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Abstract

Background: The increasing availability of resequencing data has led to a better understanding of the most important
genes in cancer development. Nevertheless, the mutational landscape of many tumor types is heterogeneous
and encompasses a long tail of potential driver genes that are systematically excluded by currently available
methods due to the low frequency of their mutations. We developed LowMACA (Low frequency Mutations
Analysis via Consensus Alignment), a method that combines the mutations of various proteins sharing the same
functional domains to identify conserved residues that harbor clustered mutations in multiple sequence alignments.
LowMACA is designed to visualize and statistically assess potential driver genes through the identification of their

mutational hotspots.

Results: We analyzed the Ras superfamily exploiting the known driver mutations of the trio K-N-HRAS, identifying new
putative driver mutations and genes belonging to less known members of the Rho, Rab and Rheb subfamilies.
Furthermore, we applied the same concept to a list of known and candidate driver genes, and observed that low
confidence genes show similar patterns of mutation compared to high confidence genes of the same protein family.

Conclusions: LowMACA is a software for the identification of gain-of-function mutations in putative oncogenic
families, increasing the amount of information on functional domains and their possible role in cancer. In this
context LowMACA emphasizes the role of genes mutated at low frequency otherwise undetectable by classical single
gene analysis.

LowMACA is an R package available at http://www.bioconductor.org/packages/release/bioc/html/LowMACA html. It is

also available as a GUI standalone downloadable at: https://cgsb.genomics.iit.it/wiki/projects/LowMACA

Background

As previously described, the identification of driver mu-
tations in cancer can be enhanced by considering the
position of the mutations on the proteins rather than
their simple frequency in cancer cohorts [1]. For this
reason, tools that combine frequency of mutations and
their position on the genome have been recently devel-
oped for the identification of potential drivers in small
cohorts of patients to increase statistical power [2—4].
Furthermore, other methods based on network analysis
were developed to aggregate mutational information at
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the level of interaction pathways [5]. Nevertheless, as
pointed out in a recent simulation based on saturation
analysis on publicly available cancer data, we are still far
from a true understanding of the genes mutated in less
than 5 % of the patients for almost any tumor type [6].
Due to the lack of the required sample size, methods
able to assess the role of rarely mutated genes are
needed. LowMACA represents a solution to increase the
information content of alteration patterns by summing
up mutations on properly aligned amino acids in differ-
ent proteins belonging to the same family. The accumu-
lation of somatic mutations in specific Pfam domains
has been already observed in cancer, introducing the
concept of domain landscapes of somatic mutations in
addition to the well-known genomic landscape [7-9].
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Nevertheless, these approaches only rely on the fre-
quencies of mutated domains in cancer. We enhance
this approach by adding the positional information of
mutations within the domains, eventually increasing
the statistical power of the domain level analysis.
With LowMACA, we are able to assess various as-
pects of somatic mutations at the level of protein
families, including clustering in hotspots, conservation
of mutated residues, pattern similarity across proteins
and co-occurrence or mutual exclusivity among posi-
tions resulting significant by LowMACA criteria. In
fact, one of the significant improvements over existing
methods is the ability of LowMACA to test single
driver mutations and not only driver genes. All these
unique aspects are illustrated here in the context of
the Ras superfamily and in the analysis of a state-of-
the-art set of high confidence and putative driver
genes [10].

Implementation

Software implementation and overview

LowMACA is a computational tool for the analysis and
visualization of somatic mutation data in cancer. It al-
lows to properly assess the significance of hotspots of
mutations shared across protein families and to show
the interconnectivity among mutational patterns via dif-
ferent visualization methods. The software comes as an
R package, fully integrated in the R/Bioconductor envir-
onment through the use of the AAMultipleAlignment
class from the Biostrings library. The multiple alignment
is performed with a wrapper around a clustal omega
executable [11] or the EBI soap webserver [12]. At the
present time, LowMACA is the only tool that allows
using clustal omega within R storing results within a
Biostrings class. Importantly, the LowMACA package
implements a user-friendly GUI built with the shiny
package, exploiting the interactive functionalities pro-
vided by D3 javascript and google charts plotting librar-
ies. The tool comes with a pre-built annotation package
named LowMACAAnnotation, that integrates the infor-
mation of HGNC [13], UNIPROT [14] and Pfam [15]
with the aim of guiding the user through the analysis of
highly conserved classes of proteins belonging to com-
mon Pfam domains. The LowMACAAnnotation package
creates a one-to-one match between UNIPROT canon-
ical proteins and HGNC gene symbols and provides all
the Pfam sequences of each protein entry.

LowMACA implements two conceptually different
workflows: a Hypothesis Driven workflow and a Data
Driven workflow.

The Hypothesis Driven workflow consists of:

1) Selecting proteins belonging to the same family
(we suggest Pfam as a guideline).
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2) Selecting one or more tumor types and classes
of mutations that will be analyzed (see Methods
section Input Data).
3) Retrieving mutations from specified cancer samples.
4) Aligning selected sequences along with their mutations
5) Calculating statistics and evaluating significant
hotspots with different parameter settings

The Data Driven workflow consists of:

1) Providing a dataset of mutations from a cancer
cohort in a format derived from TCGA standard
maf files (see Input Data).

2) LowMACA collects all the genes that harbor at least
one mutation and aligns their domains according to
Pfam. Subsequently, the mutations are mapped on
every consensus sequence created (one per Pfam
analyzed).

3) LowMACA analyzes the mutational pattern of every
protein by itself.

4) The hotspots found at point 2 and 3 are unified in
one table and the list of putative driver mutations is
presented (detailed information can be found in the
package reference manual: http://bioconductor.org/
packages/release/bioc/manuals/LowMACA/man/
LowMACA.pdf).

Input data
According to the choice of a Hypothesis Driven or
Data Driven workflow, LowMACA requires different
kinds of input. In the first case, LowMACA expects
as input a Pfam ID of interest (e.g., “PF00001”) and/
or gene names, provided as Entrez Gene IDs [16] or
HUGO Gene Symbols [13]. In case only a Pfam ID is
provided, the LowMACAAnnotation package will look
for all the genes that contain the specified domain,
otherwise, only the chosen genes are retained. By
selecting a Pfam ID of reference, only the portion of
the proteins mapping to the Pfam domain will be
considered in the analysis. If a set of gene identifiers
is selected without specifying any Pfam ID, the entire
protein sequences are considered for the analysis.
LowMACA admits also the use of non-ambiguous
gene aliases. The LowMACAAnnotation package is
designed to assign only canonical proteins to the rela-
tive gene creating a one-to-one unique match.
LowMACA retrieves mutational data via the R/CRAN
package “cgdsr” [17] which queries the Cancer Genomics
Data Server (CGDS) hosted by the Computational Biology
Center at Memorial-Sloan-Kettering Cancer Center
(MSKCC) [17, 18]. Mutation data coming from personal
databases can alternatively be used, following the instruc-
tions provided within the manual of our R-package. Since
LowMACA looks for hotspots of mutations, the package
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keeps by default only the mutations that modify the
protein without altering the reading frame or creating
stop codons (collectively identified as missense type
mutations) [4]. Other mutation types, such as frame
shift InDels, nonsense mutations or splice-site muta-
tions (collectively called truncating mutations), can be
retrieved by modifying the parameters. By default,
LowMACA will take into account all the tumors
present within the cBioPortal [17, 18] repository, but
mutations from specific cancer types can be selected.
In case a data driven workflow is chosen, the user has to
provide only mutation data. These data are a direct deriva-
tive of a common maf file as specified by TCGA and
contains the mutations annotated by their gene, their
amino acid change, sample of origin and type of mutation.
A detailed description can be found in the package refer-
ence manual: http://bioconductor.org/packages/release/
bioc/manuals/LowMACA/man/LowMACA.pdf.

Alignment and mapping

Amino-acid sequences selected as described above are
aligned using the multiple sequence alignment soft-
ware Clustal Omega [11, 12, 19]. Although the Pfam
database is a comprehensive archive of cross-species
alignments, we only refer to human proteins and each
clustal omega alignment represents a unique combin-
ation of conserved and not conserved residues. Using
the original HMM model of the protein family is a
limiting factor in this case, as we would lose portions
of alignments specific to human proteins only. More-
over, Clustal Omega can handle alignments involving
whole protein sequences, rather than only Pfam do-
mains. From the output of the multiple alignment, a
consensus sequence including the most represented
amino acid found at every position is created that is
representative of all the sequences under investiga-
tion. The mutations coming from aligned sequences
are remapped directly on the consensus with the aim
of obtaining a unique mutational profile.

Considering that LowMACA specifically aims at
highlighting mutations that fall on conserved residues,
two measures of conservation are taken into account at
this point. The first one concerns the specific positions
of the alignment. LowMACA calculates the Trident con-
servation score for this purpose [20], which is a mixed
measure that encompasses three different aspects of a
local alignment:

1) The entropy of the residues at the specific position.
The more different amino acids are aligned the less
conserved is the position.

2) The chemical similarity according to the substitution
matrix BLOSUM62

3) The relative frequency of gaps
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The second measure is global and involves the entire
sequence. The alignment procedure of the LowMACA
engine is delicate due to the fact that including dissimi-
lar sequences in the analysis can invalidate the whole
LowMACA workflow. For this reason, sequence similar-
ity for every pair of amino acid sequences is calculated,
based on the k-tuple measure [21], and a warning is
prompted whenever an amino-acid sequence differs too
much from the others (threshold = 0.2).

These measures are a safety net to avoid false positive
results due to low quality alignments and become ex-
tremely useful if the user decides to perform analysis with
sequences not belonging to the same family. LowMACA
provides the Pfam based framework as a guideline, but in
theory every mutation profile can be compared.

Statistical model

Testing the randomness of the global mutational profile
Once the sequences are aligned and the mutations have
been remapped on the consensus sequence, LowMACA
measures the information contained in the mutational
pattern [4] using Shannon’s definition of entropy

H(X) == Pla;)nP(x;)

where P(x;) = % is the frequency of mutations mapping
to the position i of the consensus alignment of length K
and N is the total number of mutations.

To statistically assess whether the pattern of muta-
tions significantly differs from randomness, we com-
pare H(X) with the entropies of a bootstrap of one
thousand random profiles. Each random profile is
generated according to the following criteria: (i) the
random profile has the same length of the consensus
sequence generated from the analysis (i.e., K); (ii) the
number of mutations that map on the random profile
is equal to the total number of mutations that map
on the consensus sequence (i.e., N); (iii) the probabil-
ity of a mutation to fall onto a specific position of
the random profile is proportional to the number of
amino acids that map in the corresponding position
of the multiple alignment. In this way, the more gaps
are found in a position of the alignment, the lower is
the probability that a mutation falls in that position
in the random model. This last criterion is intended
to correct the bias of finding more mutations in more
conserved regions of the consensus. We fit the pa-
rameters of a Gamma distribution over the empirical
distribution of the entropies calculated on the random
profiles. This will be considered as the null distribu-
tion and used to assign a p-value to the global muta-
tional profile.
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Testing for the identification of hotspots of mutation
LowMACA is also able to identify significant positions
along the consensus sequence, as opposed to the large
majority of driver gene identification approaches [10].
The probability that the number of observed mutations
n; on position i of the consensus sequence derives from
a random pattern of mutations is calculated estimating
the per-position null distribution of the number of mu-
tations that are expected to fall on that specific position.
The null distribution is modeled using the Gamma
distribution whose parameters are estimated from the
bootstrapped random profiles generated for testing
the randomness of the global mutational profile. A
per-position p-value that the observed number of mu-
tations originated from the null distribution is then
calculated and p-values of residues that fall onto con-
served positions (Trident score >0.1) are corrected to
obtain per-position q-values using the Benjamini-
Hochberg procedure for multiple testing correction [22].

LowMACA output

Using a Hypothesis Driven workflow, LowMACA out-
puts a detailed report of the mutational landscape of
the consensus sequence. It specifies if the entire muta-
tion profile can be considered random (global p-value),
and it reports all the mutation hotspots that exceed the
random distribution (per-position p-value and relative
FDR corrected g-value); see Statistical Model section.
Mutations that fall onto significant positions of the con-
sensus sequence can be retrieved in their original position
with a reverse mapping provided by LowMACA.

The mutational profile can be visualized with many
LowMACA methods. These plotting capabilities are
considerably extended through the GUIL The interactiv-
ity that this implementation allows is particularly useful
to observe the dynamic connections among mutational
profiles of different proteins. The following plot types
are offered by the package:

1) A stacked barplot that specifies the relative
frequency of mutation per sequence in each
position (in the GUI this plot has interactive
features). This representation also includes a
graphical view of the trident score and a logo
plot of the most represented amino acids at
every position.

2) A Protter style plot [23] that represents the possible
secondary structure of the consensus sequence with
the significant positions found by LowMACA
highlighted in red.

3) An interactive network plot in which the nodes
represent the single sequences and the edges are
drawn based on the number of shared mutated
residues. The thicker are the edges, the more
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positions are in common. This representation
provides an overview of the similarity among
sequences in terms of mutational profile.

4) A heatmap of mutual exclusivity and co-occurrence
of mutations at the entire sequence level and at
single position level implemented with the R package
co-occur [24]. For example, it can represent mutual
exclusivity between mutations in KRAS and NRAS
and between KRAS G12 and NRAS G12 positions
(see Fig. 1a).

The last two functionalities are only available through
the LowMACA GUL

In a Data Driven workflow, the output is represented in
a very similar way, but LowMACA takes care of analyzing
all the Pfam domains through the mutations in the genes
provided by the user in a single procedure. Every Pfam
analysis can become a new LowMACA object and it can
be viewed from a descriptive point of view as shown above
in the Hypothesis Driven workflow.

Results

Our results are reported in three different sections. The
first analysis is aimed at demonstrating the core concept
of LowMACA using a known oncogenic family. Starting
from the cancer genes KRAS, NRAS and HRAS (that we
will name RAS trio), similar in structure and mutational
profile, we seek to extend this conservation to all the
Ras superfamily members (in total, 133 different proteins
belonging to the PF00071). We demonstrate how Low-
MACA can be used to show the oncogenic potential of
different positions of the family and to encompass new
putative driver genes through the sharing of conserved
mutations. We also evaluated mutual exclusivity of mu-
tations that fall in specific positions of the consensus
alignment (Fig. la and Additional file 1: Figure S2).
Moreover, by collecting all the observed mutations that
fall in PFO0071, we show that LowMACA hotspots fall
in positions that are expected to be damaging by 8
different predictors of phenotypic effect. Although
LowMACA predictions and mutation damage assess-
ments are in agreement with the other predictors, our
tool is more specific in assessing driver mutations
against a gold standard of known cancer driver muta-
tions and disease associated mutations (see Additional
file 1: Figure S1).

The second analysis is aimed at assessing the state-of-
the-art in driver genes at a domain level. By taking a cu-
rated list of high confidence drivers (HCDs) and a list of
candidate driver genes (CDGs) derived from 5 different
bioinformatic tools [10], we study the relationships in
terms of common mutations among these genes. We
show that 40 % of all the HCDs share at least one do-
main with a CDG defining and expanding the same
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Fig. 1 b LowMACA results based on the alignment of the Ras superfamily (PF00071). The first barplot reports the most mutated proteins under
significant hotspots in their original position. These hotspots are also highlighted in the second barplot with colored symbols. Labels in the
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the pairs with a corrected p-value below 0.05 using the R package cooccur. ¢ The dendrogram is built on hamming distances between all human
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concept illustrated in the Ras example. Mutations that
fall in known driver genes are shared both by other
known drivers (like the tyrosine kinases EGFR, BRAF,
FLT3 and JAK family) but also by less frequently mu-
tated genes with a similar structure (like the receptor
L domain genes ERBB2 with ERBB4).

The third analysis shows, as a negative control, that
silent mutations do not have the propensity to show
significant pattern of mutations.

Ras superfamily analysis

We aligned and summarized the mutational landscape
of the Ras superfamily, defined by PF00071. This Pfam
represents a large family of small GTPases that can be
grouped in different subfamilies with specific biological
characteristics [25].

We performed our analysis in two steps. First, we
aligned all the mutations of the entire family encompass-
ing 133 sequences. Second, we performed the same ana-
lysis dividing the mutations by the four main subfamilies:
1) Ras subfamily, involved in cell proliferation [26], 2)
Rheb subfamily, involved in neural plasticity [27], 3) Rho
subfamily, involved in cytoskeletal morphology [28] and 4)
Rab family, involved in cell trafficking [29].

Analysis of the entire family found significant hotspots
in the consensus alignment in positions 16, 17, 102, and
282, as highlighted in Fig. la. In this analysis, we discuss
genes that have at least two mutations in any of the
identified hotspots. These mutations are well conserved
in the superfamily but appear mainly represented in the
Ras subfamily. The main representative members of this
proto-oncogenic subfamily are the known cancer genes
that compose the RAS trio. Their mutations G12, G13,
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Q61 and A146, considered important drivers in many can-
cers [30], map on the hotspots identified above. These
three proteins share over 90 % of sequence identity in the
domain and are the most represented in terms of absolute
number of mutations in these positions.

Hotspots found in position 16 of the global align-
ment harbor mutations on residues G12 of RAPIB,
on residue S13 of RERGL and G23 of RALB, which
align with G12 of the RAS trio, while position 17
aligns with mutations on G85 in GEM, which aligns
with G13 of the trio. Even if these proteins, (exclud-
ing the trio) are very rarely mutated, LowMACA
identifies their alterations as putatively oncogenic
(Fig. 1b). All these proteins belong to the Ras sub-
family, but a particular exception is represented by
RERGL that harbors a recurrent S13F mutation: this
protein is considered part of the Ras subfamily but its
sequence is very distant from the RAS trio (Fig. 1c)
and for this reason should be analyzed separately.

Another highly conserved mutation is located in the
aligned position 102 that corresponds to mutations in
Q61 in NRAS prevalently and is one of the residues in-
volved in the binding function of all the Ras family
members to GTP [31]. LowMACA analysis highlighted
mutations aligned in position 102 also in other Ras
members, in particular Q72 mutations in RRAS2. This
gene has been extensively analyzed at the transcriptional
level but remains poorly investigated regarding the
mutational context [32]. RRAS2 has a role in path-
ways activated by the RAS trio, however, while the
trio exerts its pro-proliferative activity via the activa-
tion of the Raf-ERK pathway of MAP kinases, RRAS2
activates this pathway poorly as it does not recruit
Rafl [32]. Following the observation of several Q72
mutations in RRAS2, one might speculate on a pos-
sible activation of this gene in the same way as Q61
activates NRAS.

Position 282, corresponding to an alanine in 146 in
the RAS trio, represents a completely different case.
This hotspot is extremely well conserved in all the
members of the superfamily and represents the only
case of a significantly mutated residue shared by two
different Ras subfamilies (Ras and Rho). This muta-
tion does not impair the affinity with GTP (like G12/
13 and Q61) but rather seems to have an effect on
the GTP-Ras steady-state levels as reported by experi-
mental assays [30]. RACI, RHOA and RHOF emerge
as putative oncogenes by this analysis, sharing muta-
tions in this position. Among these, RACI and RHOA
are already present in the Cancer Gene Census [33],
adding confidence to the hypothesis that also RHOF
might play a role in cancer. Moreover, relatively ele-
vated levels of RHOF were observed in lymphomas
derived from the germinal centre [34].
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Hotspots identified in the previous analysis correlate
well with sequence similarity based on hamming dis-
tance (Fig. 1c). For example, the aforementioned hot-
spots 16, 17 and 102 belong specifically to the Ras
subfamily, identified in orange in the dendrogram. This
subfamily harbors two glycines in position 16 and 17
that are not shared by the entire superfamily. In fact, the
16/17 glycines can be substituted by the couple serine/
glycine (Rab subfamily) or the couple glycine/alanine
(Rho subfamily) [25]. The Rheb subfamily instead, com-
posed of just two genes RHEB and RHEBLI, does not
conserve any of the two marker residues and carries a
distinctive leucine in position 16. By analyzing mutations
that fall individually in each of the four subfamilies, we
were able to identify new putative oncogenes and new
hotspots of mutation. In order to keep the reference
with positions identified with the global analysis, we
maintained the full alignment of all the proteins of
PF00071 and then subset the genes of interest according
to the four subfamilies (this alignment parameter is
called “datum” in the LowMACA package).

The analysis of the Rab subfamily (mostly represented
in the central portion of the dendrogram in Fig. 1c)
highlights three new hotspots and 11 new putative onco-
genes. Among these, RAB29 harbors 4 mutations in pos-
ition 134 of the alignment that are predicted to be
damaging by most of the functional predictor tools used
in Additional file 2: Table S5 (R79W in Colorectal can-
cer and R79L in Lung adenocarcinoma). The involve-
ment of members of this subfamily in cancer has been
widely demonstrated [35].

The analysis of the Rho subfamily allowed the identi-
fication of new hotspots, which are mainly represented
by RACI and RHOA. RACI marks a single hotspot
found in position 35 corresponding to mutations of the
residue proline 29 (RACI P29). According to the most
recent literature, P29 results altered in approximately
3.9 % of TCGA skin cutaneous melanoma patients [36]
suggesting that RACI is a melanoma oncogene. The
biological significance of the RACI P29 mutation re-
mains unclear, although authors demonstrated that the
mutation could destabilize the RACI inactive GDP-
bound state in favor of its active GTP-bound state, cre-
ating a gain-of-function oncogenic event [36]. In fact,
the expression of RACI P29S in sensitive BRAF-mutant
melanoma cell lines confers resistance to treatment
with RAF inhibitors [37]. Moreover, the P29S mutation
has been reported in several cancers such as head and
neck tumors [38] and breast tumors [39]. The hotspot
35 is also shared by other Rho subfamily members:
RAC2, RHOT1, RHOC. Even though one single muta-
tion was found for each gene in our dataset, this pos-
ition is extremely well conserved (a proline is present
in all four genes) and all the mutations were found in



Melloni et al. BMC Bioinformatics (2016) 17:80

melanoma patients without a RACI P29 mutation
(Additional file 2: Table S5).

The mutational hotspots 60 and 62, respectively corre-
sponding to glutamate 40 and tyrosine 42 in RHOA,
were observed in seven tumors (six head and neck, one
breast) and affect the effector domain of RHOA [6].
RHOA, is considered a gene encoding a protein that is
clearly involved in cell proliferation [6]. As for the case
of RACI, also RHOA shares its hotspots with other Rho
subfamily members (these results are not reported in
Fig. 1 since only one mutation was found in our dataset).
These genes include RHOH E39K for hotspot 60 and
RHOC Y42C and RACI Y40S for hotspot 62. Both posi-
tions are still well conserved in the subfamily (Additional
file 2: Table S5).

The analysis of the Rheb subfamily shows a signifi-
cant number of mutations that fall in the hotspot 43.
These mutations are mostly represented by Y35N
hosted by RHEB and found present in Kidney Renal
Clear Cell and Uterine Corpus Endometrioid Carcinomas
in TCGA patients. Moreover, authors observed that
mutations of RHEB (Y35N/C/H) increase phosphoryl-
ation of endogenous substrate S6 kinase (S6K1) of the
mTOR signaling pathway [40], a protein kinase that
plays key roles in cellular regulation [41]. For the presence
of the Y35N mutation, RHEB was recently highlighted as a
novel cancer gene involved in cell proliferation [6], and
cancer associated mutations in RHEB inducing mTORC1
activity have been reported [40]. The only other member
of the subfamily (RHEBLI) shares a Y35H mutation in the
same hotspot in one melanoma case in our dataset.

Mutual exclusivity analysis

In order to corroborate LowMACA results reported
above, we performed mutual exclusivity analysis on sig-
nificant mutations and hotspots. Mutual exclusivity be-
tween mutations on genes of the same pathway is a
critical measure to assess if the pathway is relevant for
cancer. The reason is that after the first mutation occurs,
there is no selective pressure for a second mutation in
another gene of the same pathway [42]. While generally
performed gene-wise [43], the particular characteristics
of LowMACA allow us to extend this concept to muta-
tions that map on conserved residues within Pfam do-
mains. If a putative driver mutation is found to be
mutually exclusive with a known driver, its significance
is enhanced as it possibly exerts the same function in
cancer. We implemented mutual exclusivity analysis
using the R package cooccur for a genomic analysis [24]
stratifying mutation data by tumor type.

Our results revealed that hotspots in positions 16, 17,
and 102 cover the large majority of mutually exclusive
patterns (Fig. 1a). This is a confirmation of the known
exclusivity pattern of the mutations in KRAS and NRAS
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even among different positions within the genes them-
selves (Additional file 1: Figure S2, right panel). In gen-
eral, mutations in position 16 and 102 can be seen as a
signature of two types of cancer: colorectal, character-
ized by KRAS G12, and melanoma, characterized by
NRAS Q61 (Additional file 1: Figure S2, left panel) [30].
These two highly frequent mutations allowed us to
infer a possible driver role for less frequent mutations.
For example, mutations in positions 26, 60 and 134 in
colorectal cancer are mutually exclusive with position
16. Both hotspots are supported by this analysis in the
Rab and Rho subfamilies. Similarly, position 102 is mu-
tually exclusive with 26 and 35 in melanoma and 113 in
thyroid cancer, further supporting the role of the afore-
mentioned subfamilies.

Analysis of driver genes: comparison with available tools
In this section, we analyzed the state-of-the-art driver
genes identified with different bioinformatics tools under
the lens of the protein families they belong to. In par-
ticular, we focused our attention on the 435 genes iden-
tified by a unifying approach as presented in [10]. In this
study, driver genes are divided in two categories, 291
High Confidence Driver (HCDs) and 144 Candidate
Driver Genes (CDGs), according to several criteria,
which include: 1) the number of bioinformatic tools that
identify the gene as potential driver (5 tools were taken
into consideration), 2) if the gene belongs to a list of
manually curated cancer genes as provided by the Cancer
Gene Census (CGC) [33], 3) if the gene belongs to the
same pathway in the KEGG database [44]. With this ana-
lysis we want to add address two questions: what Pfam do-
mains are contained in driver genes and what are the
candidate driver mutations shared between HCDs and
CDGs according to LowMACA criteria.

Since we are considering missense mutations, most of
the tumor suppressors contained in the driver gene list
will not be covered by LowMACA. In fact, tumor sup-
pressors tend to lose their function during tumorigenesis
and mutational landscapes are typically represented by
sparse truncating mutations all over the gene body [1].
In this case, no clear clusters can be seen at single amino
acid level because for a gene to lose its protein function
there are generally no preferential positions. Further-
more, many tumor suppressors are singletons in the
Pfam database, in the sense that their main domain can
only be found in the genes themselves or in few other
members (e.g., P53 Pfam, PF00870, is only shared by
three genes TP53, TP63, TP73, Suppressor APC,
PF11414, belongs to APC and APC2 only). Nevertheless,
highly mutated tumor suppressors like TP53, VHL, RBI
ARIDI1, PTEN and APC form actual hotspots that re-
sulted significant in the LowMACA analysis (Additional
file 3: Table S2-3, reference list of tumor suppressors
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derived from [45]). Other known tumor suppressors
such as WT1, CEBPA or CDKNIA are instead missed
by our analysis. The case of TP53 is particularly inter-
esting as it tends to form clusters of missense muta-
tions specifically on its P53 domain that probably
exert oncogenic or dominant negative functions [4].
The fact that some tumor suppressors are identified
and some are not depends in large part from the fre-
quency of mutations. As the frequency increases, the
sensitivity is enhanced and preferential positions of
distruption emerges. Preferential mutation spots, even
in tumor suppressors, are generally explained by pos-
sible dominant negative or oncogenic signature of
certain tumor suppressors [46, 47] but also by a
higher susceptibility to carcinogens of certain codons
in these genes compared to other codons [48] 577
different Pfam domains are covered by the driver
gene list, approximately one tenth of the entire Pfam-
A database: 440 in the HCD list, 223 in the CDG list
and 86 in common (Fig. 2a, Additional file 3: Table S1).
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To assess whether the overlap between the Pfam do-
mains contained in the lists of CDG and HCD is
greater than expected, we randomly sampled the same
amount of genes that are contained in the two lists
and measured the overlap of the contained Pfam domains.
On average, we found a smaller overlap (57 +7), but
also a smaller number of Pfam domains in the CDG-
sized samples (194 +11) and in the HCD-sized sam-
ples (355 +15). We conclude that driver genes con-
tain more domains than the rest of the other human
genes (p=7e-9 and p =4e-3 for HCD and CDG, re-
spectively, via z-test) but their overlap is not signifi-
cant (p=0.38 via chi-squared test). The first two
significant p-values can be interpreted as an expected
enrichment in functional portions for the driver gene
list compared to the rest of human genes. The not sig-
nificant overlap instead could be interpreted as an en-
richment of singletons caused by the great amount of
tumor suppressors but also as a lack of connections be-
tween the two lists from the domain point of view.

A Candidate Driver Genes B
(144 Genes)
blca
brca
CescC
coadread
gbm
kirc hnsc
e
Inc
lusc luad
paad
rad
P skcm
High Confidence Drivers
c (291 Genes) stad
thca J
PISK NETWORK o pryrpg '@
FAT PI3Kp85B Qs © T £ Q AN > 4~
o = % O 5 <= I = O o T
> o c d 1 » g o c
- & =z o [ 8 O ©
52 o 5 o c T
PI3_PI4 Kkina g € _ip-oor D o I
PI3Ka 5§ fmmugowes & Mutated
. ]
o PI3K C2 = OR =0.26 (CI: 0.22-0.31)
FATC = L 1p=625e39 WT
OR =0.34 (CL: 0.28-0.40) |
Fig. 2 a Venn diagram of the represented Pfam domains in the list of 291 high confidence drivers and 144 candidate drivers. A total of 577
different Pfam domains are covered by these genes with 86 Pfam domains shared between the two lists. b Heatmap representation of significant
Pfam domains in the “Kinase” network. Every row represents a patient of 17 different tumor types. A strong mutual exclusivity between tyrosine
kinases, kinases and CH domain is shown. ¢ PI3K networks in driver genes. Every circle represents a distinct Pfam domain and the size represents
the number of genes that contain the specified Pfam domain. Color indicates if significant hotspots were found in the LowMACA analysis (red is
significant, green is not significant). Two domains are connected if they are found together on the same gene/protein. Edge thickness represents
the number of genes that harbor both Pfam domains at the vertices (minimum 2). Blue color indicates mutual exclusivity and orange depicts
significant co-occurrence
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We performed LowMACA analysis in order to find
significant hotspots of mutations at two different levels:
1) all the domains were analyzed by aligning the specific
sequences of each HCD and CDG that harbors them
and 2) the entire protein was scanned for hotspots con-
sidering just its sequence, without any alignment. The
second analysis was performed to look for protein-
specific hotspots that could be found outside of the
Pfam domains and to prevent the exclusion of genes that
are not considered by the Pfam-A database (e.g., WT1).
Obviously, conservation plays no role in this case.

Our results identified hotspots of mutation in 11 out
of the 137 Pfam domains that were found only in CDG
(8 %), 32 out of the 86 Pfam domains that were shared
both by CDG and HCD (37 %) and 188 Pfam domains
that were found only in HCD (53 %) (Additional file 3:
Table S3). The higher number of domains that were
found significant in HCD compared to CDG reflects
the increased number of mutations in each category.
Overall, 52 out of 144 candidates (36 %) and 177 out of
291 drivers (60 %) are supported by LowMACA ana-
lysis, either by single sequence analysis or Pfam analysis
(Additional file 3: Table S2). Hotspots that are sup-
ported with single-sequence analysis (found in 140
genes for HCDs and in 35 genes for CDGs) highlight
genes that do not need further support from Pfam com-
panion genes for their identification. Pfam analysis
added support to further 37 driver genes and 17 candi-
dates. Compared to the number of genes identified on
single sequences, the analysis of the Pfam domains in-
creased the number of identified genes by 26 % in HCD
and by 50 % in the CDG categories, reflecting the fact
that LowMACA is particularly useful in identifying
genes that mutate at low frequency. In fact, the major
gain is found in the CDG category whose genes are typ-
ically less frequently mutated.

To better characterize recurrence of Pfam domains
within the CDG and HCD genes, we built a group of
networks where vertices are Pfam domains and edges
connect domains that are included together in at least
two protein sequences (Additional file 1: Figure S3).
The three main connected graphs are represented by
the “PkinaseTyr” network, the “PI3K” network (Fig. 2c)
and the “HelicaseC” network, which were named after
their main hub.

The “PkinaseTyr” network encompasses major onco-
genes like BRAF, EGFR, FLT3 and ERBB2 for PF07714
(Pkinase_tyr, Additional file 3: Table S3 highlighted in
green) and STK11, CHEK2, MAPKinases (MAP3K1/3/4)
and activin receptors (ACVRIB) for PF00069 (PKinase,
Additional file 3: Table S3 highlighted in yellow). We
specifically analyzed the 10 domains which resulted sig-
nificant with LowMACA and represent them as a heat-
map (Fig. 2b): mutated subjects in at least one of the
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Pfam sequences are depicted in red, while subjects with
a wild type domain are depicted in blue. For many
tumor types, in particular bladder (BLCA, in black),
breast (BRCA, in red) and colorectal (COADREAD, in
orange), a clear mutually exclusive pattern is visible,
where subjects with mutations in Pkinase have a wild
type tyrosin kinase and vice versa (p =5.18e—60, Odds
Ratio 0.26 under Fisher exact test). In glioblastoma
(GBM, in green), the majority of patients have a muta-
tion on the Furin-like domain (PF00757, Additional file
3: Table S3 highlighted in light blue), mutually exclusive
with tyrosine kinases. The most studied missense muta-
tion in this tumor type is in fact EGFR A289V/D/T,
known for being resistant to anti-EGFR inhibitor used in
lung cancer [49]. This alanine residue is perfectly con-
served within the Furin-like domain among other epi-
dermal growth factor genes and appears mutated also in
ERBB2 and ERBB4, although not in glioblastoma.

The “HelicaseC” network encompasses genes of vari-
ous families, which are not strictly connected to each
other at the functional level. The Helicase_ C domain
(PF00271, Additional file 3: Table S3 highlighted in red)
is the largest significant member of this module and en-
compasses HCDs as CHD4, SMARCA4 and ATRX with
two highly conserved arginine residues mutated at low
frequency in various tumor types. These mutations affect
the corresponding arginine of CDH7, SMARCADI and
DDX3X, which are considered as candidate drivers by
the analysis of Tamborero and colleagues [10].

The “PI3K” network is instead a strictly interconnected
module with a strong degree of mutual exclusivity be-
tween the domains that compose it (blue edges in
Fig. 2c). The mutations in these Pfam domains belong
for the large majority to three main HCDs (PIK3CA,
PIK3CB and PIK3CG). In particular, PIK3CA is one of
the most mutated genes in many types of cancers. The
most relevant mutations appear to be in position 24, 27,
and 28 of the multiple alignment of PF00613 (PI3Ka do-
main) that correspond to E542, E545 and Q546 in
PIK3CA (Additional file 3: Table S4 highlighted in pur-
ple). These mutations can be found conserved also in
the other two HCDs at low frequency and a similar role
has been already assessed for PIK3CB [50]. As we have
shown, the overlap between Pfam domains in HCDs and
CDGs is not significantly higher than expected from ran-
dom sampling. This suggests that the current concept of
driver genes could be biased due to inappropriate con-
sideration of infrequently mutated genes within the same
family. For this reason, we decided to extend our ana-
lysis to other possible candidates not present in the list
of Tamborero et al. [10] in the same way as we did for
the Ras family. We thus analyzed all the proteins within
the following Pfam domains: PF00794 (PI3K_rbd)
PF00792 (PI3K_C2) PF00454 (PI3_PI4_kinase), PF02192
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(PI3BK_p85B) and PF00613 (PI3Ka). These domains
are all shared by the 3 aforementioned HCDs and en-
compass the majority of their mutations. We found
low frequency mutations in PIK3C2A, PIK3C2G and
PIK3CD, other members of this kinase family, which
were never considered as potential driver candidates
before (Additional file 3: Table S4, ranked as New
Candidate Driver Gene, NCDG). The first two genes
belong to the class II of PI3Ks and their role in hu-
man diseases is still unclear [51]. PIK3CD, instead,
belongs to the same class I of PIK3CA/B/G and has
been found amplified or overexpressed in cancer [52].

Analysis of silent mutations

We run as a negative control a LowMACA analysis
using a database of silent mutations on the Pfam do-
mains which were involved with a major role in the pre-
vious sections: Ras supefamily (PF00071), Pkinase_tyr
(PF07714), Helicase_C (PF00271) and PI3Ka (PF00613).
This analysis is aimed at assessing whether non-random
pattern emerge from silent mutations. We downloaded
TCGA data from TCGA original repositories and per-
formed the analysis on this subset since the cBioportal
database exclude silent mutations. The analysis of 676,
1144, 216 and 37 silent mutations that fall on the Ras,
Pkinase_tyr, Helicase_C and PI3Ka, respectively, do not
show any significant hotspot. On the contrary, 5 hot-
spots are identified in Ras domain, 10 in Pkinase_tyr, 2
in Helicase_C and 3 in PI3Ka when analyzed with non-
silent mutations (canonical analysis) (Additional file 1:
Figure S4).

Discussion
We developed LowMACA, a software aimed at charac-
terizing low frequency mutations involving specific resi-
dues within the consensus sequence of protein families.
LowMACA maps the mutations observed in different
members of a protein family to the multiple alignment
of the family members. The resulting consensus protein
is suitable to summarize the mutation patterns of differ-
ent proteins and increases the amount of information on
functional domains and their possible role in cancer. All
the mutations selected by LowMACA frequently fall
upon specific positions of the consensus protein and
these can be considered as “highly conserved” in cancer.
Moreover, we have identified patterns of statistically sig-
nificant mutual exclusivity (mutex) among the identified
mutations. The presence of these patterns helps to clarify
the meaning of all the mutations belonging to specific
pathways indicating exclusive roles of the involved genes
in cancer. For example, the mutex analysis between RACI
and NRAS in skin melanomas (Additional file 1: Figure
S2) confirms the relevance of the role of RACI, which is
co-mutated with NRAS, in gain-of-function oncogenic
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GTP mediated events. The RACI P29L mutation has
been experimentally expressed in C. Elegans neurons
displaying defects in axon guidance and branching er-
rors that were not seen in equivalent transgenic lines
expressing wild-type Racl. Loss of function of the Racl
gene did not show any pattern of alteration of axon
guidance, demonstrating that Racl P29L is a gain of
function mutation [53]. These results suggest that a
sort of “code switch” between mutations in NRAS and
in RACI occurs, probably generating different patterns
of cell migration. Translating the experimental observa-
tions concerning RACI from a neuronal system to cancer
is not straightforward. However, it is tempting to speculate
that cancer can orchestrate a complex mechanism of
choices depending on the environmental context where it
develops. The mutex analysis between Rho members and
the RAS trio in cancer represents an example of how one
out of the many mechanisms underlying cell growth and
metastatic processes can provide a selective advantage to
cancer cells.

The identification of mutex patterns concerning
other proteins belonging to the Ras family suggests
that beyond KRAS, HRAS and NRAS other minor
genes, such as RRAS2, could play a “Ras-like” role in
promoting pro-proliferative activity via the activation
of the Raf-ERK pathway of MAP kinases [32] in uter-
ine and cervical cancers (Additional file 1: Figure S2).
This finding supports the hypothesis that RRAS2 has
a vicariant role in wild type KRAS cancers. Other mutual
exclusivities have been observed between HRAS and
RHOA, in head and neck squamous cell carcinoma
(HNSC) and between DIRAS2 and KRAS in colorectal
cancer. The phenomenon by which minor proteins in a
family domain can harbor the “same” mutations harbored
by known drivers is observable also in other Pfam do-
mains encompassed in the PI3K family. These findings
highlight a possible role of minor members of this kinase
family in cancer (e.g., PIK3C2A, PIK3C2G and PIK3CD).
LowMACA allows focusing on this phenomenon and
helps formulating a possible explanation: cancers cells that
gain a selective advantage from major driver mutations in
one type of cancer may gain a similar selective advantage
from corresponding mutations in closely related proteins
in other types of cancer where the related protein plays a
prominent role due to tissue specific differences in gene
expression or environmental constraints such as exposure
to therapeutic agents. In extending LowMACA analyses
to other Pfam domains we also demonstrated the exist-
ence of liaisons among genes considered high confidence
drivers with other genes that are considered candidate
drivers. The presence of low-frequency mutations in
ERBB2 and ERBB4 that correspond to known driver mu-
tations in tyrosine kinases such as EGFR, BRAF, FLT3 and
JAK further strengthens this concept.
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Nevertheless, Ras subfamilies also show specific hot-
spots that reflect the subtle differences played by genes
of each subfamily in cellular homeostasis. The Rho sub-
family genes have roles in regulating cytoskeletal dynam-
ics and deregulation of Rho proteins contributes to
tumorigenesis and metastasis, while Ras subfamily pro-
teins mainly function in regulating cell proliferation [25].

LowMACA is intended as an algorithm that emphasizes
low-frequency mutations in genes containing a Pfam do-
main. Nevertheless, we cannot generalize this concept to
all driver genes. For example, genes such as TP53, VHL,
RBI or APC, show distinct patterns of somatic driver
mutations that are not shared by other members of their
family (like T7P63 and TP73 or APC2). These tumor
suppressors should be considered as singletons and this
characteristic underlines the difference between tumor
suppressors and oncogenes. Thus, LowMACA is particu-
larly useful for the identification of gain-of-function muta-
tions in putative oncogenic families.

Conclusion

LowMACA emphasizes the role of genes mutated at
minor frequency in cancer, which are often neglected by
current analyses. The possibility to classify patients associ-
ated to signatures of low-frequency mutations identified
by our software represents a promising route for future
work. At the same time, a more accurate classification of
driver genes may shed light on molecular mechanisms
underlying cancer that until now were not yet considered.
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