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Abstract 

Improving EEG signal interpretation, specificity, and sensitivity is a primary focus of many 

current investigations, and the successful application of EEG signal processing methods 

requires a detailed knowledge of both the topography and frequency spectra of low-amplitude, 

high-frequency craniofacial EMG. This information remains limited in clinical research, and as 

such, there is no known reliable technique for the removal of these artifacts from EEG data. 

The results presented herein outline a preliminary investigation of craniofacial EMG high-

frequency spectra and 3D MRI segmentation that offers insight into the development of an 

anatomically-realistic model for characterizing these effects. The data presented highlights the 

potential for confounding signal contribution from around 60 to 200 Hz, when observed in 

frequency space, from both low and high-amplitude EMG signals. This range directly overlaps 

that of both low γ (30-50 Hz) and high γ (50-80 Hz) waves, as defined traditionally in 

standatrd EEG measurements, and mainly with waves presented in dense-array EEG 

recordings. Likewise, average EMG amplitude comparisons from each condition highlights the 

similarities in signal contribution of low-activity muscular movements and resting, control 

conditions. In addition to the FFT analysis performed, 3D segmentation and reconstruction of 

the craniofacial muscles whose EMG signals were measured was successful. This 

recapitulation of the relevant EMG morphology is a crucial first step in developing an 

anatomical model for the isolation and removal of confounding low-amplitude craniofacial 

EMG signals from EEG data. Such a model may be eventually applied in a clinical setting to 

ultimately help to extend the use of EEG in various clinical roles. 
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 Of the many obfuscating phenomena that have been 

identified and studied in the field of 

electroencephalography (EEG), craniofacial 

eletromyographic (EMG) artifacts remain of great 

concern in clinical research applications.
1-3

 The notion 

that craniofacial EMG activities contaminate EEG data 

is not a new concept, but its urgency has only become 

apparent after a study by Whitham et al. in 2007 

suggested that most scalp EEG data above 20 Hz might 

simply be recorded EMG activity.
2
 Indeed, results from 

many recent investigations have further contributed to 

this notion and thereby further necessitate development 

of reliable techniques for characterizing and isolating 

EMG artifacts.
1,4-8

 

Not all noise from EMG activity is difficult to 

discirminate from EEG data. Large-amplitude muscle 

activity is readily visible in any EEG data set and can 

therefore be easily detected with the use of signal 

processing techniques such as filtering, spectral 

analysis, and/or Principle or Independent Component 

Analysis (ICA).
9-18

 On the contrary, the efficacy of 

many of these signal processing techniques is 

questionable and unreliable in the separation of low-

amplitude EMG activity from EEG data, as these two 

signals may be of comparable amplitude.
7,8

 Aside from 

amplitude, the frequency spectra of EMG and EEG can 

overlap – a phenomenon which is particularly 

prevalent in scalp EEG, whose ripple frequency 

measurements are typically between 80-250 Hz may be 
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significantly affected by high-frequency craniofacial 

EMG artifacts.
19-21

 

In order to generate an accurate and clinically-relevant 

model of the signal contribution of craniofacial EMG, 

detailed morphological information must likewise be 

known. The use of segmented magnetic resonance 

imaging (MRI) has previously been developed to 

model the electrical behavior of the human brain under 

normal and pathological conditions.
22

 This imaging 

modality can be utilized to accurately characterize 

extant coupled non-linear physical mechanisms and 

how they impact the propagation of EMG and EEG 

signals through the inhomogeneous media of the 

head.
23

 In the generation of a 3D model from 

segmented MRI images, most major tissue surfaces can 

readily be identified in each slice.
22,24,25

 

In general, the successful application of modern EEG 

signal processing methods requires a detailed 

knowledge of both the topography and frequency 

spectra of low-amplitude craniofacial EMG. This 

information remains limited to clinical research, and as 

such, there is no known reliable technique for the 

removal of these artifacts from EEG data. The results 

presented herein outline a preliminary investigation of 

both craniofacial EMG frequency spectra and 3D MRI 

segmentation that offers insight into the development 

of an anatomically-realistic model for characterizing 

these effects. Such a model then can be applied in a 

clinical setting to excise low-amplitude EMG activity 

and ultimately help to extend the use of EEG in various 

clinical roles. 

Material and Methods 

EMG data acquisition 

EMG measurements were performed on 12 healthy 

volunteer subjects: 6 female and 6 male, from ages 19 

to 30. The equipment used for these measurements was 

the Kine Measurement System with four wireless 

triode surface electrode pads and a simultaneous video 

recording system. 

The subject was first asked to lay down on an inclining 

bench while his/her skin was cleaned with alcohol and 

conductive gel put on the electrodes. A video camera 

was placed in front of the subject, which captured the 

front of the subject’s face. The electrodes were placed 

on the left and right temporal and frontal muscles of 

the subjects. After this setup, each subject was asked to 

perform a series of several facial exercises. Firstly, 

each subject was asked to maximally clench his/her 

jaw for 10 seconds, corresponding to maximum 

contraction of the temporal muscles. Then, EMG of the 

frontal muscles was recorded by having each subject 

both raise and furrow their eyebrows as much as 

possible for 10 seconds. Next, each subject was given a 

piece of chewing gum and left to reach a stable 

mastication rhythm. EMG signals were then recorded 

while the subject masticated with the chewing gum on 

the left side for 30 seconds, which was then repeated 

on the right side. Lastly, for control conditions, EMG 

was measured while each subject laid completely still 

with their eyes open and fixed on a spot for 30 

seconds, which was then repeated with their eyes 

closed. 

 
Fig 1. Sample raw EMG data depicting the results of the clustering methodology utilized to separate active and 

inactive chewing conditions (Red is active, and blue is inactive). 

 

 



Craniofacial EMG and 3D muscle reconstruction from MRI 

Eur J Transl Myol - Basic Appl Myol 2015; 25 (2): 93-99 

- 95 - 

 

Frequency Analyses 

The Power Spectral Density (PSD) was computed by 

taking the Fast Fourier Transformations (FFT) of the 

EMG signal. All signal analyses were performed with 

Matlab software (http://www.mathworks.com). The 

mean PSD with its standard deviation for each 

condition was computed by averaging all trials per 

subject first, then normalising the amplitudes to their 

maximum value. The next step was to average the PSD 

between all subjects. The mean and standard deviation 

values within 10 Hz frequency bins from 0 to 800 Hz 

were normalized in order to obtain inter-conditionally 

comparable results for these bandwidths. 

In case of the chewing condition, the active and 

inactive segments had to first be defined. To 

accomplish this, spectral analysis was performed on 

these two classes separately, and signal components 

representing the active chewing were automatically 

detected by clustering analysis. First, the original 

signal in the time domain was segmented into 0.2 s 

windows with a shift of 20 ms. A variance was then 

computed for each window. K-means algorithm was 

chosen to perform the clustering analysis on an array of 

the previously computed variances. The number of 

clusters was experimentally set to three while the 

largest one represented the inactive chewing. The two 

remaining clusters were merged to obtain the active 

chewing class. Results from this method are 

exemplified in Figure 1 

Craniofacial muscle modeling from MRI 

The MRI segmentation and 3D reconstruction method 

utilized in this study has been reported.
26,27

 The dataset 

used to model craniofacial muscles in the reported 

investigation was a T1-weighted MRI scan from a 

voluntary subject. The scanning protocol utilized was 

chosen to optimize the contrast between white and gray 

values with voxel sizes of 1 mm
3
. MIMICS image 

analysis software (Materialise, Leuven, Belgium) was 

first utilized to identify the temporalis (temporal) 

muscle via contrast thresholding, as its proximity to 

bone makes it readily visible. Next, the frontalis 

(frontal) muscle was identified using a combination of 

contrast and manual thresholding according to known 

 
 

Fig 2. Example thresholding method using MIMICS software to identify and segment the frontal (A) and temporal (B) 

muscles. This technique presents its utility as a foundation for developing an anatomically-relevant model for 

assessing craniofacial muscle EMG artifacts and their potential to contribute to measured EEG. 

 



Craniofacial EMG and 3D muscle reconstruction from MRI 

Eur J Transl Myol - Basic Appl Myol 2015; 25 (2): 93-99 

- 96 - 

 

anatomy and published methodologies.
28

 An example 

image of this method is shown in Figure 2. 

Statistical Analysis 

Statistical analysis was performed using appropriately 

sized ANOVA with posthoc testing carried out using a 

student’s T-test. Differences were considered 

statistically significant for p < 0.05. 

Results 

In order to assess the utility of comparing frequency 

spectra of EMG signals during each recorded facial 

movement, FFT analyses were completed to obtain 

mean PSDs and standard deviations at each 10 Hz 

frequency bin for each condition. Additionally, mean 

amplitudes for each of the subject conditions were 

computed by taking the absolute values of equal time 

frames within the recorded EMG signals. Results from 

these analyses are shown in Figures 3 A and B, 

respectively. 

Firstly, as is evident by comparing the frequency 

spectra for all of the subject conditions, frequencies 

from around 60 to 200 Hz comprise the majority of 

each curve. This frequency range corresponds to both 

low γ (30-50 Hz) and high γ (50-80 Hz) EEG waves. 

The control conditions, wherein subjects rested with 

eyes open or closed, contributed very similar frequency 

ranges to those of inactive chewing and both temporal 

muscle exercises (Figure 2A). Contrastingly, the 

temporal activation and active chewing conditions both 

contributed significantly more to the frequency ranges 

of 100-280 Hz and 100-370 Hz, respectively (Figure 

3A, a-b and a-c), than any other condition ( p < 0.05). 

Additionally, comparison of left and right chewing 

conditions showed minimal variation between 

conditions (Figure 3B), highlighting the utility of the 

methodology utilized in separating active and inactive 

signals (Figure 1).  

Finally, in comparing the relative mean EMG signal 

amplitudes of all conditions, all conditions except for 

inactive chewing exhibited significantly higher signal 

amplitudes than either control condition (Figure 3C, p 

< 0.05). Furthermore, the maximum temporal clench 

condition had significantly higher amplitudes than all 

other conditions (p < 0.05). 

These data are valuable because, as previously 

mentioned, traditional signal processing techniques 

perform FFT analyses to assess EEG frequency 

spectra, and understanding how high-frequency EMG 

may confound this signal is crucial to being able to 

optimally analyze scalp electrical activity. Our results 

 
 

Fig 3. Results from EMG signal FFT analysis and mean signal amplitude assessment. Note that the closed and open 

eyes conditions were both resting controls, frontal1 and frontal2 were maximum eyebrow raise and furrow 

conditions, respectively, temporal refers to the maximal temporal clench condition, and chewing active and 

inactive refer to the high-amplitude and low-amplitude portions of the chewing condition, as segmented by 

clustering analysis. A) Frequency spectra from each of the measured conditions (note that only the left side 

chewing condition was included in this plot). B) Frequency spectra for the left and right side chewing 

conditions. Statistical significance (*) was determined as p<0.05 in all assessments. C) Comparison of mean 

signal amplitudes across all measured conditions. Note that all conditions except for both chewing inactive 

datasets were significantly greater in amplitude than both control conditions (*). Likewise, the maximum 

temporal clench condition was significantly greater in amplitude than all other conditions ($). Statistical 

significance was determined as p<0.05 in all assessments. 
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demonstrate the presence of these confounding EMG 

frequencies as a normalized intensity distribution in 

frequency space, and understanding which frequencies 

optimally represent each condition's EMG signal and 

how they may overlap EEG frequency spectra are 

crucial first steps in developing a method for their 

removal from dense-array EEG data. However, 

because these frequencies are normalized, the exact 

contribution of each EMG in respect to its intensity at a 

specific frequency remains unclear. Likewise, which 

frequencies are the most "important" (e.g. frequencies 

with the highest intensity) for each condition is 

additionally unclear. It is reasonable to conclude that 

each of the different conditions result in different 

intensity distributions in frequency space, which 

highlights the dependency of EMG frequency 

contribution to an EEG signal on the kind of muscle 

activity exhibited by the subject. This has to be taken 

into account during EEG data acquisition/analysis and 

EEG modeling and can be addressed by our analyses. 

Next, to assess whether MRI segmentation and 3D 

reconstruction could be used to anatomically define the 

temporal and frontal craniofacial muscles used in EMG 

acquisition, a representative patient's cranial MRI was 

utilized. The results from the abovementioned 

segmentation using MIMICS are presented in Figure 4.  

As is evident by the results from the MRI 

segmentation, both the left and right temporal muscles 

along with the frontal muscle were readily 

reconstructed using a combination of contrast 

thresholding and anatomical referencing. These results 

highlight the utility of this methodology in 

characterizing the morphology of the craniofacial 

muscles utilized in the EMG measurement portion of 

this study. Using this methodology to couple 

anatomical information with measured EMG signal 

could serve as a fundamental basis for developing an 

anatomical model for EMG and EEG signal 

measurement and processing. 

Discussion and Conclusions 

The successful application of EEG signal processing 

methods requires a detailed knowledge of both the 

topography and frequency spectra of low-amplitude, 

high-frequency craniofacial EMG. This information 

remains unavailable to clinical researchers, and as 

such, there is no known reliable technique for the 

removal of these artifacts from EEG data. The results 

presented herein outline a preliminary investigation of 

craniofacial EMG high-frequency spectra and 3D MRI 

segmentation that offers insight into the development 

of an anatomically-realistic model for characterizing 

these effects. The data presented highlights the 

potential for confounding signal contribution in EEG 

acquisition. However, since these data were 

normalized for spectral analyses, the comparative 

degree to which each respective craniofacial muscular 

movement may contribute to this signal remains 

unclear. Nevertheless, average EMG amplitude 

comparisons from each condition highlights the 

similarities in signal contribution of low-activity 

muscular movements and resting, control conditions. 

 
 

Fig 4. MRI segmentation and 3D reconstruction of temporal and frontal craniofacial muscles. A) Frontal, B) 

transverse, and C) sagittal plane cranial MRI slices. D) 3D reconstruction showing frontal (purple) and 

temporal (red) craniofacial muscles. 
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In addition to the FFT analysis performed, 3D 

segmentation and reconstruction of the craniofacial 

muscles whose EMG signals were measured was 

successful. This recapitulation of the relevant EMG 

morphology is a crucial first step in developing an 

anatomical model for the isolation and removal of 

confounding low-amplitude craniofacial EMG signals 

from EEG data. Such a model may be eventually 

applied in a clinical setting to ultimately help to extend 

the use of EEG in various clinical roles. 
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