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Abstract

In shotgun proteomics, peptides are typically identified using database searching which involves 

scoring acquired tandem mass spectra against peptides derived from standard protein sequence 

databases such as Uniprot, Refseq, or Ensembl. In this strategy, the sensitivity of peptide 

identification is known to be affected by the size of the search space. Therefore, creating a targeted 

sequence database containing only peptides likely to be present in the analyzed sample can be a 

useful technique for improving the sensitivity of peptide identification. In this study we describe 

how targeted peptide databases can be created based on the frequency of identification in GPMDB 

– the largest publicly available repository of peptide and protein identification data. We 

demonstrate that targeted peptide databases can be easily integrated into existing proteome 

analysis workflows, and describe a computational strategy for minimizing any loss of peptide 

identifications arising from potential search space incompleteness in the targeted search spaces. 

We demonstrate the performance of our workflow using several datasets of varying size and 

sample complexity.
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INTRODUCTION

Database searching is the most commonly used technique for peptide identification from 

tandem mass (MS/MS) spectra in discovery based proteomics. It compares experimental 

MS/MS spectra to peptide sequences derived from a protein sequence database, such as the 

standard reference databases from Uniprot, Refseq or Ensembl, to find the best matching 

peptides, referred to as peptide to spectrum matches (PSMs). It is well known that the 

sensitivity of peptide identification is affected by size of the search space1. Conventional 

database searching itself involves elements of a targeted strategy in the sense that the search 

is typically restricted to sequences most likely to be present in the analyzed sample (e.g., 

restricting to sequences from the organism of interest, allowing tryptic peptides only with 

one or no missed cleavages, etc.). Any additional strategies for further decreasing the search 

space to only those proteins / peptides likely to be found in a particular sample or 

experiment should allow for higher database search sensitivity and thus, if significant loss of 

true sample peptides from the search space is avoided, more peptide identifications.

Targeted search space strategies in general attempt to preferentially retain proteins (or 

peptides) that are likely to be found in the sample while excluding those unlikely to be found 

from the search database. Use of RNA-Seq based transcript abundances for targeting the 

search space is one such strategy that has been investigated in previous studies2. The global 

proteome machine database (GPMDB)3 is the largest repository of the results of proteomics 

experiments. The large volume of data aggregated in GPMDB allows the global frequencies 

of identification of proteins / peptides in GPMDB to be used as a reasonable surrogate 

measure of their propensity to be identified in an MS/MS experiment (for human, 

PeptideAtlas database4 can be used equally well). In other words, we can reasonably 

assume, with certain caveats to be discussed later, that a protein frequently identified in 

GPMDB is more likely to be identified in a new MS/MS experiment than a protein that was 

never or rarely observed previously. Results from our previous study5 have also indicated 

that GPMDB protein identification frequencies are comparable to RNA-Seq transcript 

abundance with respect to predicting protein identification propensity in a sample, 

suggesting that search space restriction based on GPMDB identification frequencies merits 

further investigation. Given the quantity and level of detail of data available in GPMDB, 

search space restriction can be effectively performed at the peptide level. Peptide level 

restriction is more advantageous than that at the protein level reflecting the fact that within a 

given protein sequence not all peptides are equally likely to be identified by MS/MS6,7.

In this study we explore creation of peptide-level targeted databases based on GPMDB 

identification frequencies, and investigate their effect on peptide identification through 

database search. Importantly, to be practically useful, the computational method should 

allow direct and easy integration of the targeted peptide databases into existing proteomics 

analysis pipelines. Furthermore, while taking advantage of the increased sensitivity offered 

by targeted databases, it is important to address the potential limitations of search space 

reduction. Due to inherent limitations in how much the external information (i.e. global 

information accumulated in GPMDB) correlates with protein / peptide presence in a 

particular biological sample under investigation, the targeted search space might be 

incomplete. Therefore approaches that can effectively deal with this potential search space 
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incompleteness are critical for ensuring robust performance of the method across a wide 

range of experimental datasets. In this study, we investigated workflows for leveraging the 

increased sensitivity offered by a targeted database while also minimizing potential peptide 

loss due to search space incompleteness. These strategies were tested on different types of 

MS/MS data and were found to consistently perform at least as well and often significantly 

better that the conventional database search strategy.

METHODS

Datasets

The workflow development and testing described in this study was primarily performed on 

data from a K562 cell line lysate (Promega) acquired on a AB/Sciex TripleTof 5600 

instrument by Tsou et al8 (Accn: PXD001587). The workflows developed here were tested 

further on data independent acquisition (DIA) data from a K562 human cell lysate 

(Promega) acquired on a AB/Sciex TripleTof 5600 instrument (SWATH mode) from the 

same Tsou et al study; an affinity purification mass spectrometry (AP-MS) dataset generated 

on an LTQ instrument using MEPCE protein as bait from Mellacheruvu et al9; and deep 

coverage HeLa cell lysate acquired on QExactive HF instrument by Scheltema et al10 

(Accn: PXD001203).

GPMDB peptide identification frequencies for the search space restriction were retrieved on 

August 10th 2014, using a MySQL database dump of GPMDB data provided on their FTP 

site. Application of the workflows to RNA-Seq based search space restriction was tested 

using RNA-Seq data generated from a HeLa cell line on an Illumina Genome Analyzer II 

instrument (~ 30.4 million paired end 76 bp reads) by Cabili et al. (Accn: SRR309265)11. 

The human genome and proteome reference sequence database used for this study were 

obtained from Ensembl12 release 76. Further details about the datasets and the specific data 

files used are available in Supplementary table 1.

MS/MS data analysis pipeline

The primary database search engine used in this study was MS-GF+13 (v. 9949 2/10/2014). 

Searches were run with trypsin as the cleaving enzyme, a minimum peptide length of 7 

amino acids, cysteine carbamidomethylation specified as a fixed modification and 

methionine oxidation as a variable modification. Mass tolerances were set to 30 ppm for 

TripleTof 5600 data searches, 20 ppm for QExactive HF searches, and 4.0 Da for the 

searches of AP-MS data generated using LTQ. Further testing of the methods were also 

carried out with the X! Tandem search engine14 (from TPP release Jackhammer 

2013.06.15.1) using the same parameters as for the TripleTof 5600 MSGF+ searches, with 

an additional parameter of fragment mass error set to 40 ppm.

Searches were run against the Ensembl v.76 Human proteome, and restricted search space 

databases derived from it, with an equal number of decoy sequences appended. Decoy 

sequences were created by reversing the sequence between all tryptic sites in the protein, but 

keeping the positions of the tryptic sites themselves unchanged. In contrast to creating decoy 

sequencing by reversing the entire protein sequence, this method results in decoy peptides 
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with exact same masses as the target peptides. Further, this method also ensures that decoy 

peptides are consistent between the full proteome database search and the various restricted 

search space databases.

In the case of DIA (SWATH) data, spectra were first processed using the DIA-Umpire tool8. 

DIA-Umpire performs de-convolution of the multiplex MS/MS spectra and extracts pseudo 

MS/MS spectra. These pseudo MS/MS spectra are equivalent to conventional MS/MS 

spectra generated using data dependent acquisition (DDA) data, except they are noisier. The 

pseudo MS/MS spectra were subjected to database search as described above, and further 

processing just as the rest of the data generated using conventional DDA strategy. DIA-

Umpire provides three categories of pseudo MS/MS spectra (Q1, Q2 & Q3), corresponding 

to three levels of evidence. Each category of pseudo MS/MS spectra is processed separately 

through the pipeline and the results are combined after PSM validation.

Downstream PSM validation and protein inference was performed using the Trans-

Proteomic Pipeline15 (TPP v4.7 POLAR VORTEX rev 0) software suite. PeptideProphet16 

was run with the option to use a semi-supervised model17 for estimating negative 

distributions. Except for the AP-MS data, which is of low mass accuracy, all data was 

processed using accurate mass binning option and the PPM scale for mass models. During 

processing using iProphet18, for the results reported in this study all models except the 

number of sibling searches (NSS) model were turned off in order to clearly observe the 

effects of combining searches alone in isolation. However, a comparative analysis of results 

with all iProphet models (except the NSP model) turned on was also performed separately. 

When processing search results from the restricted search space databases the full human 

proteome was specified as the database in TPP. This way all peptide identifications were 

mapped to the full protein database prior to ProteinProphet analysis, ensuring consistent 

peptide to protein mapping across different analyses.

Targeted peptide sequence databases

Peptide identification frequencies in GPMDB were derived from a MySQL dump of all 

GPMDB data as of August 10th 2014. All peptides extracted from GPMDB were compared 

to the Ensembl v.76 human proteome fasta file to retain human peptide sequences only. This 

resulted in a list of about 1.4 billion PSMs, corresponding to 1.48 million unique peptides. 

To maintain a consistent comparison with the full proteome database searches, this list of 

human peptides from GPMDB was further filtered to only retain fully tryptic peptides 

containing no more than 1 missed cleavage, resulting in a filtered list of approximately 

850,000 unique peptides.

Targeted databases were created from this filtered list by selecting peptides with frequency 

of identification above a certain threshold and creating a peptide sequence fasta file (each 

sequence in the file is an individual peptide and not a protein like in a typical protein 

sequence database). Twelve different targeted databases, at different levels of search space 

reduction, were created for this study by setting the frequency threshold at quantile 0%, 

20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 92%, 95% and 98%. These targeted databases 

ranged in size from about 52% of the full proteome database (0% quantile) to approximately 

1% of it (98% quantile) in terms of number of unique peptides satisfying the filtering criteria 
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above (see Supplementary Figure 1). Decoy sequences for these targeted peptide sequence 

databases were generated by keeping tryptic sites on the sequence fixed and reversing only 

the sequences between them, as described above.

Randomly search space restricted databases were also created by sampling from the space of 

all possible tryptic peptides (up to 1 missed cleavage, peptide length >= 7AA) in the 

Ensembl human proteome. Searches against these databases were used as a control to 

validate the efficacy of the GPMDB based targeted method of search space restriction (See 

Supplementary Figure 2).

Targeted protein sequence databases from RNA-Seq data

RNA-Seq data was aligned to the Ensembl v.76 human genome using Tophat19 (v. 2.0.13) 

and Bowtie220 (v. 2.2.4). Gene annotations from Ensembl were provided to improve 

alignments and all other Tophat options were set to their default values. Transcript 

abundances, normalized to Reads Per Kilobase per Million mapped reads (RPKM) were 

computed for each transcript using a custom R (v. 3.1.0) script that utilizes functions from 

the Bioconductor packages Rsamtools21 (v. 1.18.2) and GenomicFeatures22 (v. 1.18.2). 

Restricted search space databases based on the RNA-Seq data were created by filtering the 

human protein sequence database to only retain proteins with corresponding transcript 

abundances at or above a set threshold as described by Wang et al2. While a default 

threshold of the 30th percentile was suggested by Wang et al23 for this filtering, for the data 

used in this study this was seen to be a too stringent threshold (See Supplementary Figure 3), 

and the 20th percentile was selected as the threshold instead.

RESULTS AND DISCUSSIONS

Targeted peptide databases for peptide identification

The large number of proteomic experiments present in the GPMDB repository allows us to 

observe which peptides have been identified more frequently, and thus are also more likely 

to be identified in any new experiment. Therefore, information from the GPMDB repository 

was used to create targeted peptide databases (containing only peptide sequences and not 

protein sequences as is typical) to be used for identification of peptides from MS/MS spectra 

data by database searching.

The degree of database search space restriction can be adjusted by varying the frequency 

threshold above which peptides are included in the targeted peptide database. A higher 

frequency threshold corresponds to a more restrictive search space (i.e. only the most 

frequent peptides are included in the targeted database). Database searches of the MS/MS 

data were performed against targeted peptide databases filtered at thresholds ranging from 0 

to 98th percentiles (see Methods), and also against the full database, as illustrated in Figure 

1. Importantly, targeted peptide databases can be directly integrated into existing proteomic 

analysis pipelines with little to no modifications. Since peptides in the targeted database are 

a subset of the peptides in the full database, it is possible to directly map peptide 

identifications from the targeted database to their respective proteins in the full protein 
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database (e.g., such mapping is done in TPP by explicitly specifying the path to the full 

database).

Results from the basic targeted database workflow

Improvement in peptide identification through the use of targeted peptide databases was 

measured by comparing the number of peptides identified from the targeted database search 

against those from the full protein database search. Tracking the improvement in the number 

of peptides from the different targeted databases (Figure 2), we can notice a clear trend of 

increased percent improvement, starting at 3.72% for the 0th percentile database and steadily 

increasing as we move to more and more restrictive targeted databases until reaching a peak 

at 10.75% for the 80th percentile database. After that, percent improvement begins rapidly 

decreasing and crosses into negative territory (i.e. fewer peptides are identified than that 

using the full protein database) for the most restricted (95th and 98th percentile) databases. 

This is consistent with our expectations, since peptide identification would initially benefit 

from the increased sensitivity that comes with a targeted database. However, as the targeted 

databases become too restrictive, we begin to lose true positive peptide identifications 

because they are no longer present in the search space, leading to a decrease in the overall 

performance. In these data, the 90th percentile database represents the level of search space 

restriction at which peptide loss due to search space incompleteness begins to outweigh the 

gain in the number of peptide identifications due to increased sensitivity. Curves 

corresponding to the number of new peptides found (peptides not previously identified in the 

full database search) and the number of missed peptides (peptides identified in the full 

database search but missed in the targeted database searches) are also included in the figure 

to provide a clearer picture of these trends. Further analysis of the missed peptides was also 

performed to confirm that the primary source of peptide loss was indeed search space 

incompleteness (See Supplementary Figure 4).

Dealing with search space incompleteness: Combined searches workflow

The basic targeted database workflow provides an improvement in peptide identification 

over a typical full protein database search. However, as discussed above, targeted database 

searches also result in a number of peptides being missed due to search space 

incompleteness. Minimizing the loss of these peptide identifications is important for 

effective leveraging of targeted databases for proteomics analysis. Thus, we also designed a 

workflow that combines, using iProphet, the search results from the two independent 

searches - against the full databases and the targeted database. iProphet18, a relatively recent 

addition to the Trans-Proteomic Pipeline, allows combining multiple levels of MS/MS 

evidence for scoring peptide identification, including combining the results from multiple 

searches. While iProphet has been used in previous studies to combine the results from 

multiple different databases search tools, in this study we applied it to combine results from 

searches against different databases (Figure 3). This computational strategy of performing 

two separate searches against the full and targeted databases, followed by combining the 

results using iProphet effectively retains the increased sensitivity advantages of using 

targeted databases while mitigating the potential negative impact of their incompleteness.
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The NSS (number of sibling searches) model of iProphet, boosts a PSM score if the MS/MS 

spectrum was matched to the same peptide in other searches too, and penalizes it if the 

spectrum was matched to a different peptide(s), or to the same peptide but with a low score, 

in other searches. In the context of this work, applying the NSS model has the effect of 

promoting frequently observed peptides, which are likely to be present in both the full and 

targeted databases, and penalizing, and hence indirectly setting a more stringent threshold 

for the identification, of rarer peptides which are less likely to be present in the targeted 

databases. The NSS model was included when running iProphet in the combined searches 

workflow since it was seen to provide a slight improvement in discriminatory power.

Multi-pass strategies involving searching against various search spaces and using different 

tools for more comprehensive interrogation of MS/MS data have been utilized 

previously24–26. However, the best way of estimating error rates for peptide identifications 

from these strategies has not yet been fully understood1. The combined search workflow 

presented here is partly related to such multi-pass strategies in that it utilizes multiple 

searches against differing search spaces. However, in our strategy the same spectra are 

searched against the different search spaces each containing its own set of decoys and the 

targeted database is created in unbiased way using external data. Furthermore, the search 

results are merged using iProphet previously extensively tested in a multiple database search 

tool setting. Thus, we believe the error rate concerns typical to multi-pass strategies are 

satisfactory addressed here.

Results from this combined searches workflow are shown in Figure 4. As can be seen, this 

strategy outperforms the basic targeted database workflow in terms of the peak level of 

improvement over the full protein database search, obtaining 12.5% improvement for the 

92nd percentile database. It significantly reduces the number of missed peptides (i.e. 

peptides not identified because they are not in the targeted database) at the expense of only a 

slightly reduced number of additional (compared to the full database search) peptide 

identifications that one can obtain using the basic targeted database workflow. As a result, 

while the percent improvement decreases beyond the peak value, it does not drop into the 

negative territory even using the most restricted, 98th percentile targeted database. In fact, 

due to the merging of the two search results carried out by iProphet, this workflow is not 

expected to result in a reduction in the number of peptide identifications compared to 

performing the full database search alone, irrespective of the degree of completeness of the 

targeted database.

As described earlier, the level of search space restriction corresponding to maximum 

improvement is a balance between the gain in peptide identifications due to improved 

sensitivity and the loss due to search space incompleteness. Since this combined searches 

workflow reduces the effect of search space incompleteness, the point of maximum 

improvement becomes more tightly linked with the increased sensitivity and hence is 

expected to occur at a higher percentile targeted database. Indeed, Figure 4 shows that the 

peak improvement in the iProphet based workflow occurs when using the 92nd percentile 

database, compared to the 80th percentile database in the basic targeted database search 

workflow.
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In the above analysis, to observe the effects of combining these searches in isolation, all 

models in iProphet apart from the NSS model were turned off. A further comparative 

analysis with other models (except the NSP model) turned on was also performed (See 

Supplementary Figure 5). While turning on other models did not provide much further 

improvement in our data, in regular analysis pipelines it may be advisable to turn on the 

other iProphet models and also employ other strategies recommended with iProphet, such as 

combining multiple search engine results27, to take full advantage of any potential 

improvements.

Accuracy of peptide probabilities from iProphet after the NSS model based rescoring can 

vary depending on the search spaces of the searches being combined. But, since the target-

decoy approach, used in this workflow to estimate FDR and filter peptide identifications, 

only uses the peptide probabilities as a ranking score, the actual peptide probability values 

are not important as long as the relative order of the peptides is accurate. However, if the 

accuracy of the peptide probabilities is considered important for downstream analyses, the 

combining of searches using iProphet can be performed without using the NSS model. Such 

a method of combining results in more accurate peptide probabilities with only a slight 

reduction in the amount of improvement achieved (Supplementary Figure 6).

In addition to the two workflows described above, an additional workflow (the peptide 

supplemented workflow) was also designed and tested. While it wasn’t seen to be as 

effective as the other two workflows, in the interest of potential future improvements to it, a 

description of the workflow and results from it are provided as supporting information (See 

Supplementary Figures 7 and 8).

Applying workflows to other data

The performance of the computational strategies described above was further tested using 

three additional datasets (see Methods for detail): (i) data acquired on the same sample and 

instrument as above (K562 cell lysate, AB/Sciex 5600 instrument) but using a data 

independent acquisition (SWATH) strategy, with pseudo MS/MS spectra extracted using 

DIA-Umpire; (ii) data from an AP-MS experiment, in which the sample is enriched for a 

specific bait protein and its interacting partners; (iii) data from a deep proteome coverage 

experiment on a HeLa cell lysate containing about 60,000 peptide identifications (in contrast 

to about 8000 peptides identified in K562 dataset used above). These datasets represent a 

fairly diverse sampling of the different types of data that might be encountered in a modern 

proteomics experiment.

Figure 5 shows that the overall trends are largely similar across all datasets. In the DIA 

pseudo MS/MS data (Figure 5A), the improvement in peptide identification is even higher 

than that seen earlier in the corresponding conventional DDA data (compare with Figure 2 

& Figure 4), with a peak improvement of 16.5% in the basic targeted database search 

workflow and 17.9% using combined full plus targeted searches. The de-convolution 

process applied to convert the multiplex DIA MS/MS spectra into pseudo MS/MS spectra 

results in spectra containing more noise than normal MS/MS spectra from DDA data. 

Peptide identification using noisier MS/MS spectra would be expected to benefit more from 

the increased sensitivity provided by targeted search space strategies. The AP-MS data 
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(Figure 5B) shows a peak improvement of 11.3% using the basic targeted database search 

and 13.8% using the combined search workflow. While the same overall trends are 

observed, these data shows a higher degree of fluctuation which is likely due to a much 

smaller size of the dataset (~1000 peptide identifications).

While the increased sensitivity from a targeted database search results in better peptide 

identification scores, translation of these better scores into an increase in the number of 

peptide identifications passing a certain FDR threshold is dependent on the number of 

peptides in the sample that are in the ‘grey-zone’. As we discussed previously5, high quality 

deep proteome coverage samples are expected to contain less of such ‘grey-zone’ 

identifications, since they collect enough spectral data to confidently identify most 

identifiable peptides in the sample. Therefore the amount of improvement possible in such 

data is expected to be less than that observed for shallower coverage sample. Figure 5C 

shows that in the deep coverage HeLa dataset the maximum improvement is only about 1% 

using the basic targeted database search workflow and 2.4% using the combined search 

workflow.

Figure 5C also illustrates that in deep datasets like the one used here there are likely to be 

more rarely identified peptides (according the frequency of observation in GPMDB), leading 

to a higher number of missed peptides even at lower levels of search space restriction. This 

can be seen in the fact that the peak improvement occurs at lower percentile databases, 40th 

percentile for the basic targeted database search workflow and 50th percentile for the 

combined search workflow. At the same time, these results also demonstrate the robustness 

of the combined database search workflow. Even with a dataset where the basic workflow 

shows negative performance by the 60th percentile database, the combined search workflow 

provides some (albeit non-significant) improvement in the number of identified peptides 

across the entire set of targeted databases tested.

The workflows described in this study are, by design, neutral to the source of the targeted 

databases. In order to demonstrate this aspect, the workflows were also tested with targeted 

databases created using other types of information. Specifically, we used targeted protein 

sequence databases derived using RNA-Seq data2. The deep coverage HeLa cell lysate data 

was used as the MS/MS data for this analysis. Figure 5D shows that the results are similar to 

those seen with the GPMDB based targeted peptide databases. The basic targeted database 

search workflow results in a high number of missed peptides and essentially no overall 

improvement (0.4%), while the combined search workflow results in 1.7% overall 

improvement and less missing peptides.

Using targeted databases with an X! Tandem based pipeline

The results presented above were obtained the MSGF+ database search engine. The analyses 

were repeated using X! Tandem on the main dataset (K562 cell lysate; AB/Sciex 5600; 

DDA data). The overall trends for the basic targeted database search workflow were similar 

to those seen with MSGF+, with a peak improvement of 7.7% (Figure 6A). However, the 

number of peptides missed in the basic targeted database search compared to the full 

database search was notably more than that seen with MSGF+. A closer examination of the 

missed peptides revealed that a significant portion of them were missed in spite of actually 
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being present in the targeted database. This issue was further investigated and was traced to 

an underlying problem of the E-value estimation approach implemented in X! Tandem.

X! Tandem (and several other search engines including Comet28) estimates E-values from 

the original scores (e.g. hyperscores in X! Tandem) using a null distribution fitted based on 

the non-top scoring (i.e. assumed to be random) matches to each spectrum. An insufficient 

number of random matches can cause the E-value estimation to be inaccurate or fail 

altogether. We have previously commented on the possibility of such issues arising with 

highly constrained database searches (e.g. searches with a very narrow precursor peptide 

mass tolerance)1. In this work, the additional reduction of the search space (via the use of 

targeted databases) further exacerbated the issue. Note, however, that the combined search 

strategy mitigated this problem as discussed above, resulting in a higher overall 

improvement, up to 15.5% (Figure 5B). We also note that the problem of highly constrained 

search space was not an issue with MSGF+ searches altogether, which takes an alternative 

approach to computing the scores using the so-called generating functions13,29 that is not as 

sensitive to the size of the search space.

Selecting targeted database percentile thresholds

As can be seen from results above, the choice of percentile threshold for creating the 

targeted database affects the degree of improvement achieved. While in this study multiple 

thresholds were tested to identify the point of maximum improvement, such an approach 

would be too time-consuming as part of a routine proteomic analysis pipeline. As an 

alternative, a heuristic to quickly select an optimal threshold for the targeted database using 

the ‘percentage of peptides retained’ was developed.

The ‘percentage of peptides retained’ is defined as the percentage of high confidence 

peptides (identified at 1% FDR) from the full database search that are retained in a particular 

targeted database. This can be quickly estimated from the results of the full database search 

by determining the number of peptides in the results which pass the percentile frequency 

threshold for each targeted database. In our analysis for the combined searches workflow, it 

was seen that the points of maximum improvement were consistently in the 90–97% range 

of percentage of peptides retained (See Figure 7).

Based on this, we suggest that selecting a percentile threshold corresponding to 90% of the 

high confidence peptides retained would serve as a good empirical threshold. In the datasets 

used in the study, this corresponds to 92nd percentile in the DDA and DIA datasets, 80th 

percentile in the AP-MS dataset and 70th percentile in the deep coverage dataset (See 

Supplementary Figure 9), which would provide close to the maximum improvement in each 

dataset. Further, since the combined searches workflow already requires performing a 

separate search with the full database, determining ‘percentage of peptides retained’ would 

not add any significant processing time to the analysis pipeline. A similar analysis with 

results from the basic targeted pipeline is described in the supplementary information (See 

Supplementary Figure 10)
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CONCLUSIONS

In this study, we have demonstrated the utility of targeted peptide databases derived with the 

help of GPMDB for providing a significant improvement in peptide identification in many 

types of MS/MS datasets. While the basic targeted database search workflow attempts to 

maximize the identification sensitivity, the combined database search workflow retains this 

increased sensitivity while also preventing any loss of peptides due to incomplete search 

spaces. Both workflows described in this study can be integrated into existing proteomics 

analysis workflows with little to no modifications. Furthermore, iProphet used here for 

integrating the results of different searches can be applied in other similar scenarios 

requiring merging of searches from different search spaces.

One area of particular utility for targeted peptide databases could be in the identification of 

post-translational modifications (PTMs). Since searching for PTMs in MS/MS data can lead 

to exponential expansion of the search space, using a small targeted initial search space can 

be useful for maintaining sensitivity in the PTM expanded search space. This would be an 

alternative to approaches that improve PTM identification by post-search rescoring e.g. as 

described in Li et al30. Proteogenomics, which typically involves creating large custom 

protein databases (i.e. obtained using six-frame translations of potential novel transcripts to 

databases of known sequences) is another area where the size of search space is seen to 

cause sensitivity issues31–33. The combined searches strategy described here could be 

extended to proteogenomics, by performing separate searches (e.g. first against the reference 

database, and then against a larger custom database of predicted sequences) prior to merging 

the results using iProphet. For proteogenomics applications, however, it will be necessary to 

perform subsequent searches only using spectra that remain unidentified based on the initial 

analysis (i.e. using the reference database of known sequences).Such a strategy would 

account for a much lower likelihood of identification of any novel peptide (as compared to 

known peptide), and ensuring that the estimation of posterior peptide probabilities in 

iProphet is performed separately for these two different types of peptides.

In addition to identification frequencies, GPMDB also stores spectral matching information 

for all the identified PSMs. As shown in Zhang et al34, spectral library information can 

provide improved sensitivity in peptide identification in addition to that achieved just due to 

the search space reduction in spectral libraries. However, the spectral libraries provided by 

GPMDB earlier are no longer updated, and extracting the spectral information from 

GPMDB directly is technically difficult. In contrast, the method of creating targeted 

databases described in this work is relatively simple and can be performed periodically as 

the GPMDB database continues growing in size.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Basic targeted database search workflow
Searching MS/MS spectra against a targeted peptide database results in improved sensitivity 

and increased peptide identifications in comparison to a search against a full protein 

database.
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Figure 2. 
Percentage improvement from the basic targeted database workflow is plotted for the 

varying levels of search space restriction, using data from the K562 lysate. The number of 

peptides missed compared to the full database search and the number of new peptides 

identified is also plotted for each targeted database percentile. Maximum percentage 

improvement is obtained at the balance between getting the maximum number of new 

peptides while still keeping the number of missed peptides low.
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Figure 3. Combined searches workflow
Peptide identifications from the targeted database search and the full database search are 

combined using iProphet to recover peptides missed in the targeted database search.
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Figure 4. 
Percentage improvement from applying the combined searches workflow to K562 lysate 

MS/MS data, at varying levels of search space restriction is plotted. The combined searches 

workflow outperforms the basic targeted database workflow in terms of the maximum 

improvement. Improved performance is achieved by minimizing the number of missed 

peptides.
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Figure 5. 
Results from applying the two workflows to (A) DIA extracted pseudo MS/MS spectra data; 

(B) AP-MS data; (C) deep proteome coverage data. (D) Results of using a targeted database 

derived from RNA-Seq transcript abundances.
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Figure 6. 
Results from applying the targeted database search workflows in combination with the X! 

Tandem database search engine on data from K562 cell lysate using (A) the basic targeted 

database workflow; (B) Combined searches workflow.
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Figure 7. 
Percentage improvement for the various datasets from the combined searches workflow 

plotted against the percentage of high confidence (1% FDR) peptides, from the full 

proteome database search, retained in the targeted databases. The point of peak 

improvement is seen to occur in the 90%–97% range for all the datasets.

Shanmugam and Nesvizhski Page 20

J Proteome Res. Author manuscript; available in PMC 2016 December 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


