
1Scientific Reports | 6:20599 | DOI: 10.1038/srep20599

www.nature.com/scientificreports

Purcell effect and Lamb shift as 
interference phenomena
Mikhail V. Rybin1,2, Sergei F. Mingaleev3, Mikhail F. Limonov1,2 & Yuri S. Kivshar2,4

The Purcell effect and Lamb shift are two well-known physical phenomena which are usually discussed 
in the context of quantum electrodynamics, with the zero-point vibrations as a driving force of those 
effects in the quantum approach. Here we discuss the classical counterparts of these quantum effects 
in photonics, and explain their physics trough interference wave phenomena. As an example, we 
consider a waveguide in a planar photonic crystal with a side-coupled defect, and demonstrate a perfect 
agreement between the results obtained on the basis of quantum and classic approaches and reveal 
their link to the Fano resonance. We find that in such a waveguide-cavity geometry the Purcell effect 
can modify the lifetime by at least 25 times, and the Lamb shift can exceed 3 half-widths of the cavity 
spectral line.

The Purcell effect1 and Lamb shift2 are among the frequently mentioned phenomena in quantum electrodynamics 
(QED). They both originate from the physics of the zero-point vibrations modifying the rate of spontaneous 
emission of a quantum particle and its transition energy. Although these effects have a great potential for many 
applications and being observed in a variety of different physical systems3–13, the fabrication of devices with 
proper quantum properties is a challenging task. On the other hand, recently an impressive progress was achieved 
in the development of technology and theory of classic structures such as photonic crystals and metamaterials 
composed of artificial meta-atoms with unique properties, including strongly modified local density of states 
(LDOS), negative permittivity ε and permeability µ, and engineered values of the refractive index n14. Such a 
progress in electrodynamics of complex photonic media suggests that many ideas and concepts usually discussed 
for quantum mechanics appear to be important in the study of wave physics being applicable to waves of different 
nature. The quantum-optical analogies involve scattering of particles with fixed angular momentum15 and Mie 
scattering16, Fano resonances in atomic physics17 and nanophotonic structures18–22, the concept of band structure 
of photonic crystals23, and many other more specific effects24. Also we notice the classic description of emission 
efficiency of dipole radio antenna25 and the recent papers on nanoantennas26,27. However, in all previous papers 
devoted to the classical description of the Purcell effect in antennas the authors studied oscillations of a charged 
particle or a loop current. In contrast, here we consider a pure photonic mode in a microcavity to reveal a direct 
analogy of these QED effects with the classical wave theory for the modes which create a base of photonic on-chip 
devices.

Here we perform a detailed analysis of the Purcell effect, Lamb shift, as well as more familiar Fano resonance 
for two problems: (i) the problem of a quantum particle in a cavity, and (ii) a classical problem of the wave 
propagation of a photonic-crystal waveguide with a Fabry-Perot resonator (FPR) and a side-coupled defect. We 
demonstrate a close analogy between these different types of interference phenomena and reveal similarity of the 
resulting analytical formulas. Finally, we verify our results for the Purcell effect and Lamb shift of the classical 
system by means of direct numerical calculations of a photonic crystal structure based on classic Maxwell’s equa-
tions. We demonstrate that in the waveguide-cavity structure the Purcell effect can modify the radiation lifetime 
at least by 25 times, and the Lamb shift can exceed 3 half-widths of the cavity spectral line.

First, we remind general results for a system consisting of a quantum particle (say an atom) placed in the mid-
dle of a resonator [see Fig. 1(a)]. For such a geometry, the QED approach predicts two effects28. The first one is 
the Purcell effect related to the fact that the photonic LDOS differs from the vacuum density of states, that results 
in the enhancement (or suppression) of the rate of spontaneous emission. The second effect is the Lamb shift, 
being simply a shift of the transition energy due to the perturbation of stationary modes by the zero-vibrations 
of electromagnetic field.
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For more specific example, here we study a waveguide-cavity structure with a side-coupled defect shown 
schematically in Fig. 1(b). A waveguide confines the propagating light in two directions and it has two par-
tially reflective elements that play a role of two mirrors of an effective resonator. A two-level atom is introduced 
near the waveguide for the quantum case or a cavity with a narrow band as a meta-atom for the classic case. 
Such a structure was studied for different designs including photonic crystals29,30, micro-ring resonators31,32, 
whispering-gallery modes33,34, as well as for structures with quantum dots35,36. In addition, the vacuum Rabi 
splitting of atoms in similar systems was described in a classical model37.

Results
Quantum approach.  First, we discuss the QED approach based on the Jaynes-Cummings model with the 
Wigner-Weisskopf approximation28,38. The Hamiltonian of a two-level atom (or a quantum dot) interacting with 
the electromagnetic field can be presented in the form,

∑ ∑ω ω= + + ( + )( + ).
( )λ

λ λ λ
λ

λ λ λ λ
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

† † † ⁎ †H b b a a b b g a g a
10 

where b̂, ˆ
†

b  and λâ , λˆ
†a  are the annihilation and creation operators for atomic and electromagnetic states, respec-

tively, λg  describes a coupling between an electron and an optical mode λ. We notice that this description has a 
number of limitations, e.g. (i) the analysis of a two-level system with bosonic operators is only valid when satura-
tion effects are neglected; (ii) the lifetime of the optical FPR mode is much less than that of a two-level system 
without FPR.

By solving Heisenberg’s equation, we calculate the spontaneous decay rate39

γ ω= − ( ) , ( )X2 Im[ ] 20

and the Lamb shift,

∆ = (∆ − ∆ ). ( )3L c 0

Here ω0 is atomic frequency in free space, ω ω µ ω ε( ) = ( , ) ( / )
↔

X G cn r r n;0 0 0 0
2

0
2

0
2 , n is an unit vector directed 

toward an atomic dipole moment µ, ω( , ′ )
↔
G r r ;  is the dyadic Green’s function, r0 is a position of the atom. The 

vacuum part of the Lamb shift, ω∆ = ( )XRe[ ]0 0 0 , where ω( )X0 0 , is related to the atom in vacuum (the two-level 
system should be specified to evaluate ω( )X0 0 ), and the cavity-associated part is ω∆ = ( )XRe[ ]c 0 .

The system under study is shown in the Fig. 1b. We assume that the waveguide supports only one mode in 
each direction. Therefore, the FPR forms effectively one-dimensional cavity. We use Green’s function of the sys-
tem with partially reflective elements characterized by the reflection coefficient r (see Methods for details)

Figure 1.  Schematic of quantum and classical systems demonstrating the Purcell effect and Lamb shift. In 
the case (a) a quantum particle is placed into a resonator. In the case (b) a photonic cavity is placed in a close 
proximity to a FPR waveguide in a planar photonic crystal being described by Maxwell’s equations.



www.nature.com/scientificreports/

3Scientific Reports | 6:20599 | DOI: 10.1038/srep20599

ω( , ) =
( − )( − )

−
,

( )

δ δ δ δ

δ δ

− −

−G x x
ki

e re e re
e r e

; 1
2 4

i i i i

i i2

1 1 2 2

where x is a point between the reflectors, ω= /k c is the wavenumber, d1 and d2 are the distances between the 
point x and left/right reflector, respectively, δ =, ,kd1 2 1 2, and δ δ δ= +1 2.

If we define the vacuum rate of spontaneous emission as γ µ ω ε= /( )c0
2

0 0 , the Purcell factor can be pre-
sented in the form,
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Similarly, the Lamb shift is found as
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where η δ δ= −1 2.
Figure 2 shows the maxima of the Purcell factor and Lamb shift for a small quantum particle located inside 

FPR. The maximum of the Purcell factor is calculated as

=
+
−
= ( )

−f r
r

f1
1 7max min

1

and the maximum of the Lamb shift

γ(∆ ) = − (∆ ) =
− ( )
r

r
max min

1 8c c 2 0

is proportional to the linewidth of an atom radiation in vacuum being small for a quantum system with a large 
enough lifetime. In contrast, the Purcell effect changes dramatically the rate of spontaneous emission; for exam-
ple, when = .r 0 7 this change, defined as the ratio γmax to γmin, is more than 30 times. Inserts in Fig. 2 demon-
strate the Purcell factor and Lamb shift as functions of two variable: the particle position x in FPR and the distance 
d between the reflectors.

We may transform the expression for the Purcell factor to a traditional form1. Indeed, when we consider the 
case − r1 12  for the system where the resonance frequency of an atom is tuned to the FPR mode and the atom 
is placed in the field antinode to maximize the rate of spontaneous emission. The Purcell factor can be written in 
the form

π
λ

= , ( )f
n

Q
L

1
9

0

where Q is the quality factor (see Methods), L is the FPR length, λ0 is the vacuum wavelength, and n is an effective 
mode index of the waveguide.

Figure 2.  Purcell factor and Lamb shift. Maxima of the Purcell factor (solid curve) and Lamb shift (dashed 
curve) as functions of the reflection coefficient r for the quantum system presented in Fig. 1a. Inserts: (a) Purcell 
factor for different positions x of an atom vs. d in the units of ω π/( )c20 . (b) Lamb shift for different positions x 
vs. d. Both inserts are shown for = .r 0 5. The point =x 0 corresponds to the center of the FPR.
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Classical approach.  For the classic counterpart of a quantum system we consider a microcavity, which we 
refer to as a meta-atom instead of a quantum particle. We introduce two subsystems, namely a low-Q FPR asso-
ciated with a pair of partially reflecting defects and a meta-atom characterized by a narrow Lorentzian spectrum. 
Although such classic systems are discussed in many papers31–36 in relation to the Fano resonance, to the best of 
our knowledge, both the Purcell effect and Lamb shift were not discussed for such geometries.

For the structure presented in Fig. 1(b), we find the transmission spectrum by means of the transfer matrix 
approach. For the case =d d1 2, we obtain29
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We then extract the Lorentz function from Eq. (10)
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and finally we present the transmission intensity through the Fano formula
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Here ω ω γΩ = ( − )/c c is the dimensionless frequency, and δ= − /( − )q r r2 sin 1 2  is the Fano parameter. 
Now we can draw an important conclusion that eq. (12) contains exactly the same expressions for the Purcell 
factor as the QED formulas (5) while the expression for the Lamb shift differ by the factor /1 2 (this difference has 
been discussed in literature40). Besides, we find a linear relation between the Purcell factor and Lamb shift on the 
Fano parameter

∆ = . ( )qf 14c

We notice that eq. (13) shows that the transmission intensity is determined by two terms. The first term gov-
erns the transmission in the absence of the meta-atom (FPR only), and the second term describes the interaction 
with the meta-atom through the Fano interference.

Numerical results.  To illustrate the results of our analytical study, we consider the propagation of  
E-polarized (i.e. described by the electrical field = ( , , )EE 0 0 z ) light in a popular photonic crystal structure29. 
Specifically, we assume that the photonic crystal is made up of a square lattice of cylindrical dielectric rods with a 
refractive index of = .n 3 4 (which corresponds to silicon in IR) and a radius of = .r a0 2 , where a is the lattice 
spacing. A waveguide is formed by removing a row of dielectric rods, and a cavity (a “meta-atom”) is created by 
reducing the radius of a single rod to . a0 1 . The cavity is placed at the distance a3  away from the waveguide. Such 
a cavity supports a localized monopole-like defect mode with the resonant frequency ω π= . ⋅ ( / )c a0 32821 20  
and the half-width at half minimum γ π= . ⋅ ( / )c a0 00026 20 . To form the required FPR structure, two identical 
partial reflectors (cylinders of radius . a0 1  made of the same material as all other rods) are placed in the waveguide 
symmetrically around the meta-atom. The transmission spectra in this structure are calculated by employing the 
frequency-domain Wannier functions approach41, which allows to match the waveguide modes more efficiently 
and exclude parasitic back reflections from photonic crystal boundaries of the simulated structure than in the 
finite-difference time-domain (FDTD) method29, and thus enables accurate modeling of high-Q resonances. The 
use of 18 maximally localized Wannier functions ensures accurate results for any (including fractional with 
respect to a) distances d between the FPR reflectors.

We calculate the dependence of the transmission spectra in our structure vs. the distance between FPR reflec-
tors by varying the distance from =d a3  to a9  with a step of . a0 2 . Each spectrum has been fitted by eq. (13) taking 
into account that due to inhomogeneity of photonic crystal waveguide r becomes a function of d. To simplify such 
a fitting, we also calculate the transmission spectra for the same FPR structures but without meta-atom, which 
correspond to the first multiplier on the right hand side of eq. (13). This allows to extract the second multiplier in 
eq. (13) and evaluate γc, ωc and q. Figure 3 shows the corresponding extracted Purcell factor, Lamb shift, and Fano 
parameter in comparison with the dependences predicted by the analytical theory. As can be seen, the results of 
ab-initio calculations are in an excellent agreement with the analytical data (small deviations are explained by the 
dependence of r on d, which is ignored in the simplified analytical model).

Figure 3 shows two extreme cases related to the FPR modes with different parity. Odd FPR modes correspond 
to the small Lamb shift and Purcell factor less then unity (low decay rate) while even FPR modes correspond to a 
strong Lamb shift and larger values of Purcell factor (short lifetime).
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Discussion
We now compare the results for the Purcell effect and Lamb shift calculated in terms of the QED approach and the 
classical electrodynamics. For the case of odd modes, within the QED approach we evaluate LDOS being rather 
small. We argue that the overlap integral vanishes because the parity of the meta-atom mode is even. In the clas-
sical approach, our description is based on the energy conservation principle. The meta-atom emits light which is 
reflected and come back to an emitter. This reflected radiation additionally excites the meta-atom, and this pro-
cess returns a part of the emitted energy back to the meta-atom. As a result, the decay rate is decreased, and the 
line width of radiation becomes narrow. In a photonic-crystal circuit with FPR shown in Fig. 4(a), we obtain an 
increase of the Q-factor in 4.5 times. We notice that the maximum lifetime is increasing, and we observe a growth 
in 5.42 times for = .d a7 7 . For this case, the Fano parameter is = − .q 0 74, and the line shape is asymmetric.

For even FPR modes, the Purcell factor has high values because of large LDOS, and larger overlap integral 
since both modes are even. However, the classical approach applied to this effect seems counterintuitive. Indeed, 
the issue is how the FPR draws out the field from the meta-atom. We notice that QED predicts that the Lamb shift 
is observed when an atom and environment are coupled [see Fig. 3(b)].

To describe this effect, we should take into account the superposition principle that manifests itself as an 
interference phenomenon. We assume that the meta-atom is excited in an initial mode. When it emits light, a 

Figure 3.  Results of our analysis of the photonic structure with a side-coupled defect. (a) Purcell factor,  
(b) Lamb shift, (c) Fano parameter, and (d) transmission coefficient. Curves are calculated for = .r 0 12  (dashed 
blue), = .r 0 32  (dotted green) and = .r 0 52  (solid red). Circles are the values obtained from fitting of the spectra 
calculated directly for the photonic crystal circuit.
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portion of radiation returns back from the reflector. To proceed further we should take into account the phase of 
the reflected wave. Indeed, the reflected light can excite the meta-atom mode out of phase and due to the super-
position principle the initial mode and the mode excited by a reflected wave have to interfere. The destructive 
interference leads to a decrease of the resulting mode amplitude with the corresponding energy stored in the 
meta-atom. Therefore, this process gives rise to an enhancement of the radiation decay rate and broadening of the 
line width. As a result, the lifetime is decreased by the factor 5, as shown in Fig. 4(b).

Returning back to the discussion of the Lamb shift, we notice that the mode excited by a reflected wave is out 
of phase so that it can modify essentially the resulting amplitude such that being retarded or advanced in the time 
domain respective to non-perturbed initial mode and the oscillation period should increase or decrease, respec-
tively. Hence, interference with out-of-phase reflected wave will lead to a frequency shift.

A control of the decay rate has a strong potential for applications. Here we reveal that the lifetime is varied by 
25 times with changing from even to odd mode of FPR. This property can be useful, for example, for realizing 
an optical memory device. First, we prepare a meta-atom in a low-Q mode. The meta-atom receives the light 
pulse. Next, when the FPR parameters are changed externally in such a way that the FPR mode becomes odd. As 
a result, light is trapped in the meta-atom. To modulate the properties of the FPR it is not necessary to change the 
geometry of the device. Instead of this the reflectors can be made from a material, which properties are modified 
by ultrafast all-optical switching. We notice the lifetime of the meta-atom is varied by the working frequency as 
well as Q-factor of the meta-atom without FPR environment.

We have shown that the Purcell effect and Lamb shift can be introduced in the framework of classic elec-
trodynamics by employing the concept of an effective “meta-atom” interacting with an optical resonator. In the 
quantum case, an atom releases its energy due to interaction with the zero-point vibrations, and the vacuum 
photonic LDOS is evaluated by means of Green’s function obtained from Maxwell’s equations. In the classical 
case, a meta-atom releases energy without any vacuum fluctuations, however the radiated field excites the modes 

Figure 4.  Manifestation of the Purcell effect in photonic-crystal waveguide with a cavity. (a) An increase of 
the lifetime. The transmission spectrum of the structure without FPR (black dotted curve) γ = . ⋅ −2 6 100

4 and 
FPR only (green dashed curve) at = .d a7 47 . The spectrum of the complete structure is shown by a blue solid 
curve, γ = . ⋅ −5 7 10c

5. (b) A decrease of the lifetime. The transmission spectrum of the structure without FPR 
(black dotted curve) γ = . ⋅ −2 6 100

4 and FPR only (green dashed curve) at = .d a4 16 . The spectrum of the 
complete structure is shown by a red curve, γ = . ⋅ −1 3 10c

3. Inserts show the Ez field distributions for the 
indicated frequency values.
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of a low-Q resonator being described with the same Green’s function as in the quantum case. As a result, for both 
classic and quantum systems the effects become similar.

By employing our approach, we can get a deeper physical insight into such phenomena as the Purcell enhance-
ment, Lamb shift, and Fano resonance that can be identified in the calculated or measured spectra of a classi-
cal radiating photonic system. When a narrow-band mode (a system characterized by a discrete eigenmode) is 
superimposed with a broadband background radiation (a continuum spectrum of eigenmodes), we can expect 
the existence of three distinct interference effects: (i) a change of the radiation rate caused by the Purcell effect; (ii) 
a change of the resonance frequency associated with the Lamb shift, and (iii) an asymmetric line-shape explained 
by the physics of the Fano resonances.

We believe these results may open a new way for realizing classical analogues of the Purcell effect and Lamb 
shift in much simpler photonic structures than the systems involving quantum emitters. Moreover, the physics of 
photonic crystals and metamaterials do not require low temperatures and high-precision measurements usually 
attributed to quantum systems. We expect that other remarkable quantum phenomena may find their analogues 
in the physics of classical nanophotonic structures.

Methods
Analysis of the field in the waveguide.  Here we consider a waveguide that supports only one mode in 
each direction being described by the homogeneous one-dimensional Helmholtz equation

+ = . ( )
d E
dx

k E 0 15

2

2
2

The equation (15) has two linearly independent solutions ( )exp ikx  and (− )exp ikx . Hence the electromagnetic 
field can be described by a pair of amplitudes +A  and −A  as = ( ) + (− )+ −E A ikx A ikxexp exp . If the field is known 
at point x0, we can calculate the field at any other point x by means of a propagating transfer matrix
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To describe inhomogeneities at the point x′ , we connect the field amplitudes at one edge with the other by the 
transfer matrix
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Here we assume that the length of inhomogeneity is 2Δ . For a reflector, it is convenient to choose the edges in 
such a way that the transfer matrix has a form29

( )=
−

− − ,
( )i r

r
rM 1

1
1

1 18r 2

where the reflection coefficient r is a real parameter in the interval ..[0 1].
To calculate the transmission spectra trough the waveguide with FPR, we multiply three matrices and find the 

transmission coefficient with its approximation at the m-th resonance (δ π≈ m )

δ π
=

−
−

≈
−

− + ( − ) ( )δ δ
δ

−
−t r

e r e
r

r i m
1 2e 1

1 2 19i i
i

2

2 2 2
2

2

2

and evaluate the quality factor
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The Green function.  Now we can find Green function for the waveguide with FPR. The Green function for 
the homogeneous eq. (15) read42

( , ′ ) = − ( − ′ ). ( )G x x k i
k

ik x x;
2

exp 210

We notice this Green function satisfies the equation for the Green function if x in the homogeneous region. 
However G0 does not obey boundary conditions, namely Green function has not to contain the incoming waves 
traveling toward the FPR. We construct the Green function by adding to G0 a solution of the 1D Helmholtz equa-
tion. Below we discuss the case of the ′x  is restricted by the FPR. Therefore the Green function can be described 
by an amplitudes ( ( , ′), ( , ′))+ −G x x G x x T. We connect two points η−x  and η+x  by the matrix relation
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in supposing that positive η → 0. At other points η− ′ > ,x x  we can use the conventional transfer matrices (16) 
and (18) to find ( ( , ′), ( , ′))+ −G x x G x x T . By setting ( , ′) =−G x x 0R  at the right boundary of the FPR and 
( , ′) =+G x x 0L  at the left we can obtain ( , ′)+G x xR  and ( , ′)−G x xL  amplitudes. Using the transfer matrices we 

yield desired Green’s function as a sum of the amplitudes ( , ′) + ( , ′)+ −G x x G x x  at any point x, including = ′x x  
that was written in Eq. (4). We also notice that they are the matrix elements of the dyadic Green function, which 
has a diagonal form in the case under study.
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