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Abstract

There is strong epidemiologic evidence linking chronic exposure to inorganic arsenic (iAs) to a 

myriad of adverse health effects, including cancer of the bladder. The present study set out to 

identify DNA methylation patterns associated with iAs and its metabolites in exfoliated urothelial 

cells (EUCs) that originate primarily from the urinary bladder, one of the targets of arsenic (As)-

induced carcinogenesis. Genome-wide, gene-specific promoter DNA methylation levels were 
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assessed in EUCs from 46 residents of Chihuahua, Mexico, and the relationship was examined 

between promoter methylation profiles and the intracellular concentrations of total As (tAs) and 

As species. A set of 49 differentially methylated genes was identified with increased promoter 

methylation associated with EUC tAs, iAs, and/or monomethylated As (MMAs) enriched for their 

roles in metabolic disease and cancer. Notably, no genes had differential methylation associated 

with EUC dimethylated As (DMAs), suggesting that DMAs may influence DNA methylation-

mediated urothelial cell responses to a lesser extent than iAs or MMAs. Further analysis showed 

that 22 of the 49 As-associated genes (45%) are also differentially methylated in bladder cancer 

tissue identified using The Cancer Genome Atlas repository. Both the As- and cancer-associated 

genes are enriched for the binding sites of common transcription factors known to play roles in 

carcinogenesis, demonstrating a novel potential mechanistic link between iAs exposure and 

bladder cancer.
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INTRODUCTION

Exposure to inorganic arsenic (iAs) in drinking water is of great concern globally with more 

than 100 million people exposed to iAs levels exceeding the World Health Organization’s 

guideline of 10 µg As/L.1,2 Chronic exposure to iAs has been linked to a host of detrimental 

health effects in humans, including impaired memory and intellectual function, heart and 

respiratory system disease, liver hypertrophy, and diabetes.3 In addition to these non-cancer 

endpoints, iAs is a known carcinogen, associated with liver, lung, prostate, skin, and urinary 

bladder cancers.4 Bladder cancer is of particular concern as an estimated 571,500 

individuals are currently impacted by this disease in the U.S. alone5

Decades of research have uncovered several mechanisms that likely underlie iAs-induced 

carcinogenesis. Specifically, oxidative stress,6 altered DNA repair capacity,7 and alterations 

in epigenetic-mediated gene regulation8 have all been suggested as potential causal events in 

iAs-induced carcinogenesis. In relationship to epigenetic modifications, the following 

changes have been observed in response to iAs exposure: differential microRNA 

expression,9 posttranslational histone modifications,10 and changes in both global and gene-

specific DNA methylation patterns.8,11 These iAs-associated epigenetic shifts may lead to 

altered expression of target genes/pathways that influence disease state such as cancer.8 Of 

relevance to the current study, in vitro evidence suggests that iAs exposure may cause 

alterations in the expression levels of critical genes, such as regulators of cell proliferation 

and the carcinogenic process, through changes in the DNA methylation maintenance 

machinery in human uroepithelial cells.12,13 Similarly genes related to cell death and 

proliferation have also been identified as mutated in human urothelial bladder cancer.14

Responses to iAs exposure, including inter-individual differences in disease susceptibility, 

are known to be tightly associated with iAs metabolism.15 In vitro evidence has also clearly 

demonstrated that the toxicity associated with iAs differs from iAs metabolites.16 The 
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capacity to metabolize iAs into trivalent and pentavalent monomethylated and dimethylated 

arsenicals (MMAs and DMAs, respectively) differs among individuals even with the same 

exposure levels, influencing the relative amounts of iAs, MMAs, and DMAs excreted in 

urine.15 Low ratios of urinary DMAs/MMAs, which is thought to be an indicator of low iAs 

methylation capacity, have been correlated with an increased risk of some of the adverse 

health effects.17 For example, higher percentages of urinary MMAs and thus lower 

percentages of DMAs have been associated with increased risk of lung cancer18 and 

urothelial bladder cancer,19 among others diseases.17 A recent study in Chihuahua, Mexico, 

showed that As species retained in exfoliated urothelial cells (EUCs) can also serve as 

indicators of adverse health effects associated with iAs exposure.20

In the present study we set out to investigate epigenetic alterations, specifically cytosine 

methylation, associated with iAs exposure in an exposed human population and contrast 

these findings with biomarkers of an iAs-associated disease (i.e. bladder cancer), with the 

ultimate goal of identifying key genes and biological pathways potentially involved in iAs-

induced disease. Specifically iAs and its metabolites were analyzed in relationship to 

promoter DNA methylation profiles in EUCs of subjects from a recently established cohort 

based in the Chihuahua, Mexico.20 This region is an area of concern as it is estimated that 

more than 450,000 people are exposed to iAs levels exceeding 50 µg/L in Mexico.21 The 

current research aimed to examine associations between DNA methylation profiles in EUCs 

with trivalent and pentavalent forms of total As (tAs), iAs, MMAs, and DMAs in the same 

EUCs. Relating these epigenetic changes associated with iAs exposure to a potential disease 

outcome (i.e. bladder cancer), a common set of differentially methylated genes was 

identified. Mechanistic similarities were identified between the lists of iAs-associated and 

bladder cancer-associated genes, where common transcription factors with known 

involvement in carcinogenesis are known to bind to the promoter regions of the genes. This 

finding may have functional implications in iAs-induced human carcinogenesis as this 

investigation represents a direct linkage between DNA methylation patterns and levels of 

iAs / iAs metabolites within the same target cells.

MATERIALS AND METHODS

Study Population and Sample Collection

All procedures involving human subjects were approved by IRBs in UNC Chapel Hill, U.S. 

and Cinvestav-IPN, Mexico. Individuals participating in the present study (n=46) represent a 

subcohort of a larger study (n=374) in Chihuahua, Mexico.20 Study participants were 

required to be at least 18 years of age and have at least 5 years of uninterrupted residency in 

the study area. All participants selected for the current investigation were Hispanic females, 

as the EUC counts in urine from females are significantly higher than males,20 thus 

producing adequate DNA sample amounts for DNA methylation analysis. Pregnant women 

and subjects with kidney or urinary tract infections were excluded because these medical 

conditions could affect iAs metabolism or purity of EUCs isolated from urine. Individuals at 

risk for occupational exposure to As were also excluded. Household tap water samples were 

collected for As analysis performed at Cinvestav-IPN (Mexico City). Study subjects were 

evaluated through medical examination at the Universidad Autónoma de Chihuahua. Body 
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weight and height were recorded and used to calculate the body mass index (BMI). Spot 

urine samples were collected for As analysis and isolation of EUCs. Urine and EUC samples 

were frozen and shipped at −70°C for speciation analysis at UNC Chapel Hill.

Determination of Arsenic Species in Household Water and Urine

Concentrations of arsenic in acid-digested water samples were determined in Cinvestav-IPN 

(Mexico City) using hydride generation atomic absorption spectrometry (HG-AAS) with 

cryotrapping (CT), as previously described.22,23 Two water samples were not available from 

the 46 individuals in the study, thus a total of 44 water samples was available for household 

water analysis. Arsenic species in urine, including iAs, MMAs, and DMAs, were analyzed 

by HG-CT-AAS.23 Limits of detections (LODs) were determined based upon urine volumes 

of 200 µL per sample resulting in 0.05 ng As/mL for MMAs, 0.05 ng As/mL for DMAs, and 

0.1 ng As/mL for iAs. Total As (tAs) in urine was calculated as the sum of iAs, MMAs, and 

DMAs. Urinary creatinine concentration was determined by colorimetric assay (Cayman 

Chemical Company, Ann Arbor, MI), and specific gravity was measured using a digital 

Atago PAL refractometer (Atago USA, Bellevue, WA).

EUC Isolation

The isolation and purity of EUCs was described in detail in our previous report from the 

Chihuahua cohort.20 Briefly, EUCs were isolated from urine (100 ml per subject) by 

centrifugation at 4°C, washed with phosphate buffered saline (PBS), and again centrifuged. 

EUCs were resuspended in PBS and counted. Resuspended EUCs were checked for the 

presence of bacteria, yeast, and red/white blood cells using a light microscope. All EUCs 

used in the present study were free of microbial contamination and contained <5% of red 

and white blood cells. The cell counts of the collected EUC pellets ranged from 269,500 to 

6,049,600 (mean=944,991, median=704,300).

For the purpose of this investigation, all cells isolated from bacteria- and yeast-free urine 

containing <5% of red and white blood cells were defined as EUCs. As described in detail in 

our previous report,20 these cells originate from the epithelial lining of the urinary tract, the 

urothelium. Because the routine microscopy used in this study to assess the collected EUCs 

cannot reliably distinguish between cells of various origins, it is not possible to further 

characterize the types and origins of EUCs. It is important to note that the majority of the 

EUCs originate in the bladder epithelium, as EUCs from female urine have been shown to 

originate mainly from the vesical trigone area of the bladder.24,25 For this reason, EUCs are 

also used in clinical practice to diagnose bladder cancer.26 Further substantiating the use of 

EUCs, a study specifically compared gene-specific promoter methylation patterns in urine 

sediment DNA versus human bladder cancer tissue and found that, for all patients evaluated, 

the DNA methylation patterns in urine matched those in bladder cancer tissue.27 Isolated 

EUCs were stored at −80°C and used for analyses four weeks after collection.

Determination of As Species in EUCs

Trivalent and pentavalent As species were measured in EUC lysates using HG-CT-

inductively coupled plasma-mass spectrometry (ICP-MS), as previously detailed.20,28 

Concentrations of arsenite (iAsIII), arsenate (iAsV), methylarsonite (MMAsIII), 
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methylarsonate (MMAsV), dimethylarsinite (DMAsIII), and dimethylarsinate (DMAsV) were 

determined and expressed in ng As/10,000 cells. EUC pellets were lysed in deionized water. 

The trivalent As species, iAsIII, MMAsIII, and DMAsIII, were directly measured using an 

aliquot of cell lysate. A separate cell lysate aliquot was treated with 2% cysteine and 

analyzed for total iAs (iAsIII + iAsV), MMAs (MMAsIII + MMAsV), and DMAs (DMAsIII + 

DMAsV). Subtracting the values of cysteine-treated samples from the untreated samples 

presented the concentrations of iAsV, MMAsV, and DMAsV. Total trivalent arsenic (tAsIII) 

was defined as the sum of iAsIII, MMAsIII, and DMAsIII. Total pentavalent arsenic (tAsV) 

was defined as the sum of iAsV, MMAsV, and DMAsV. The trivalent and pentavalent total 

arsenic species were summed to generate tAs(III+V). The instrumental LODs of the HG-CT-

analysis ranged from 0.04 to 2.0 pg As. Concentrations of EUC tAs, iAs, MMAs, and 

DMAs were correlated with each EUC arsenic species as well as urinary tAs, iAs, MMAs, 

and DMAs using the Spearman Rank Correlation test (TIBCO® Spotfire®, v5.0.0).

DNA Extraction and Methylation Analysis

DNA was extracted from the exfoliated EUCs of 46 subjects using the QIAamp DNA Blood 

Mini Kit (Qiagen, Valenica, CA) according to manufacturer’s instruction. Enrichment of 

CpG-methylated DNA was performed using the MethylMiner™ Methylated DNA 

Enrichment Kit (Invitrogen/Life Technologies, Grand Island, NY) and 250 µg of DNA. 

Enriched DNA was amplified and hybridized to Affymetrix Human Promoter 1.0R arrays 

(Affymetrix, Santa Clara, CA) as previously described.11 The Affymetrix Human Promoter 

1.0R arrays represent >25,500 human promoter regions, ~13,000 of which contain CpG 

islands, known targets of DNA methylation. Data were normalized using robust multichip 

average29 and bioinformatically summarized at the CpG island level based on the Human 

Genome 18 (HG18) assembly. Average methylation abundance levels mapped to gene 

promoter regions were used in this analysis, as previously defined.11 Specifically, in order to 

calculate the average methylation abundance for each gene, the methylation abundance 

levels for all CpG sites mapped to the same promoter region were summed and then divided 

by the number of CpG sites for that gene. Microarray data have been submitted to National 

Center for Biotechnology Information (NCBI) Gene Expression Omnibus repository30 and 

are available under accession number GSE58499 (www.ncbi.nlm.nih.gov/geo).

Analysis of the Association between DNA Methylation Levels and Arsenic Species 
Concentrations in EUCs

The associations between DNA methylation levels and As metabolite concentrations in 

EUCs were evaluated using separate multi-variable models for each As species. In these 

statistical models, DNA methylation levels were the dependent variables and EUC arsenical 

levels (i.e. iAsIII, iAsV, iAs(III+V), MMAsIII, MMAsV, MMAs(III+V), DMAsIII, DMAsV, 

DMAs(III+V), tAsIII, tAsV, and tAs(III+V)) were the independent variables, as previously 

described.9 The models included covariates that are plausibly related to EUC DNA 

methylation profiles, specifically: age (continuous variable) and BMI (continuous variable). 

Differential DNA methylation was defined as a significant association between DNA 

methylation levels and EUC metabolite levels, where the following requirements were set: 

(i) p-value < 0.05, and (ii) q-value < 0.10. In addition, as a result of publications that suggest 

that likelihood of functional change at the mRNA level is linked to methylation abundance,8 
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a 2-fold change in methylation abundance was required. Fold changes were calculated using 

the following metric: (average DNA methylation levels of the highest exposed quartile 

(n=11)) / (average DNA methylation levels of the lowest exposed quartile (n=11)). All genes 

that passed the statistical filters above were identified as differentially methylated genes 

associated with EUC As levels. These statistical calculations were carried out using Partek® 

Genomics Suite™ software (St. Louis, MO).

An additional robust regression analysis of tAs vs. methylation levels was performed using 

Winsorized regression, as implemented using lmWinsor in the R fda package (version 3.1.2), 

with the trim=0.1 option. Two analyses were carried out, one using age and BMI as 

covariates, and the other as a direct regression of residuals for tAs vs. residuals for 

methylation, after correction for the covariates. P-values for robust regression can be more 

significant than for standard linear regression if there are skewed observations, which can 

inflate the standard errors for regression coefficients.

Analysis of the Association between DNA Methylation Levels and Arsenic Species 
Concentrations in Urine

To identify genes with differential methylation associated with As in urine, similar statistical 

analyses were carried out as with As in EUCs. Similar multi-variable models were used as 

previously described, in which the associations between DNA methylation levels and As 

species in urine were evaluated using age and BMI as covariates. Separate models were used 

to assess each of the associations between DNA methylation levels and the summed trivalent 

and pentavalent arsenical levels, specifically urinary iAs(III+V), MMAs(III+V), DMAs(III+V), 

and tAs(III+V). The same statistical filters were used in these analyses as the analyses with 

EUC arsenicals, using a multiple test correction q-value filter requirement of 0.002.

Network and Disease/Functional Enrichment Analysis

Network analysis was performed to identify enriched biological pathways amongst the genes 

with differential methylation associated with one or more EUC arsenicals.9 Networks were 

algorithmically constructed based on connectivity, enabled through Ingenuity Pathway 

Analysis (Ingenuity Systems®, Redwood City, CA). Disease signatures and biological 

functions within the constructed networks were identified using the right-tailed Fisher’s 

Exact test, as detailed previously.9,31 Over-represented diseases/functions were defined as 

those that contain more targets than expected by chance using a p-value cut-off of 0.01.

Comparison of EUC As-Associated Genes to the Comparative Toxicogenomics Database 
(CTD)

In order to evaluate whether there is evidence that the genes with differential methylation 

associated with EUC As have altered gene and/or protein expression associated with As, the 

CTD was queried. The CTD is a manually-curated database specific for environmental 

contaminants and their relationships to genes, including alterations at the mRNA and protein 

level, collected from published toxicological and epidemiological studies. At the time of the 

current analysis, the CTD included over 95,000 studies to derive over 15 million 

toxicogenomic relationships between approximately 11,000 chemicals and 27,000 genes.32
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Identifying Bladder Cancer-Associated Genes

In order to identify genes with differential methylation in human bladder cancer, a separate 

dataset was analyzed from The Cancer Genome Atlas (TCGA) (http://

cancergenome.nih.gov/), the product of a collaborative effort between the National Cancer 

Institute and the National Human Genome Research Institute to provide comprehensive data 

sets for use in cancer research. Publically available data for bladder urothelial carcinoma 

from TCGA were analyzed.

DNA methylation data were obtained for 18 individuals (the maximum number available) 

with both tumor and matched non-tumor tissue from the bladder epithelium. Data were 

filtered to remove probes with missing data for any individuals as well as probes that 

represent known single nucleotide polymorphisms, as detailed previously,33 after which 

335,570 probes remained for analysis. The final DNA methylation files included β-values 

for 20,256 genes, generated using the Infinium HumanMethylation450 BeadChip (Illumina, 

San Diego, CA). The β-value is defined as the ratio of methylated probe intensity to the 

intensity from both methylated and unmethylated probes, where a β-value of 1 indicates that 

every copy of that CpG site was methylated.34 Similar to the genome-wide analysis 

previously detailed, the association between DNA methylation patterns and bladder cancer 

disease status was evaluated using a multi-variable model. DNA methylation levels were the 

dependent variables and were contrasted against tumor or non-tumor status as the 

dichotomous independent variable. Covariates included in the model were age at initial 

diagnosis, diagnosis subtype (papillary or non-papillary), gender, and smoking status (binary 

variable). A significant relationship between tumor status and DNA methylation levels was 

defined for each gene by the following four requirements, which varied slightly from the 

iAs-associated gene requirements due to differences in the DNA methylation array 

platforms: (i) p-value < 0.05, (ii) q-value < 0.05, (iii) average β difference (average β value 

in tumors – average β value in non-tumors) ≥ 0.1 or ≤ −0.1, and (iv) a concordant β 

difference of ≥ 0.05 or ≤ −0.05 for ≥ 50% of the patients. β difference was calculated as (β 

value of the tumor specimen – β value of the non-tumor specimen) for each of the patients.

For statistical testing, a permutation test was performed comparing the n=11,837 genes 

evaluated for differential methylation using the Affymetrix Human Promoter assay and the 

Illumina Methylation BeadChip platform. A comparison between the number of total genes 

tested on each platform versus those that were identified as associated with EUC As and 

bladder cancer were compared using randomly generated lists of the same size using a Chi-

squared test.

Transcription Factor Binding Enrichment Analysis

Analysis for enrichment of transcription factor binding sites within the EUC As-associated 

genes and the bladder cancer-associated genes was carried out using Genomatix (Genomatix 

Software Inc., Ann Arbor, MI) database version ElDorado 12–2013. Promoter regions were 

designated as 500 bp upstream and 100 bp downstream of each gene’s transcriptional start 

site. All differentially methylated genes and their corresponding promoter sequences were 

analyzed with both a minimum core and a matrix similarity of 0.95, the second highest level 
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of sensitivity possible. Analysis of transcription factor binding enrichment was restricted to 

transcription factor families associated with vertebrates or general core promoter elements.

Gene-Specific Promoter Methylation Validation

In order to evaluate CpG methylation using an alternate approach, EUC DNA samples were 

analyzed using a CpG-methylation enrichment followed by gene-specific quantitative real 

time PCR (qPCR). DNA samples from five subjects within the study cohort were selected 

with varying levels of EUC tAs. The CpG methylation levels for two genes, specifically 

proteasome (prosome, macropain) subunit, beta type, 2 (PSMB2) and solute carrier family 

12 (potassium/chloride transporter), member 7 (SLC12A7), were evaluated. Enrichment of 

CpG-methylated DNA was analyzed using the MethylMiner™ Methylated DNA 

Enrichment Kit (Invitrogen/Life Technologies, Grand Island, NY). For each sample, 200ng 

of extracted DNA was subjected to methylated DNA immunoprecipitation. Input and 

immunoprecipitated methylated DNA were assessed with quantitative real time PCR 

(qPCR) with iQ SYBR Green Supermix (Bio-Rad) using primer pairs designed within the 

promoter regions for PSMB2 (F: CCCCGACAAACTCCTTCTG; R: 

ACAGAGAAACTGGGCGTCAC) and SLC12A7 (F: TCCTGGGACTTGTTGAGGAC; R: 

GCGGTTTGTGTTGTGTGACT) plated in technical triplicate. qPCR cycle threshold (CT) 

results were generated for the following fractions: (1) Bound DNA, or gene regions that 

were bound to the beads with methyl-binding protein, representing methylated DNA, (2) 

Supernatant and wash DNA, or the fraction of DNA that was unbound, representing 

unmethylated DNA. In order to calculate a relative measure of methylation levels, the 

following equation was used: Methylation level = 100 – (Bound DNA CT – (Supernatant 

DNA CT + Wash DNA CT)). These methylation levels were compared to EUC tAs(III+V) 

levels using Spearman Rank Correlation tests.

RESULTS

Characteristics of Study Population and As Concentrations in EUCs and Urine

Drinking water samples, spot urine, and EUC samples from 46 Hispanic women of the 

larger Chihuahua cohort20 were analyzed within this subcohort. The average age of these 

women was 45 and the average BMI was 30.2. Arsenic in drinking water samples ranged 

from <LOD-275.4 ng As/mL, with an average of 64.1 ng As/mL and a median of 50.7 ng 

As/mL. Of particular note, 70% (31/44) of the drinking water samples collected were above 

the WHO’s recommendation of 10 µg As/L (Table 1).

Because iAs metabolism plays a large role in iAs-associated disease etiology,17 the 

concentrations of various As species in EUCs were determined. Specifically, tAsIII, tAsV, 

tAs(III+V), iAsIII, iAsV, iAs(III+V), MMAsIII, MMAsV, MMAs(III+V), DMAsIII, DMAsV, and 

DMAs(III+V) in EUCs were measured for each of the 46 study subjects (Table 2). Notably, 

the EUC concentration of tAs(III+V), an indicator of iAs exposure, ranged from 0.9 to 46.1 

pg As / 10,000 cells (mean = 14.3 pg As / 10,000 cells). iAsIII, iAsV, and MMAsIII were the 

major As species in EUCs; MMAsV, DMAsV and DMAsIII were only minor metabolites. 

The average ratios of EUC arsenicals were as follows: MMAs/iAs = 0.21, DMAs/MMAs = 

1.64, and DMAs/iAs = 0.37. In contrast, DMAs was the major metabolite found in urine, 
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followed by MMAs and iAs. The urine metabolite ratios were: MMAs/iAs = 6.2, DMAs/

MMAs = 6.3, DMAs/iAs = 34.1 (Table 1). Despite the large differences in arsenical ratios, 

EUC arsenical concentrations were significantly (p<0.05) correlated with urine arsenical 

concentrations for each respective species when using either unadjusted, creatinine-adjusted, 

or specific gravity-adjusted urine arsenical measures (Table S1, Supporting Information). 

Interestingly, the most significant correlations were found between EUC As concentrations 

and the unadjusted urine As concentrations for all As species evaluated, tAs, iAs, MMAs, 

and DMAs. Also of note, the creatinine-adjusted urinary arsenical concentrations showed 

the least significant correlation to arsenical concentrations in EUCs. Among the EUC 

arsenic species there were significant (p<0.05) correlations with only one exception, namely 

the comparison between MMAsIII and DMAsV (p=0.05).

Gene-Specific DNA Methylation Levels are associated with Concentrations of As Species 
in EUCs

The relationships between EUC As species and promoter DNA methylation levels were 

assessed across > 14,000 genes. A total of 49 differentially methylated genes were 

identified, all of which were hypermethylated in relationship to one or more As species. A 

total of 47 genes had promoter methylation levels associated with iAs exposure, as 

characterized by EUC tAs levels, in which 14 genes had promoter methylation levels 

associated with EUC tAsV and 43 with tAs(III+V). In addition, 3 genes had promoter 

methylation levels associated with EUC iAsV, 8 with iAs(III+V), 4 with MMAsIII, 0 with 

MMAsV, and 11 with MMAs(III+V) (Tables 3 and 4, Table S2 and S3, Supporting 

Information). There were no genes with methylation levels associated with EUC tAsIII, 

iAsIII, DMAsIII, DMAsV, or DMAs(III+V).

There was considerable overlap among the genes with differential methylation associated 

with EUC As in relationship to the As species (Figure 1, Table S2, Supporting Information). 

Specifically, 16% (7 out of 43) of the genes associated with tAs(III+V) were also associated 

with iAs(III+V) and 21% (9 out of 43) that were associated with tAs(III+V) were also 

associated with MMAs(III+V). Eleven genes were associated with two or more arsenical 

groups with summed trivalent and pentavalent species: tAs(III+V), iAs(III+V), and 

MMAs(III+V). These eleven genes included alanyl (membrane) aminopeptidase (ANPEP), 

laminin, alpha 2 (LAMA2), methyltransferase like 13 (METTL13), RGPD4 antisense RNA 1 

(RGPD4-AS1, also known as AK097754), SLC12A7, and ubiquitin specific peptidase 7 

(USP7), among others (Table 4). These eleven genes had fold changes in methylation 

greater than 2 that when calculated as percent change in methylation represent estimated 

changes ranging from 0.05 to 0.35 (average = 0.16) associated with tAs(III+V) (Table S3, 

Supporting Information). To note, while all genes associated with EUC As were 

hypermethylated, a less stringent statistical filter (p<0.10) would identify both hypo- and 

hypermethylated genes as associated with EUC As (data not shown). Because the largest 

number of genes had methylation levels associated with EUC tAs(III+V), descriptive statistics 

were reported for this As exposure as well as the covariates used in the regression model for 

each quartile of As exposure (Table 1).
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To investigate potential lack of robustness in our findings of association of tAs with 

methylation levels, we also performed Winsorized regression using age and BMI as 

covariates, with 10% trimming of the observations. The results (Figure S1, Supporting 

Information) showed even stronger association than the original regression-based findings, 

indicating that the findings had not been driven by a few influential observations.

Gene-Specific DNA Methylation Levels are Associated with Concentrations of As Species 
in Urine

In order to compare differentially methylated genes identified using EUC As versus urinary 

As, the relationships between urinary As species and promoter DNA methylation levels 

were assessed across the 49 genes with differential methylation associated with EUC As. Of 

these 49 genes, 13 were associated with one or more urinary As species. Specifically, 3 

genes showed promoter methylation levels associated with urinary tAs(III+V), and 13 genes 

showed methylation levels associated with urinary DMAs(III+V) (Table S2, Supporting 

Information). The three genes associated with urinary tAs(III+V), namely METTL13, 

SLC12A7, and RGPD4-AS1 (also known as AK095619), were also associated with urinary 

DMAs(III+V). Similar to the analysis using the EUC As concentrations, all of the 

differentially methylated genes were hypermethylated in association with urinary As.

Evaluating Gene and Protein Expression Changes using the Comparative Toxicogenomics 
Database

All cells from the 100-ml urine aliquots were used for DNA isolation. Because of relatively 

low EUC cell counts, no cells were left for RNA or protein isolation. As a result, it was not 

possible to directly test whether changes in gene promoter methylation were associated with 

function changes in transcription or protein expression. As an alternative approach, the 

CTD, a rich toxicological database containing thousands of published As-associated studies, 

was queried for known relationships between the 49 genes with differential methylation 

associated with EUC As and perturbations at the mRNA and protein expression level. The 

CTD contained information that 12 of the 49 (25%) genes have been shown to be modulated 

at the mRNA/protein level by iAs/iAs metabolites through in vitro and/or in vivo studies 

(Table S4, Supporting Information).

Metabolic Disease and Cancer Signaling Pathways are Enriched Among the As-associated 
Genes

An enrichment analysis identified disease signatures / biological functions to be associated 

(p<0.01) with the 49 genes with differential methylation related to one or more EUC As 

species. The two most significantly enriched disease signatures were metabolic disease (p = 

0.001) and cancer (p = 0.002) (Table 4). A highly significant (p<10−9) network was 

constructed using the proteins encoded by the 49 genes associated with EUC As. This 

network contains 25 proteins encoded by hypermethylated genes related to cancer and 8 

proteins encoded by hypermethylated genes associated with metabolic disease (Figure S2, 

Supporting Information).
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Overlap between EUC Genes Differentially Methylated in Response to iAs Exposure and in 
Bladder Cancer

In order to generate a DNA methylation signature related to a disease outcome pertinent to 

iAs exposure and to EUCs, a separate database was used to identify genes differentially 

methylated in bladder cancer. Specifically, the TCGA repository was used to identify 7042 

genes with differential methylation in human bladder cancer (Table S5, Supporting 

Information). Of the 7042 genes associated with bladder cancer, 5542 (79%) showed 

hypermethylation in the bladder tumors.

Of the 49 genes with differential methylation associated with EUC As, 22 (45%) were also 

associated with bladder cancer (Table 4, Table S5, Supporting Information). Permutation-

based analysis demonstrates that this proportion of overlap is higher than would be expected 

by chance (p<0.05). Of the 22 common EUC As- and bladder cancer-associated genes, 15 

were hypermethylated in bladder cancer tissue versus non-cancerous tissue, including 

ANPEP, LAMA2, PSMB2, and USP7.

Common Transcription Factor Binding Sites Identified in the EUC As- and Bladder Cancer-
Associated Genes

Transcription factor binding site enrichment analysis of the 49 genes with differential 

methylation associated with EUC As revealed 22 transcription factor families with an 

enrichment (p<0.05). A matched gene set was queried from the genes with differential 

methylation associated with bladder cancer where the binding site enrichment analysis 

identified 27 transcription factor families (p<0.05).

Interestingly, both the EUC As- and bladder cancer-associated genes shared 21 transcription 

factor families in common, suggesting that common transcription factors may play a role in 

response to iAs exposure as well as in bladder tumors. These common transcription factor 

families include Sine oculis homeobox homolog 3 (SIX3), RNA polymerase II transcription 

factor II B (TF2B), TCF11 transcription factor (TCFF), and Two-handed zinc finger 

homeodomin transcription factors (ZFHX) (Table S6, Supporting Information).

PCR Promoter Methylation Results

The CpG methylation levels for two genes of interest, PSMB2 and SLC12A7, were tested 

with quantitative real time PCR (qPCR) using DNA from five subjects within the study 

cohort. The subjects spanned the range of exposure to As. These two genes were selected for 

further evaluation because they were both identified as genes with differential methylation 

associated with EUC As and bladder cancer. Similar to the genome-wide findings, the 

promoter methylation levels of both genes increased with increasing levels of EUC 

tAs(III+V) (R=0.90 for PSMB2 and R=0.60 for SLC12A7), where PSMB2 was statistically 

significant (p=0.04) (Figure S3).

DISCUSSION

This study is the first to characterize gene-specific DNA methylation levels associated with 

iAs exposure in urothelial cells primarily originating in the human urinary bladder 
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epithelium, one of the tissues targeted in iAs-induced carcinogenesis. Here, we examined the 

relationship between iAs exposure and iAs metabolism and DNA methylation profiles in 

EUCs in individuals selected from a recently established cohort in Chihuahua, Mexico. A 

total of 49 differentially methylated genes were identified, all hypermethylated in 

relationship to tAs in EUCs (an indicator of iAs exposure) or with As metabolites, iAs and 

MMAs, retained in EUCs. Interestingly, differences in DNA methylation were most 

apparent when analyzed in the context of the sum of the trivalent and pentavalent As species 

(in contrast to the individual metabolites), with the greatest number of genes associated with 

tAs(III+V). These findings provide novel information regarding iAs exposure and metabolism 

and its relationship to genome-wide epigenetic modifications in urothelial cells.

Although iAs exposure has previously been associated with both hypo- and 

hypermethylation in leukocyte-derived DNA,33 here all 49 EUC As-associated genes 

showed CpG promoter region hypermethylation. Interestingly, if a less stringent statistical 

criteria is used, genes with both hyper- and hypomethylation are identified. Nevertheless, the 

observation that the most significant genes show increased methylation associated with iAs 

exposure is consistent with prior results in which skin lesion status in an iAs-exposed human 

population was associated with a general trend of gene-specific CpG hypermethylation in 

peripheral blood leukocytes.11 Gene-specific CpG hypermethylation is also prevalent in 

DNA from tumors of subjects with diseases relevant to iAs exposure, including cancer.35 

Further supporting this relationship to disease, the majority (79%) of bladder cancer-

associated genes also were hypermethylated. This trend for gene-specific hypermethylation 

associated with both iAs exposure and disease relevant to iAs exposure may represent a 

mechanistic link between exposure and disease as these genes may have silenced expression.

In the present study, there were no differentially methylated genes associated with EUC 

DMAs concentrations. This finding is consistent with a previous study where DMAs levels 

in urine were found to influence DNA methylation patterns in peripheral leukocytes to a 

lesser extent than the urinary levels of iAs and MMAs.36 Furthermore, a previous 

epidemiological study on an iAs-exposed population located in Taiwan found significantly 

higher percentages of MMAs and lower percentages of DMAs in the urine of patients with 

urothelial carcinoma in comparison to healthy residents.37 Together, results of this study and 

the previously published data suggest that accumulation of iAs and/or MMAs in urine and 

target tissues, which may indicate an inefficient iAs methylation, may play a significant role 

in both the differential DNA methylation and health risks associated with iAs exposure.

It is important to note that the data showed that the proportions and ratios of As species in 

EUCs differed from those present in urine, a trend that was also observed in the larger 

cohort.20 Specifically, iAs(III+V) were the most abundant species in EUCs, while 

DMAs(III+V) were the most abundant urinary metabolite in both the larger cohort20 and the 

subcohort analyzed in the present study. Another difference between EUC and urinary As 

results were the number of differentially methylated genes identified. Specifically, more 

genes were associated with urinary DMAs than urinary tAs, while this trend was reversed in 

the EUC As findings. Thus the DNA methylation associations would be influenced by the 

use of intra-cellular or urinary measures of As as biomarkers of exposure. These findings 

further suggest that the identified genes with differential methylation likely depend upon the 
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present and proportion of As metabolites in EUCs. Regardless of these differences, it is 

important to note that the EUC arsenical concentrations were significantly correlated with 

the urinary arsenical concentrations. These findings provide important information for future 

investigations into DNA methylation patterns in relationship to biomarkers of iAs exposure 

in humans.

The 49 genes with differential methylation associated with EUC As are known to play a role 

in metabolic disease and cancer. This finding is intriguing, since we recently found that the 

accumulation of iAs and MMAs in EUCs from subjects in the Chihuahua cohort is linked to 

an increased prevalence of diabetes and cardiometabolic risk factors (Mendez et al., 

submitted). Among these 49 genes was USP7, a regulator of diabetes-related signaling.38 Of 

interest given known links between iAs exposure and diabetes,3,39 knockdown of USP7 in 

primary murine hepatocytes was shown to increase the expression of FoxO1-target 

gluconeogenic genes and increase glucose production.40 Furthermore, in relationship to 

cancer, USP7 activity plays a role in oncogenesis where elevated USP7 expression has been 

linked to cancers of the bladder, colon, prostate, liver, and lung.41 Notably, cancer of the 

bladder, prostate, liver, and lung are among the known adverse effects of iAs exposure.4 

Previous studies from our lab have linked iAs exposure with alterations in gene methylation/

signaling related to metabolic disease and cancer.9,11,36,42,43 The current study further 

supports the hypothesis that iAs and/or its metabolites may alter these key cellular signaling 

pathways through epigenetic modifications, specifically through the alteration of DNA 

methylation profiles in target tissues.

In order to determine whether the DNA methylation signature in EUCs from iAs-exposed 

individuals may show commonalities with the genes altered in bladder cancer, the EUC As-

associated genes were compared against bladder cancer-associated genes analyzed from the 

TCGA repository. A total of 22 of the 49 As-associated genes (45%) were also differentially 

methylated in bladder cancer. Of these genes, 15 showed increased promoter methylation 

associated with both bladder cancer and EUC As, including USP7. In support of our 

findings, this gene has been previously identified to be hypermethylated in human colorectal 

cancer tissue.44 while many studies have linked iAs exposure with increased prevalence of 

bladder cancer in exposed populations,4,37,45,46 these data provide novel evidence that the 

epigenetic dysregulation of cancer-related genes may play an important role in the 

carcinogenic effects of iAs exposure.

Changes in DNA methylation levels do not always contribute to functional changes in gene 

expression. For example, a recent report suggests a small fraction of iAs-associated DNA 

methylation changes may relate to functional changes at the transcript level.33 However, 

DNA methylation within CpG islands located within gene promoter regions have been 

shown to be the most predictive of transcriptional changes,33 and as such the present 

analysis focused on CpG sites within gene promoter regions. As RNA and protein were not 

available from the limited cell number of EUCs, it was not possible to test whether the 

observed changes in DNA methylation were directly related to functional change in mRNA 

levels. Nevertheless, a total of 12 (25%) of the 49 differentially methylated genes have been 

previously associated with As-induced changes in mRNA/protein levels. These findings 
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provide support for potential links between iAs-associated DNA methylation and functions 

changes in expression.

We have hypothesized that transcription factors, through their binding to specific regions of 

DNA and subsequence occupancy, may play a role in determining DNA methylation 

patterning that occurs in response to environment exposures, resulting in “environmental 

footprints”.47 The current study’s in silico evidence further supports a plausible role of 

transcription factor occupancy in the regulation of As exposure-associated DNA methylation 

patterns. A total of 21 transcription factor families were identified with enriched binding 

sites in the promoter regions of EUC As and bladder cancer-associated genes. This is of 

great interest as transcription factors are not only key molecules involved in the regulation 

of gene expression influenced by DNA methylation but also potential regulators of the DNA 

methylation profiles themselves.48 The four most significantly enriched transcription factor 

families, SIX3, TF2B, TCFF, and ZFHX, have known associations with human 

cancers.49–52 Of particular interest, dysregulation of two members of the ZFHX family, zinc 

finger E-box binding homeobox 1 (Zeb1) and zinc finger E-box binding homeobox 2 

(Zeb2), has been associated with bladder cancer.52,53 Overall, the extensive overlap between 

transcription factor binding sites within genes with differential methylation associated with 

EUC As and bladder cancer indicates that similar transcription factors may mediate both 

exposure and disease-related epigenetic effects. This finding may have clinical implication 

as the identified transcription factors could be targeted for disease prevention associated 

with environmental exposure to iAs.

While this study provides an increased understanding of As exposure and its link to 

epigenetic effects within cells derived primarily from the bladder, it is not without 

limitations. The TCGA data used to identify the bladder cancer-associated genes contains 

data from humans with differing demographics than those used in the As analysis and was 

analyzed using a different methylation platform. The TCGA also includes data from 

individuals with invasive bladder cancer, while the EUCs were collected from apparently 

healthy individuals. Despite these differences, 22 genes were identified as common among 

the genes with differential methylation associated with EUC As and bladder cancer, 

representing important gene targets potentially linking iAs exposure and disease. It is likely 

that even more overlaps would be identified if exposure and disease status (e.g. bladder 

cancer) were established in the same individual and study cohort. Nevertheless, such a 

comparison is currently limited by the available epigenetic repositories and the scope of 

medical examination that is feasible in a field study, similar to the present study involving 

the cohort in Chihuahua.

In summary, the results from the present study demonstrate that iAs exposure and specific 

As metabolites retained in EUCs are associated with the altered promoter methylation of key 

cancer and metabolic disease associated genes. Future studies will further examine 

biomarkers of iAs exposure and metabolism and disease status while minimizing population 

variability. Taken together this research provides novel evidence of associations between 

iAs and its metabolites with DNA methylation profiles within EUCs that primarily originate 

from a human tissue directly targeted by iAs exposure, the bladder epithelium. Results from 
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this study provide important knowledge of potential mechanistic links between environment 

exposure to iAs and human health outcomes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS

As arsenic

AsIII arsenite

AsV arsenate

BMI body mass index

EUCs exfoliated urothelial cells

DMAs dimethylated arsenic

DMAsIII dimethylarsinite

DMAsV dimethylarsinate

EOMES eomesodermin

iAs inorganic arsenic

LAMA2 laminin alpha 2

METTL13 methyltransferase like 13

MMAs monomethylated arsenic or methylarsenic

MMAsIII methylarsonite

MMAsV methylarsonate

PSMB2 proteasome (prosome, macropain) subunit, beta type, 2

RGPD4-AS1 RGPD4 antisense RNA 1

SLC12A7 solute carrier family 12 (potassium/chloride transporter), member 7

SIX3 sine oculis homeobox homolog 3
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tAs total arsenic

TCFF TCF11 transcription factor

TF2B RNA polymerase II transcription factor II B

USP7 ubiquitin specific peptidase 7

ZFHX two-handed zinc finger homeodomain transcription factors
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Figure 1. 
Heat map illustrating the differentially methylated genes associated with tAs, iAs, MMAs, 

and/or DMAs concentrations in EUCs. Genes are sorted according to those associated with 

the highest number of EUC arsenical groups (top) to the lowest number of arsenical groups 

(bottom).
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Table 1
Demographic information and arsenic levels in drinking water, urine, and EUCs for the 
study cohort

Population characteristics and EUC arsenic levels are also detailed for the 11 subjects with the lowest EUC 

tAs(III+V) levels and the 11 subjects with the highest EUC tAs(III+V) levels, representing the lowest and highest 

exposed quartiles when considering EUC tAs levels, respectively.

mean, median (range)

Age (years) 45, 45 (20–71)

BMI (kg/m2) 30.2, 29.1 (19.4–49.1)

Arsenic in drinking water (ng As/mL)* 64.1, 50.7 ((<LOD**)−275.4)

Urine Creatinine (mg/dL) 114.3, 110.5 (8.2–397.4)

Urine Specific Gravity 1.01, 1.01 (1.00–1.04)

Urine Arsenicals (ng/mL)

    Urine iAs 6.4, 3.8 ((<LOD)−55.3)

    Urine MMAs 9.4, 5.2 (0.3–58.2)

    Urine DMAs 49.0, 41.6 (1.7, 260.3)

    Urine tAs 64.7, 54.2 (2.2–373.9)

Creatinine-Adjusted Urine Arsenicals
(ng As/mg Creatinine)

    iAs 5.6, 3.8 ((<LOD)−45.6)

    MMAs 8.4, 6.1 (0.4–48.0)

    DMAs 44.6, 36.2 (2.7–214.6)

    tAs 58.6, 48.6 (3.4–308.2)

Specific Gravity-Adjusted Urinary Arsenicals
(ng As/SG)

    iAs 8.0, 6.7 ((<LOD)−39.1)

    MMAs 12.2, 8.9 (0.8–50.0)

DMAs 64.7, 70.1 (3.8–223.1)

    tAs 84.9, 93.1 (7.3–278.9)

Urine Percent Arsenicals (%)

    iAs 8.7, 7.6 (0.1–22.5)

    MMAs 14.5, 14.0 (5.0–29.3)

    DMAs 76.9, 79.6 (52.5, 90.8)

Urine Arsenical Ratios

    MMAs/iAs 6.2, 1.6 (0.5, 111.4)

    DMAs/MMAs 6.3, 5.9 (1.8–17.0)

    DMAs/iAs 34.1, 10.6 (2.6–690.0)

EUC Percent Arsenicals (%)

    iAs 69.8, 74.6 (21.0–89.5)

    MMAs 13.6, 12.6 (6.8–28.7)

Chem Res Toxicol. Author manuscript; available in PMC 2016 February 10.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Rager et al. Page 22

mean, median (range)

    DMAs 16.6, 9.8 (2.6–71.5)

EUC Arsenical Ratios

    MMAs/iAs 0.21, 0.18 (0.08–0.44)

    DMAs/MMAs 1.64, 0.66 (0.17–9.57)

    DMAs/iAs 0.37, 0.13 (0.03–3.41)

Lowest Exposed Quartile

    EUC tAs(III+V) (pg As/10,000 cells) 2.14, 2.21 (0.86–3.20)

    Age (years) 50, 50 (27–71)

    BMI (kg/m2) 29.3, 29.0 (19.4–48.6)

Highest Exposed Quartile

    EUC tAs(III+V) (pg As/10,000 cells) 33.84, 34.44 (22.38–46.13)

    Age (years) 42, 46 (20–71)

    BMI (kg/m2) 30.8, 26.0 (20.9–42.3)

*
Arsenic levels in drinking water were determined using n=44 samples

**
LOD refers to limit of detection.

Chem Res Toxicol. Author manuscript; available in PMC 2016 February 10.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Rager et al. Page 23

Table 2
Arsenic species concentrations in human EUCs

Means and medians were calculated across all subjects (n=46).

EUC Arsenic Species

III V III+V

mean, median
(range in pg As / 10,000 cells)

tAs 10.9, 8.6
(0.4–58.6)

3.7, 2.4
(0.4–15.4)

14.3, 11.2
(0.9–46.1)

iAs 8.9, 6.7
(0.2–53.6)

2.3, 1.1
((<LOD)−9.6)

10.9, 8.0
(0.5–38.9)

MMAs 1.7, 1.3
(0.1–8.3)

0.4, 0.2
((<LOD)−2.1)

2.1, 1.4
(0.1–10.3)

DMAs 0.3, 0.2
((<LOD)−2.5)

1.0, 0.7
(0.1–4.6)

1.4, 1.0
(0.2–5.3)
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Table 3
Number of genes with differential methylation associated with arsenic species in EUCs

Arsenic Species III V III+V

tAs 0 14 43

iAs 0 3 8

MMAs 4 0 11

DMAs 0 0 0
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