).

Indirect Fourier transformation of the scattering profile I(q) maps it from reciprocal space 

(r−1) to a pair distribution function P(r) in real space (r)(12) (Figure 1A), which is a 

population-weighted distribution of distances for all atom-pairs within the biomolecule. 

Although it is difficult to uniquely determine P(r) from I(q), the latter can be calculated 

from a given biomolecule structure with defined P(r) using the Debye equation under the 

assumption that the solution is an isolated scattering system and each atom in the solution is 

a spherical scatterer(14). Direct use of the Debye equation can be computationally 

expensive, and approximations are often introduced in order to accelerate the 

calculations(11; 12; 14–17). A growing number of studies have demonstrated the power of 

integrating SAXS data with NMR restraints in the structure determination of large complex 

RNAs(18–20).

Instead of constructing pair distance distribution functions P(r) for all atom-pair within the 

biomolecule, recently developed gold SAXS (Au-SAXS) methods allow the determination 

of precise distance distributions from two externally anchored scatterer, namely gold 

nanocrystals that are attached at specific positions on the nucleic acid (Figure 1B)(21–23). 

The scattering profile between two attached gold nanocrystals is isolated from the intra-

nanocrystal, intra-nucleic acid, and nucleic acid-nanocrystal interference pattern by 

subtracting the scattering profile measured for isolated gold nanocrystals, isolated nucleic 

acid, and singly-labeled nucleic acid from the scattering profile measured for the double-

labeled nucleic acid (Figure 1B)(21–23). Motions of the gold nanocrystal relative to the 

nucleic acid can influence the scattering profile and these contributions can be minimized by 
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using less flexible linkers to anchor the gold nanocrystal onto the nucleic acid(21; 22; 24). 

Control experiments are preformed to ensure that the relatively large gold nanocrystals do 

not interfere with the structure and dynamic properties of the nucleic acid(21; 22).

For a biomolecule in exchange between several conformations, the SAXS profiles will in 

principle represent the sum of contributions from each conformation in the sample, because 

the light matter interaction occurs at timescales much faster than the conformational change. 

This renders SAXS insensitive to the precise timescales of the motion, allowing for easier 

interpretation in constructing ensembles(25). However, due to its low resolution, for system 

that do not exhibit large conformational changes, the observed scattering profile can often be 

interpreted in terms of a single conformation(10).

It should be noted that small angle neutron scattering (SANS) can also be used to obtain 

dynamics information and in combination with appropriate isotopic labeling schemes can 

provide structural information on specific sub-domains in a complex system(26–29).

2.2 Chemical Shifts

The Nuclear Magnetic Spectroscopy (NMR) chemical shift (CS) is one of the simplest 

parameters to measure using solution state NMR. The chemical shift is the resonant 

frequency of a nucleus relative to a reference frequency. It is determined by the effective 

magnetic field experienced by a given nucleus: in addition to the applied NMR magnetic 

field, a given nucleus experiences local magnetic fields induced by currents due to electrons 

in molecular orbitals. For a given nucleus type (1H, 13C, 15N, and 31P), this electronic 

distribution will depend on local aspects of the structure, including bond lengths, dihedral 

angles, hydrogen bonding, protonation state as well as ring current effects arising due to 

circulation of π-electrons in the aromatic nucleobases, magnetic anisotropy, and other 

electrostatic effects(30) (Figure 1C). For a dynamic ensemble, the observed CS at a given 

nucleus will correspond to a population weighted average over all conformations provided 

that the rates of inter-conversion between conformers is larger than the corresponding 

difference between their chemical shifts (commonly referred to as the fast “exchange limit”). 

CSs are exquisite probes of local structure, but generally provide limited information about 

long-range aspects of structure.

The growth in the database of protein structures with corresponding NMR 1H, 13C, and 15N 

resonance assignments has allowed the development of powerful methods for computing 

chemical shifts based on 3D structure, and these approaches are increasingly being used in 

the determination of protein conformational ensembles(31; 32). By comparison, the database 

of nucleic acid structures with corresponding NMR resonance assignments is much smaller. 

Because of this, methods to compute CSs from a given nucleic acid structure remain 

underdeveloped and difficult to test rigorously. Several approaches have been developed to 

compute 1H(33–35) based in nucleic acid structure. The accuracy with which chemical shifts 

can be computed from structure based on these approaches is sufficiently good to allow their 

utility in 3D structure determination and in characterizing motions in highly locally mobile 

regions in a structure(36). The accuracy with which CS data can be computed based on 3D 

structure remains, however, sub-optimal for determining ensembles, though the CS data can 

be used to test ensembles determined using other methods(36). One drawback in some of 
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these approaches is that the motionally averaged experimental CS database is parameterized 

assuming single static structures, making it more difficult to identify cases in which 

motional averaging has taken place. Quantum mechanical approaches, such as density 

functional theory (DFT) calculations, can be used to compute the corresponding chemical 

shifts for static structure(37). While these calculations are generally very time-consuming, 

and therefore difficult to implement in an ensemble determination, the DFT computed 

chemical shifts can be empirically parameterized to develop simpler structure-CS 

relationships, as demonstrated recently by Vendruscolo and co-workers in the interpretation 

of ribose 13C chemical shifts(38). Considering the growing database of nucleic structures 

determined by NMR, methods to compute 1H, 13C, 15N and 31P CSs will likely improve at a 

rapid pace allowing their integration in ensemble determination.

2.3 Anisotropic NMR interactions: RDCs and RCSAs

Many NMR interactions such as dipolar couplings and chemical shift anisotropy (CSA) are 

second rank interactions that depend on the orientation of dipolar and CSA tensors centered 

on nuclei of interest relative to the applied magnetic field. To understand these anisotropic 

interactions, consider the dipolar coupling between two spin i and j. In solution NMR, a 

given nucleus i experiences the sum of the external magnetic field as well as the magnetic 

field generated by a directly bonded nucleus j and other nuclei in its vicinity. The latter 

contribution depends on the cube of the distance separating the two nuclei, which is the 

bond length for directly bonded spins, as well as on the angle, ϑ, between the inter-nuclear 

bond vector and the applied magnetic field, as described by the angular term . In 

solution NMR, this magnetic dipole-dipole interaction, and in particular the angular term, 

time-averages to zero due to random Brownian rotational diffusion, and indeed, the loss of 

these otherwise very large interactions is one of the main reasons solution NMR exhibits 

high-resolution and sharp lines. However, by imparting a small degree of order on a 

biomolecule, corresponding to ordering on the order of 10−3 −10−5 , one can break the 

isotropic averaging and re-introduce a fraction of the dipolar interaction while preserving the 

high quality of solution state NMR spectra. This dipolar interaction manifests as an 

additional contribution to one bond 1J-couplings for two directly bonded nuclei and is 

referred to as a ‘residual dipolar coupling’ (RDC). Nucleic acids samples can be aligned 

spontaneously due to interactions with the magnetic field itself(39; 40), or by dissolution in 

an ordering medium such as filamentous bacteriophage(41; 42).

An expression for the RDC measured for two nuclei i and j in an Nth conformer is given 

by(43–45):

(1)

where µ0 is the magnetic permittivity of vacuum, h is Planck’s constant, γi and γj the 

gyromagnetic ratio of spins i and j, respectively, Aa and Ar are the axial and rhombic 

components of the overall alignment tensor describing overall alignment, rij is an effective 

averaged value of the inter-nuclear distance, θ and ϕ are the polar angles that carry the 

desired structural information describing the orientation of the inter-nuclear vector relative 
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to the alignment tensor frame (Figure 1D). The RDCs are time-averaged over all 

conformations that are sampled at rates faster than the inverse of the dipolar interactions 

(typically < millisecond timescales)(43; 46). Commonly targeted RDCs in nucleic acids 

include the large one-bond C-H and N-H RDCs in the nucleobase and sugar moieties 

although experiments have also been developed to measure many other C-C, C-H, H-H and 

longer range interactions (reviewed in(47)). In the former cases, the distance between nuclei 

is assumed to be known based on knowledge of local geometry.

Computing RDCs for a given bond vector in a given conformation using Equation 1 requires 

the knowledge of the five alignment tensor parameters; Aa and Ar and three Euler angles 

describing the orientation of the alignment frame relative to the molecule(43–45). In 

general, the overall alignment tensor depends on the overall structure of the nucleic acid, 

and as a result, can vary between different conformers in an ensemble(48). Computing 

RDCs for a given conformation therefore requires the ability to independently determine the 

overall alignment tensor associated with that conformation. Two approaches can be used to 

address this problem. A target helix in the nuclei acid can be elongated such that the overall 

shape does not vary with internal motions in other parts of the molecule(49; 50). This fixed 

alignment tensor can be determined by subjecting RDCs measured in the elongated helix to 

a standard order tensor determination(51). Alternatively, methods such as PALES(48) can 

be used to compute four of the five alignment tensor parameters based on the nucleic acid 

structure, and the remaining fifth parameter describing the degree of order is treated as a 

variable that is optimized during the ensemble determination. Because the overall alignment 

tensor depends on the global molecular shape, RDCs are sensitive to both local and global 

aspect of structure and in particular the relative orientation of bond vectors and helices. It 

should be noted that in theory as many as five independent sets of RDCs can be measured in 

a given nucleic acid by changing how the sample is aligned relative to the magnetic field, 

thus providing additional data sets for construction ensembles with higher resolution(52; 

53). This could be achieved by combining ordering media based alignment with magnetic 

field alignment(54; 55), vriable domain-elongation(56), and protein-binding modulated 

alignment(57).

Partial alignment also leads to incomplete averaging of the anisotropic component of the 

chemical shift, allowing measurements of so-called residual chemical shift anisotropies 

(RCSAs) as changes in chemical shift relative to the isotropic case(58; 59). These data 

report on the orientation of the CSA tensor, centered on the nucleus of interest, relative to 

the alignment tensor frame. In nucleic acids, 31P(60) and nucleobase 13C carbon(61; 62) 

RCSAs provide complimentary information to RDCs but their interpretation generally 

requires knowledge of the chemical shift anisotropy (CSA) tensor, which vary from site to 

site, and which can be difficult to determine a priori.

2.4 Scalar Couplings

NMR scalar couplings arise from coupled interactions between the electron and nuclear 

spins of two bonded nuclei that result in the splitting of NMR resonances. The magnitude of 

scalar couplings depends on the type of nuclei involved, the number of bonds separating 

them and the intervening dihedral angle in the case of three bond scalar couplings (3J). A 
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large number of 3JHH, 3JHC, 3JHP, and 3JCP scalar couplings have been used to probe 

dihedral angles involving the sugar, base, and phosphodiester backbone and are often used 

in NMR structure determination of nucleic acids(63; 64) of nucleic acids using appropriate 

Karplus equations. Difficulties in parameterizing Karplus relations using databases 

containing motionally averaged scalar couplings, together with their limited structural 

resolution and inherent degeneracies have somewhat limited their widespread application. 

Nevertheless, scalar couplings have been used in nucleic acid ensemble determination in 

combination with other experimental data(15). Scalar couplings exhibit similar sensitivities 

to the timescales of motional averaging (up to the millisecond) as RDCs and CSs. 

Improvements in parameterization may increase the utility of scalar couplings in ensemble 

determination of nucleic acids in the future.

2.5 Other types of data

There are other types of data that have been used in structure but not in ensemble 

determination or in proteins but not in nucleic acids that we can expect will play important 

roles in the determination of nucleic acid ensembles in the future. NMR data include 

measurements of spin relaxation, such as 15N and 13C spin relaxation data which report 

primarily on the dynamics of bond vectors in biomolecules occurring at picosecond to 

nanosecond timescales(65); Paramagnetic Relaxation Enhancements (PREs) which depend 

on the distance between a given nucleus and an attached paramagnetic species, and which 

can report on low populated short-lived conformers in an ensemble (66; 67), and cross-

relaxation (NOEs) which reports on the network of proton-proton distances (and orientations 

for anisotropic overall diffusion)(68; 69). Such relaxation data not only depend on the 

distribution of conformations in the ensemble, but also have a complex dependence on the 

rates with which various conformers interconvert and the timescales for overall rotational 

diffusion. While this added information can be tapped in the future to extract timescale 

information, it currently complicates using of these data in the ensemble determination. In 

addition, NMR relaxation dispersion techniques(70; 71) are making it possible to visualize 

low-populated (<10%) short-lived (lifetimes in the range of millisecond to microseconds) 

conformers in both DNA (72) and RNA (73).

Förster Resonance Energy Transfer (FRET)(74; 75) and Electron paramagnetic resonance 

(EPR)(76; 77) can be used to obtain distance information between fluorophores or spin 

labels, respectively that are specifically attached to the nucleic acid. These data also depend 

on the orientation and dynamics of the fluorophores or spin labels, and approximations often 

have to be made to extract distance information(76; 78–82). Powerful single molecule 

approaches, such as single molecule FRET (smFRET) can be used to directly measure 

transitions within a single molecule and obtain information about the underlying 

conformations and their rates of inter-conversion that is difficult to obtain from ensemble 

methods(74; 79; 83).

In addition, chemical probing or protection data obtained form techniques such as 

SHAPE(84) and mutate-and-map(85) can provide valuable information about the various 

secondary structures populating the nucleic acid free energy landscape, and are increasingly 

being used in concert with structure prediction and other computational methods to generate 
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atomic resolution structures. These methods will be particularly valuable in characterizing 

very large RNA structures that are not easily amenable to characterization using techniques 

such as NMR.

3. Ensemble determination

Thus far, two approaches have been used to construct atomic-resolution ensembles based on 

experimental measurements. In one approach, the experimental data is directly integrated in 

the process of generating the conformers, whereas in a second approach, the experimental 

information in introduced only in a second step after the generation of an initial 

conformational pool. Both approaches heavily rely on some input from computational 

modeling or computational force fields to fill the ‘data gap’. Although there are a growing 

number of studies showing that long-timescale or enhanced MD simulations quantitatively 

predict experimental data measured in proteins(86; 87), nucleic acid force fields remain 

underdeveloped and poorly tested. Some of the challenges include proper treatment of 

strong electrostatic effects and polarization involving the phosophodiester backbone and 

interactions with metals(88–90). Because of this, it is very important to maximize the 

amount of data that goes into the ensemble generation and to have rigorous approaches for 

assessing ensemble accuracy.

3.1 Restrained Molecular Dynamics

Restrained molecular-dynamics provides a way to combine experimental information with 

molecular dynamic force fields. In this approach, experimental constraints are included as 

penalty functions or pseudo-energies in the conventional force field, sometimes in 

combination with additional knowledge-based potentials. Here, the data reproduction is only 

assessed on average, over the ensemble of conformers determined at each step of the 

procedure, or sometimes over a time window in a trajectory(91). The exact expression used 

for the penalty function can vary depending on the specific type of data, but it often assumes 

a quadratic form (e.g. for RDCs and J-couplings)(92):

(2)

where Wj represents the weight of a given data set j and Di,j correspond to different 

experimental data points in this dataset. The detailed protocol of the restrained MD 

simulation can vary significantly between different studies, with schemes ranking from 

simulated annealing protocol(93; 94) to also standard MD trajectories. The exact number of 

conformers in the ensemble can be determined by progressively increasing the number of 

conformers and monitoring the improvement in the reproduction of active or passive data 

(vide infra) (Figure 2A).

These approaches have mainly been applied to proteins using a wide range of experimental 

data(65; 95–97) but also recently to RNA(98). Although not yet implemented for nucleic 

acids, approaches have been developed to improve sampling in MD simulations in 

characterizing protein dynamics. Enhanced sampling is particularly important when using 

NMR RDCs and SAXS data, which have timescale sensitivities that generally exceed those 
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accessible by conventional MD simulations. These approaches include Accelerated 

Molecular Dynamics (AMD)(99; 100), in which the rates of transition between distinct 

conformational sub-states is increased by adding a continuous non-negative bias potential to 

the energy surface, that can be used alone or as a relevant conformational pool for a SAS 

protocol (see below)(101) and NMR-guided metadynamics, which accelerates 

conformational sampling using collective variable, including chemical shift 

reproduction(102).

By introducing an experimental pseudo-potential, this approach can direct the sampling 

towards conformations that may otherwise not be favored by the force field, but it also 

remains limited to the use of experimental data that can be efficiently computed during the 

course of the trajectory. Moreover the number of degree of freedom in the ensemble tend to 

be larger than the number of experimental restrains, leaving open the possibility of 

conformational deformation due to overfitting of data. Therefore those procedures are 

optimal when there is an abundance of experimental data for both defining the number of 

degrees of freedom and allowing for cross-validation. Another disadvantage is that the 

introduction of experimental pseudo-potential can in some cases induce non-physical 

perturbations to the free energy landscape(103).

3.2 Data guided selection of conformers from a pool

An alternative approach involves using the experimental data to guide selection of 

conformations from a pool that is typically generated using computational methods, such as 

molecular dynamics simulations. The approach involves two steps (i) generation of a pool of 

conformations that broadly sample the free energy landscape and (ii) experimental data is 

used to select a sub-ensemble from the conformational pool that reproduces experimental 

data(68; 104). This approach is sometimes referred to as ‘sample and select’ (SAS)(104).

The success of SAS-based approaches is critically dependent on having a starting pool that 

broadly samples the allowed conformations. For nucleic acid applications, starting pools 

have been generated using standard MD simulations(105; 106), replica exchange molecular 

dynamics simulations for enhancing sampling(107), and by preforming an exhaustive grid-

search when determining inter-helical ensembles involving a small number of structural 

degrees of freedom(49). Monte-Carlo based approaches have been used in building nucleic 

acid ensembles but so far have not been used to construct conformational pools that can be 

used in SAS-based approaches for ensemble determination(108).

In the second step structures are selected from the conformational pool in order to reproduce 

experimental data. The selection procedure can be accomplished using a variety of search 

algorithms including simulated annealing(49; 104–106) and genetic algorithms(25; 109; 

110). For example, in the simulated annealing approach, N conformers are randomly 

selected from the MD-generated pool to generate trial sub-ensembles and the agreement 

between measured and predicted data is computed (Figure 2B). Next, one of the chosen 

conformers is replaced randomly with another conformer from the pool, and the agreement 

with measured data re-examined. The newly selected conformer is either accepted or 

rejected based on the metropolis criteria and several iterations are carried out until 

convergence is reached, defined as achieving agreement with the measured data that exceeds 
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the experimental error. The ensemble size (N) is then incrementally increased in steps of 1 

from N=1 until the convergence criteria is met (Figure 2C). It is worth noting that because 

the selected conformers are not subjected to further refinements to optimize agreement with 

experimental data, the number of conformers in an ensemble that are typically required to 

satisfy measured data generally exceeds that needed in ensemble refinement approaches. 

This procedure can be repeated hundreds of times, with the family of conformations selected 

over all runs pooled together to obtain a final ensemble. Recent studies suggest that the SAS 

approach employing RDCs can be used to capture the statistical weights of dominant 

conformers in the ensemble (Shan et al in preparation).

One advantage of the SAS approach is that it provides a natural means for evaluating nucleic 

acid force fields and for identifying potential pitfalls that can be addressed in future 

developments(105; 111). As nucleic acid force fields improve, we can anticipate that the 

SAS approach can be extended to include data that is sensitive to timescales and thereby 

obtain a more complete description of the timescales of inter-conversion. One disadvantage 

is that in its current implementation, the quality of a determined ensemble is strongly 

dependent on the conformational pool. For example, if a native conformation is not within 

the starting pool, it will never be included in any determined ensemble.

3.3 Other approaches for constructing ensembles

Other approaches for constructing ensembles have been developed that seek to assign a 

statistical weight for various conformers in a pool based on maximum occurrence 

probability(112) or using Bayesian statistics(113).

4. Assessing accuracy and precision of ensembles

The construction of ensembles using experimental data represents an ill-defined problem 

because there are usually many different ensembles that can reproduce the experimental 

observables. It is therefore important to assess uncertainties in the determined ensembles and 

to integrate these within a statistical framework when interpreting the ensembles.

4.1 Cross validation

Cross-validation is one of the most commonly used approaches for testing the quality of a 

determined ensemble. Here, a sub-set (typically 10%) of the total experimental data 

(referred to as ‘passive data’) is omitted form the ensemble determination, and the accuracy 

of the determined ensembles is assessed by how well it predicts the passive data(114). This 

provides a straightforward approach for identifying cases where one is over-fitting the data 

and for testing how well a given set of data can uniquely define an ensemble(15; 105; 109; 

110).

An important aspect of cross-validation is the choice of the passive dataset. In general, the 

passive data can either correspond to data drawn randomly across all different types of data 

or it can correspond to one type data among many. Regardless of the approach, the active 

data have to carry the information needed to build a reasonable ensemble. For example, 

omitting all data points measured for a given residue completely impairs the ability to 

describe that residue in the ensemble. Likewise, an ensemble determined on the basis of 
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local chemical shift information will, most likely, poorly cross-validate with the global 

information obtained from SAXS data. On the other hand, choosing passive data that is 

highly correlated to active data should be avoided, as it might not provide a stringent enough 

test, for e.g. two sets of highly correlated RDCs data sets (resulting from very similar overall 

alignments).

The considerations that enter the choice of passive data are highlighted in a recent study of 

HIV-1 TAR (Figure 3)(105). Here, four different sets of RDCs were used to construct an 

ensemble representative of HIV-1 TAR dynamics. Two types of validations were carried out 

(i) randomly removing a sub-set (~10%) of RDCs from all four datasets (Figure 3D) and (ii) 

removal of one entire RDC dataset (Figure 3E). The second validation provides a more 

independent assessment of the quality of the ensemble but also represents a much more 

stringent test as ~25% of the data had to be removed. Cross-validations were also carried 

using different types of data (i.e. data other than RDCs measured in ordering media). This 

includes magnetic field induced RDCs (Figure 3C), which is a good choice for cross-

validation as it has the same timescale sensitivity to dynamics as the active data but is 

obtained though a completely different physical process of alignment and 1H chemical 

shifts, which have a distinct dependence on structure (Figure 3F).

4.2 Tests on synthetic data

A straightforward approach for assessing the ability of a given experimental data set to 

determine any aspect of an ensemble is to simply carry out simulations in which the 

synthetic data, corresponding to the same data that is measured experimentally, is used to 

reconstruct a known ‘target ensemble’. The target ensemble should represent a reasonable 

challenge to the data. For example, target ensembles that are simply generated by randomly 

selecting conformers from a pool present a simpler sampling problem to methods such as 

SAS as compared to selecting target ensembles that over emphasize lowly populated regions 

in the conformational pool. In addition the experimental data has to be properly noise 

corrupted to reflect experimental uncertainties. In this manner, the noise-corrupted data is 

evaluated for its ability to reproduce the target ensemble (Figure 4). A wide variety of 

approaches such as the S-matrix and Jensen-Shannon Divergence (JSD) can be used to 

quantitatively assess the similarity between two ensembles and therefore to assess how well 

a given set of data reproduces a target ensemble(113; 115–118). The S-matrix is based on 

the Euclidean distance distribution of pairwise atoms, and is a simplified case of the 

Wasserstein metric for discrete distribution(116; 117); while JSD is derived from the more 

general Kullback-Leibler divergence, and is a metric that measures ensemble similarity 

based on information entropy(113). It should be noted that these metrics do not fully capture 

ensemble similarities. For example, they are insensitive to the magnitude of the structural 

differences in non-overlapping ensemble distributions.

The approach has the advantage of being generally applicable(98; 105; 109; 110) but tends 

to underestimate uncertainties in the ensemble that arise due to approximations used in 

computing the data and in addition does not take into account errors arising due to certain 

specific conformations are simply not represented in the target pool.
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4.3 Monte Carlo Analysis

Monte Carlo analysis is a very general procedure to assess the accuracy and the precision of 

a given model or parameterization and can therefore be applied to the sampling of a 

conformational ensemble(109). Here, an experimentally determined ensemble of 

conformations is typically treated as a target ensemble and used to generate noise-corrupted 

synthetic data. Next, the target ensemble is determined using several rounds of ensemble 

determination using synthetic data corresponding to the values back-predicted from the 

target ensemble and noise-corrupted, independently for each simulations. Although they can 

be computationally expensive, Monte Carlo simulations can be used in any ensemble 

determination to estimate the uncertainties in each determined structural parameter(105; 

109).

4.4 Bayesian Statistics

Other approaches that utilize Bayesian statistics have been developed to assign weights to 

conformer in an ensemble and an associated variance that reflects experimental 

uncertainty(113). Instead of identifying a single value for the population of each 

conformation, this approach uses Bayesian Weighting formalism to incorporate both 

experimental data and theoretical prediction to specify a population distribution for each 

conformation in the ensemble. The uncertainty of the determined population-weighted 

ensemble can be quantitatively assessed using the posterior expected divergence which can 

be calculated based on the population distribution alone and was shown to exhibit good 

correlation with the JSD computed in simulations involving a known target ensemble(113).

5. Applications

Some of the first experimental determinations of macromolecular ensembles, including 

proteins and DNA, were reported by Clore and co-workers using the restrained MD 

approach as implemented in the Xplor-NIH software(15). The first application of such 

ensemble methods to a nucleic acid was for the well-studied Dickerson DNA dodecamer. 

This study also represents the only current example in which data from multiple sources, 

including a wide range of NMR parameters (964 RDCs measured in 2 different media, 

22 31P RCSAs, 22 3JH3’-P couplings, 162 NOEs derived distance restrains) and solution X-

ray scattering data were combined in a nucleic acid ensemble determination.

The authors showed that that a single structure representation (N =1) fails to satisfy all 

measured experimental data, particularly the RDCs and SAXS data. However, an ensemble 

description with N= 4 or 8 could be used to account for all measured data, as verified 

through extensive cross-validation analysis against RDC and X-ray scattering data (Figure 

2A). Even when ignoring terminal ends, which undergo extensive end-fraying, the ensemble 

revealed significant fluctuations in helical twist, rise, tilt, roll, and propeller twist which 

have RMS values ranging from ~3° to 4°, ~0.3 to 0.6 Å, ~5° to 25°, ~9° to 18°, and ~15° to 

30°, respectively (Figure 5A). The deoxyribose rings sample a range of sugar puckers from 

pure C2′-endo to C1′-exo with some evidence of rare C3′-endo forms. In addition, both BI 

and BII phosphate conformations are observed, with fractional weights that are consistent 

with empirically predicted values for the different base steps. This study established that 
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DNA structures are not rigid but rather sample distinct conformations along the free energy 

landscape. These motions are likely to exploited by proteins to increase the specificity of 

recognition.

In a recent study, Harbury and Herschlag(23) employed Au-SAXS interferometry 

measurements to obtain ensemble distributions for 18 pairwise distances in a model DNA 

duplex (Figure 5B). The measured average solution structure and microscopic elasticity 

were in excellent agreement with values derived based on DNA–protein crystal structures 

and measured by force spectroscopy. However, the measured microscopic torsional rigidity 

of DNA was much lower than values measured by single-molecule twisting experiments, 

suggesting that torsional rigidity increases when DNA is stretched. Although the Au-SAXS 

measurements were not used to explicitly determine an atomic resolution ensemble, efforts 

are underway to combine distance-derived Au-SAXS measurements with complimentary 

orientation data derived from RDCs to construct atomic-resolution ensemble of DNA and 

RNA.

A study by Herschlag, Doniach, and colleagues(108) highlights the power of using SAXS-

derived conformational ensembles in testing theories that account for electrostatic 

interactions with monovalent and divalent ions. The study used a model system consisting of 

two DNA duplexes tethered by a polyethylene glycol junction to mimic the ‘unfolded state’ 

of helix-junction-helix RNA motifs. This model system excludes complex interactions such 

as ion-binding and tertiary contacts that complicate the rigorous evaluation of electrostatic 

forces. The SAXS scattering profiles measured for this system under different Na+ and 

Mg2+ concentrations were used to determine inter-helical conformational ensembles 

constructed using a Monte Carlo protocol in which the Poisson-Bolzmann theory is utilized 

to calculate the electrostatic energy. The results showed that Poisson-Bolzmann provides a 

better description of electrostatic forces involving monovalent ions (e.g. Na+) as compared 

to divalent ions (e.g. Mg2+). The results also showed that this simple system samples a wider 

range of conformations with increasing ionic strength (Figure 5C). While consistent with the 

expected screening of the repulsive interactions between the two helices by counter ions, 

these results showed that ions, typically thought to aid folding, tend to actually increase the 

conformational entropy of the nucleic acid.

Riboswitches are RNA elements that regulate gene expression in response to myriad cellular 

cues(119). Many riboswitches are integrated into circuits in which they have to undergo 

large conformational changes efficiently in order to transduce input cellular signals into 

specific biological outcomes(119). Batey and co-workers(120) used a combination of 

SAXS, X-ray crystallography, and chemical probing to construct a conformational ensemble 

for the ligand-sensing aptamer domain of the SAM-I riboswitch in the absence of its cognate 

ligand. SAXS data measured on the unbound aptamer domain was used to select an 

ensemble form a conformational pool generated by preforming MD simulations on an X-ray 

structure of the ligand-bound aptamer(120; 121). A 13-state ensemble constructed in this 

manner revealed that the sub-domain consisting of P4, the pseudoknot and P2a/b adopts a 

conformation similar to that seen in the ligand bound state but that the distance between P1 

and P3 helices and their orientation relative to P4-PK-P2a/b vary significantly (Figure 5D). 

These dynamics allow the aptamer to access conformations similar to the bound state, 
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potentially improving the efficiency with which the conformational changes can take place 

on ligand binding.

RNA often undergoes large changes in conformation involving the reorientation of helical 

domains across junctions(1). Zhang and Al-Hashimi reported a 3-state ensemble of 

conformations for the bulge containing HIV-1 TAR using NMR RDCs measured in two 

distinct elongated samples(49). The ensemble determination was preformed using a SAS 

type of approach and a grid search over sterically allowed inter-helical conformations as 

defined by three Euler angle specifying the twist angle about the two helices (α and γ) and 

the inter-helical bending (β). The authors showed that a static representation of the two 

helices fails to account for the RDCs and that an ensemble consisting of a minimum of three 

equally populated states is required. A striking feature of the RDC-derived 3-state ensemble 

was that the three conformations fell nearly along a straight line in the 3D inter-helix Euler 

space defining twisting around each helix (α and -γ) and inter-helical bending (β). This 

hinted to a motional trajectory in which HI and HII bend and twist in a correlated manner. 

Thus, although the helices undergo large amplitude collective motions (> 90º), they move in 

a very specific and directional manner. This was a clear sign of ‘directional flexibility’ in 

RNA and interestingly the 3-state ensemble enveloped many of the known ligand-bound 

TAR conformations, indicating that on its own, the RNA is capable of sampling a variety of 

conformations that are stabilized on stabilized on ligand binding. Subsequent studies work 

by Al-Hashimi(122) and Herschlag(123) showed that the molecular basis for these large and 

directional inter-helical motions originates in topological constraints (steric and 

connectivity) which are increasing being show to play essential roles in RNA folding and 

conformational adaptation(124; 125).

In later studies, the same two sets of RDCs measured in HIV-1 TAR were used to determine 

atomic-resolution ensembles using the SAS approach and a conformational pool derived 

from a 50 × 1.6 = 80 ns MD trajectory of HIV-1 TAR(106) computed using the CHARMM 

package with force field parameter set 27(126). Although some correlation was observed 

between the measured and predicted RDCs for both EI-TAR and EII-TAR, the deviations 

(RMSD = 13–16 Hz) were substantially larger than the estimated RDC measurement 

uncertainty (~4 Hz). However, the simulation time was nowhere near long enough to match 

the RDC timescale sensitivity of milliseconds, and this failure to predict the RDCs could not 

be considered to be evidence for a poor force field. Using the SAS approach an ensemble of 

20 conformations (N=20) was constructed that satisfies the measured RDCs (RMSD = 4.8 

Hz) to near within experimental error(106). The RDC-derived TAR ensemble was 

qualitatively cross-validated using independent NMR measurements that were not included 

in the ensemble determination including NOEs and trans-hydrogen bond scalar couplings. It 

featured very similar correlated variations in the inter-helical bend angle as observed with 

the 3-state ensemble of TAR but, importantly, it also allowed the visualization of local 

motions in and around the bulge. The RDC-selected ensemble included conformations that 

bear strong resemblance to the ligand bound conformations of TAR, including with regards 

to the details of binding pocket near the bulge, again indicating that intrinsic motions specify 

the TAR ligand bound conformations(106). In later studies, the dynamic ensemble was 

targeted using virtual screening yielding new compounds that bind TAR and inhibit HIV 

Salmon et al. Page 14

Annu Rev Phys Chem. Author manuscript; available in PMC 2016 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



replication(127), illustrating one example of a biomedical application involving 

conformational ensembles.

More recently, Salmon et al(105) developed a modified SAS approach in which PALES is 

used to back-predict RDCs to construct an ensemble for TAR using four independent sets of 

RDCs measured in four differentially elongated TAR samples, and a broad pool of 

conformation derived from a much longer 8.2µs MD trajectory computed on the Anton 

supercomputer(128) using the updated CHARMM36 force field(126; 129; 130). The 

agreement between the measured RDCs and values predicted form the entire MD simulation 

improved, either due to improvements in the force field and/or because of the longer 

timescales, but it remained significantly larger than experimental uncertainty (Figure 3A). A 

20-state ensemble was constructed using SAS that satisfied all measured RDCs to within 

experimental uncertainty (Figure 3B). The ensemble was validated using extensive tests on 

simulated data (Figure 3C–F), Monte Carlo simulations and cross-validation analysis 

involving both RDCs and 1H experimental chemical shifts (Figure 4).

The high-resolution RDC-derived TAR ensemble in combination with prior data form spin 

relaxation, made it possible to develop a comprehensive picture of the conformational 

ensemble that contains timescale information. These data indicate that TAR adopts a family 

of bent conformations that inter-convert rapidly on the picosecond to microsecond 

timescales but that there are slower transitions towards more coaxial conformation that 

require disruption of stacking and hydrogen binding interactions in and around the bulge 

(Figure 5E). Importantly, this higher resolution ensemble came even closer to within 

sampling the TAR conformations observed when bound to various ligands, confirming that 

intrinsic motions specify the ligand bound states (Figure 5E).

6. Conclusion

We have undoubtedly entered the era in which dynamic ensembles rather than static 

structure of nucleic acids and other biomolecules will be determined at atomic resolution, 

providing fundamental new insights into their free energy landscapes, and the molecular 

basis by which they fold and re-structure to carry out functions in living cells. A foundation 

has been developed for combining different types data with computation in constructing 

ensembles and for assessing ensemble accuracy culminating in the determination of atomic 

resolution ensembles for DNA and RNA. There are, however, a number of outstanding 

challenges and opportunities for the future.

First, there is a need to continue to test and develop nucleic acid force fields. This will 

require the measurement and dissemination of information rich high quality experimental 

data that can be used to benchmark simulations. Second, new approaches such as those that 

rely on the measurements of NMR PRE and relaxation dispersion data need to be further 

developed and applied to allow detection and 3D structure characterization of short-lived 

low populated conformers in nucleic acid ensembles, and this information in turn combined 

with data from other experimental techniques. In this regards, there is also a need for more 

systematic studies exploring the impact of using samples measured under different 

experimental conditions and for combining different types of data that might undergo 
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motional averaging at different timescales. Finally, and perhaps most importantly, there is a 

need to more quantitatively connect the generated ensembles with aspects related to folding 

and function. Here, we can predict applications in which ensembles make it possible to 

predict the impact of mutations on the folding stability of nucleic acids or the extent and 

specificity with which they undergo conformational changes in response to cellular cues.
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Mini-glossary

Conformational 
Ensemble

Set of population weighted conformations that are sampled by a 

biomolecule in solution

Alignment tensor mathematical entity comprising five independent parameters that 

describes aspects of partial alignment needed to account for 

anisotropic NMR interactions

Force field Empirical values and functions used to describe the potential 

energy of a system in terms of its degrees of freedom

Chemical Probing Approach to determine accessibility of residues by measuring 

their chemical reactivity to externally added agents

Cross-validation Method to assess quality of a model by evaluating the agreement 

with data that was omitted in the model generation

Acronyms

SAS Sample and Select

NMR Nuclear Magnetic Resonance

SAXS Small Angle X-Ray Scattering

MD Molecular Dynamics

RDC Residual Dipolar Coupling

RCSA Residual Chemical Shift Anisotropy

CSA Chemical Shift Anisotropy

CS Chemical shift

NOE Nuclear Overhauser Effect
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Summary Points

1. A wide range of experimental data probing various aspects of structure can also 

be used to probe conformational ensembles.

2. Different types of experimental data exhibit distinct dependencies on the rates 

with which conformers in an ensemble inter-convert, complicating their 

combined use in determining ensembles.

3. Computational methods are often required to fill gaps in experimental data and 

achieving an optimal balance between experimental and computational input is 

key for determining ensembles.

4. The determination of ensembles is an under-determined problem that is prone to 

over interpretation making methods for rigorously assessing the quality of 

ensembles critically important.

5. Nucleic acids are highly flexible biomolecules that sample a wide range of 

specific conformations that play important roles in folding and function.
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Figure 1. 
Experimental data used in ensemble determination of nucleic acids. (A) SAXS profile for an 

RNA and the corresponding pair distribution function. Adapted from Wang et al.(18) (B) 

Au-SAXS measurement of probability distance distributions for two attached gold 

nanocrystal probes. Adapted from Shi et al.(23) (C) NMR chemical shifts are sensitive to 

electronic environment and local structure. (D) NMR residual dipolar couplings provide 

angular information on the orientation of bond relative to the overall molecular alignment 

frame (Axx, Ayy, Azz).

Salmon et al. Page 25

Annu Rev Phys Chem. Author manuscript; available in PMC 2016 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Ensemble determination. (A) Typical behaviour of active and passive data reproduction as a 

function of the number of conformers in the ensemble refinement approach. Adapted from 

Schwieters and Clore(15) (B) Flow chart for data guided selection of conformers form a 

pool. (C) Typical behaviour of active and passive data reproduction as a function of the 

number of conformers in data guided ensemble selection approach. Adapted from Salmon et 

al.(105)
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Figure 3. 
Evaluating HIV-1 TAR ensemble using RDCs and CSs. (A, B) Reproduction of RDCs 

measured in four differentially elongated TAR RNA constructs (indicated with different 

colors) using (A) MD starting conformational pool and (B) 20 conformer selected ensemble. 

(C–F). Cross-validation using (C) randomly selected RDCs (D) individual RDC data sets (E) 

magnetic field induced RDCs (F) and CSs. In E and F, grey and red data represent 

reproduction from the starting pool and RDC selected ensemble. Adapted from Salmon et al.

(105)
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Figure 4. 
Testing the accuracy of an ensemble determination using simulated data. Distribution of 

angles in HIV-1 TAR ensemble. (A) Euler angles (αh,βh,γh) defining the inter-helical 

orientations(131) (B) intra- and inter-base pair angular parameters for the A22-U40 base-

pair (buckle, propeller twist and opening and tilt, roll and twist) and (C) sugar torsion angles 

(ν0-ν4) for the A22-U40 base-pair (top) A22, (bottom) U40. Starting pool, target ensemble, 

and RDC-selected ensembles are shown in grey, blue and red, respectively. Adapted from 

Salmon et al.(105)
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Figure 5. 
Ensembles of nucleic acids. (A) Ensemble description of the Dickerson DNA dodecamer. 

Structural representation of the four conformer ensemble and distribution of angular 

parameters describing the dodecamer base pairs. Angular parameters are plotted on 

clockfaces where the top corresponds to 0°, the right side to 90°, and the bottom to 180°. 

The helical rise is plotted on a bar chart with ticks at 1 Å intervals, with the bottom being at 

1 Å. The probability increases from blue to green to red. Abbreviations: prop, propeller 

twist; twist, helical twist. Adapted from Schwieters and Clore(15). (B) Experimentally 

observed distance distributions between the two gold probes attached to a DNA duplex 

using Au-SAXS. The gold probes are separated by different numbers of base-pair steps, as 

indicated by the color-coded numbers. Adapted from Shi et al.(23) (C) SAXS visualization 

of the ensemble representing the orientation of two helices at various metal concentrations. 

One helix is depicted in gray while the second is represented using balls that are color-coded 

according to energetic differences (Red: 0–1 kBT, orange: 1–2 kBT, yellow: 2–3 kBT, blue >3 

kBT). Adapted from Bai et al.(108) (D) Overlay of the 13 free state conformations of SAM-1 

riboswitch aptamer domain with helices are represented as cylinders. The bound state is 

depicted in grey. Adapted from Stoddard et al.(120) (E) Analysis of HIV-1 TAR ensemble. 
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Schematic representation of the three clusters and a proposed ordering for transitioning 

between conformations with different bend angles. Curved arrows indicate local dynamics. 

Interactions with helix II are indicated with a dashed line. Structural similarity between 

(orange) the RDC selected ensemble and (grey) three distinct ligand bound TAR structures. 

Adapted from Salmon et al.(105)
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