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Abstract

In this article, we study the causal inference problem with a continuous treatment variable using 

propensity score-based methods. For a continuous treatment, the generalized propensity score is 

defined as the conditional density of the treatment-level given covariates (confounders). The dose–

response function is then estimated by inverse probability weighting, where the weights are 

calculated from the estimated propensity scores. When the dimension of the covariates is large, the 

traditional nonparametric density estimation suffers from the curse of dimensionality. Some 

researchers have suggested a two-step estimation procedure by first modeling the mean function. 

In this study, we suggest a boosting algorithm to estimate the mean function of the treatment given 

covariates. In boosting, an important tuning parameter is the number of trees to be generated, 

which essentially determines the trade-off between bias and variance of the causal estimator. We 

propose a criterion called average absolute correlation coefficient (AACC) to determine the 

optimal number of trees. Simulation results show that the proposed approach performs better than 

a simple linear approximation or L2 boosting. The proposed methodology is also illustrated 

through the Early Dieting in Girls study, which examines the influence of mothers’ overall weight 

concern on daughters’ dieting behavior.
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1 Introduction

Much of the literature on propensity scores in causal inference has focused on binary 

treatments. In the past decade, a few studies (e.g., Lechner (2002), Imai and Van Dyk 

(2004), Tchernis, Horvitz-Lennon, and Normand (2005), Karwa, Slavković, and Donnell 

(2011) and McCaffrey, Griffin, Almirall, Slaughter, Ramchand, and Burgette (2013)) have 

extended propensity score-based approaches to categorical treatments with more than two 

levels.

In this article, we consider the problem of causal inference when the treatment is 

quantitative. Quantitative treatments are very common in practice, such as dosage in 

biomedical studies (Imbens, 2000), number of cigarettes in prevention studies (Imai and Van 

Dyk, 2004), and duration of training in labor studies (Kluve, Schneider, Uhlendorff, and 

Zhao, 2012). In the special case of continuous treatments, a main objective is to estimate the 

dose-response function. Hirano and Imbens (2004) propose a two-step procedure for 

estimating the dose-response function and suggest a technique called “blocking” to evaluate 

the balance in the covariates after adjusting for the propensity scores. An alternative 

approach (Robins, 1999) is based on marginal structural models (MSMs). In MSMs, we 

specify a response function and employ IPW to consistently estimate the parameters of the 

function.

A key step in both approaches is to estimate the generalized propensity score, which is 

defined as the conditional density of the treatment level given the covariates. Conditional 

density is usually estimated nonparametrically, such as kernel estimation or local 

polynomial estimation (e.g., Hall, Wolff, and Yao (1999), Fan, Yao, and Tong (1996)). 

When there are a large number of covariates in the study, the nonparametric estimation of 

the conditional density suffers from the curse of dimensionality. Given the limited literature 

on this topic, we propose a boosting algorithm to estimate the generalized propensity score. 

In boosting, the number of trees to be generated is an important tuning parameter, which 

essentially determines the trade-off between bias and variance of the targeted causal 

estimator. In the binary treatment case, it has been suggested that the optimal number of 

trees be determined by minimizing the average standardized absolute mean (ASAM) 

difference between the treatment group and the control group (McCaffrey, Ridgeway, and 

Morral, 2004). The standardized mean difference is also a well-established criterion to 

assess balance in the potential confounders after weighting. This idea can easily be extended 

to the categorical treatment case. Similarly, for a continuous treatment, we could divide the 

treatment into several categories and draw causal inference based on the categorical 

treatment. However, doing so may introduce subjective bias and information loss. Instead, 

we aim to develop an innovative criterion that minimizes the correlation between the 

continuous treatment variable and the covariates after weighting.

This article proceeds as follows. In Section 2, we review the concepts of dose-response 

function, generalized propensity scores and the ignorability assumption. In Section 3, we 

propose a boosting method to estimate the generalized propensity scores and propose an 

innovative criterion to determine the optimal number of trees in boosting. A detailed 

algorithm is described and the corresponding R code is provided in the Appendix. In Section 
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4, we compare the proposed methods through simulation studies, and a data analysis 

application to the Early Dieting in Girls study is presented in Section 5. Some discussion 

concludes Section 6.

2 Dose-Response Function

2.1 Definition and Assumptions

Let Y denote the response of interest, T be the treatment level, and X be a p-dimensional 

vector of baseline covariates. The observed data can be represented as (Yi, Ti, Xi), i = 1,…,n, 

a random sample from (Y, T, X). In addition to the observed quantities, we further define 

Yi(t) as the potential outcome if subject i were assigned to treatment level t. Here, T is a 

random variable and t is a specific level of T. The dose-response function we are interested 

in estimating is μ(t) = E[Yi(t)], and we assume Yi(t) is well defined for t ∈ τ, where τ is a 

continuous domain.

Similar to the binary case, the ignorability assumption is as follows:

where f (t|·) refers to the conditional density. That is, the treatment assignment is 

conditionally independent of the potential outcomes given the covariates. In other words, we 

assume there are no unmeasured covariates that may jointly influence the treatment 

assignment and potential outcomes.

Denote the generalized propensity score as r(t, X) ≡ fT|X(t|X), which is the conditional 

density of observing the treatment level t given the covariates (Imbens, 2000). The 

ignorability assumption implies

That is, to adjust for confounding, it is sufficient to condition on the generalized propensity 

scores instead of conditioning on the vector of covariates, which might be high-dimensional.

2.2 Estimation based on Marginal Structural Models

Under the ignorability assumption, we focus on the marginal structural model approach to 

estimate the dose-response function proposed by Robins (1999) and Robins, Hernán, and 

Brumback (2000). The method works by building a marginal structural model for the 

potential outcomes. For example, we may assume a linear model:

(1)

Model (1) is marginal because it is defined for the expected value of potential outcomes 

without conditioning on any covariates (which is different from regression models). Based 

on the observed data (Yi, Ti, Xi), i = 1,…,n, the parameters in (1) can be consistently 

estimated by IPW. For the ith subject, the weight is
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(2)

There are two important issues related to this approach: (i) the estimation of the inverse 

probability weights; (ii) the functional form of the outcome model in (1). The first issue is 

the main topic of this article and will be explored in the next section. Here we briefly discuss 

the second issue. The consistency result of MSM estimators relies on the correct 

specification of the outcome model. However, the true form of E[Y(t)] is unknown in reality 

and a flexible model is always preferred. In the data application, we assume a regression 

spline function (Eubank, 1988) for the outcome model:

(3)

where  is a truncated power function and u+ = max(0, u). p is the order of the 

polynomial function and K is the total number of inner knots. The inner knots are either 

distributed evenly on τ or defined as the equally spaced sample quantiles of Ti, i = 1,…,n. 

That is,

where T(i) is the ith quantile of T1, T2,…, Tn.

To determine the regression spline function, we need to find the optimal p and K. The 

traditional model selection criteria, such as AIC and BIC, are based on a simple random 

sample. These criteria can be extended to determine the form of the marginal structural 

model for a non-randomized sample (Hens, Aerts, and Molenberghs, 2006, Platt, Brookhart, 

Cole, Westreich, and Schisterman, 2012). Under the assumption that Y is normally 

distributed, the weighted AIC can be defined as

(4)

where l is the total number of parameters. In (3), l = K + p + 1. Notice that in this stage, we 

treat  as fixed. Similarly, we define the weighted BIC as

(5)

We will illustrate the specification of the outcome model through the data application in 

Section 5.3. In the next section, we will focus on the first issue and propose a boosting 

algorithm for estimating the generalized propensity scores.
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3 The Proposed Method

3.1 Modeling the generalized propensity scores

In the MSM approach, the estimation of  in (2) is essential. For simplicity, we assume T 

follows a normal distribution so that r(Ti) can be easily estimated by normal density. To be 

noticed, if the normality assumption does not hold for T, we can always employ a 

nonparametric method, such as Kernel density estimation, to estimate r(Ti). To estimate r(Ti, 

Xi), a traditional way is to assume

(6)

Then, the estimation of r(Ti, Xi) follows two steps (Robins et al., 2000):

1. Run a multiple regression of Ti on Xi, i = 1,…,n, and get T̂
i and σ̂;

2. Calculate the residuals ε̂
i = Ti − T̂

i; r(Ti, Xi) can be approximated by

(7)

Because the ignorability assumption is untestable, researchers usually collect a large number 

of covariates, which means X is high-dimensional. In this case, equation (6) may not hold. A 

more general approach is to assume

(8)

where m(X) is the mean function of T given X. We advocate a machine learning algorithm, 

boosting, to estimate m(X). The advantage of boosting is that it is a nonparametric algorithm 

that can automatically pick important covariates, nonlinear terms and interaction terms 

among covariates (McCaffrey et al., 2004). It fits an additive model and each component 

(base learner) is a regression tree. Mathematically, it can be written as:

(9)

where M is the total number of trees, Km is the number of terminal nodes for the m-th tree, 

Rmj is the indicator of rectangular region in the feature space spanned by X and cmj is the 

predicted constant in region Rmj. Km and Rmj are determined by optimizing some 

nonparametric information criterion, such as Entropy, misclassification rate or Gini Index. 

cmj is simply the average value of Ti in the training data that falls in the region Rmj. Details 

about how to construct a tree classifier can be found in Breiman, Friedman, Stone, and 

Olshen (1984).

In boosting, M is an important tuning parameter. It determines the trade-off between bias 

and variance of the causal estimator. In inverse weighted methods, if subject i receives a 

weight wi, it means the subject will be replicated wi − 1 times; that is, there will be wi − 1 

replications in the weighted pseudo sample. In the weighted sample, if the propensity scores 
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are correctly estimated, the treatment assignment and the covariates are supposed to be 

unconfounded under the ignorability assumption (Robins et al., 2000). Consequently, the 

causal effect can be estimated as in a simple randomized study without confounding. 

Therefore, a reasonable criterion is to stop the algorithm at the number of trees such that the 

treatment assignment and the covariates are independent (unconfounded) in the weighted 

sample. Next, we propose stopping criteria for boosting based on this idea.

3.2 Algorithm

We propose four different criteria (summarized in Table 1) for how to measure the degree of 

independence/correlation between the treatment and each covariate. These criteria are 

named as “Pearson/polyserial”, ”Spearman”, “Kendall” and “distance”. Pearson/polyserial, 

Spearman and Kendall correlations are commonly used correlation matrices; distance 

correlation (Székely, Rizzo, and Bakirov, 2007, Székely and Rizzo, 2009) is the most 

recently proposed and is gaining popularity due to its nice property: it can be defined for two 

variables of arbitrary dimensions and arbitrary types. Next, we will briefly describe these 

four correlations.

We denote one of the covariates as Xj, for j = 1,2,…,J, where J is the total number of 

covariates. If both T and Xj are normally distributed, the Pearson correlation coefficient will 

be zero given that T and Xj are independent. When Xj is categorical, the Pearson correlation 

coefficient could be biased (Olsson, 1979). Instead, we should use the polyserial correlation 

coefficient (Olsson, Drasgow, and Dorans, 1982), which essentially assumes that the 

categorical variable is obtained by classifying an underlying continuous variable . The 

unknown parameters of  can be estimated by maximum likelihood. Then, the polyserial 

correlation is calculated as the Pearson correlation between T and . Spearman and Kendall 

correlation coefficients are rank-based correlations, that can be applied to both continuous 

and categorical variables. If T and Xj are independent, we would expect the Spearman and 

Kendall correlation coefficients to be close to zero. A more flexible measurement of 

correlation/independence is distance correlation. The distance correlation takes values 

between zero and one and it equals zero if and only if T and Xj are independent, regardless 

of the type of Xj.

In the binary treatment case, to check whether the propensity scores adequately balance the 

covariates, we calculate the standardized difference in the weighted mean between the 

treatment group and the control group. If balance is achieved, the difference should be small. 

In the continuous case, we propose a general algorithm that uses bootstrapping to calculate 

the weighted correlation coefficient. The procedure requires the following steps for each 

value of M (number of trees).

1. Calculate r̂(Ti, Xi) using boosting with M trees. Then, calculate
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2. Sample n observations from the original dataset with replacement. Each data point 

is sampled with the inverse probability weight obtained from the first step. 

Calculate the corresponding coefficient between T and Xj on the weighted sample 

and denote it as dji;

3. Repeat Step (2) k times and get dj1, dj2,…,djk. Calculate the average correlation 

coefficient between T and Xj, denoted as d̄
j;

4. Perform a Fisher transformation on d̄
j, i.e.,

(10)

5. Average the absolute value of zj over all the covariates and get the average absolute 

correlation coefficient (AACC).

For each value of M = 1,2,…,20000, calculate AACC and find the optimal number of trees 

that lead to the smallest AACC value. The R code for calculating AACC is displayed in 

Appendix A. An alternative suggestion is to replace Step 5 by calculating the maximum 

value of the absolute correlation coefficient (MACC) over all the covariates and find the 

optimal number of trees that lead to the smallest MACC value. After the value of M is 

determined, the generalized propensity score is estimated by (9) and (7). The Fisher 

transformation in Step 4 is mainly for the determination of the cut-off value for AACC 

(MACC). We know that, in the binary treatment case, a well-accepted cut-off value for 

ASAM is 0.2 (McCaffrey, Ridgeway, and Morral, 2004). In the continuous treatment case, 

we set the cut-off value for AACC (MACC) to be 0.1. That is, when AACC < 0.1 (MACC < 

0.1), we claim that the confounding effect between the treatment and the outcome is small. 

Appendix B shows a heuristic proof for the claimed cut-off value. Figure 1 is an illustration 

of the Fisher transformation. As can be seen, when |d̄
j| is small, the transformation is almost 

the identity; when |d̄
j| is large, |zj| increases faster than |d̄

j|. This is another advantage of 

using Fisher transformation: when we try to minimize AACC, the larger absolute values of 

correlation coefficients will get more penalty compared to the original scale.

4 Simulation

4.1 Simulation Setup

In this section, we conduct simulation studies to compare the performance of the proposed 

methods to the existing methods. The generation of observed (Y, T, X) are as follows. First, 

the vector of baseline covariates (potential confounders), denoted as X = (X1, X2,…,X10), are 

generated from the following distributions: X1, X2 ~ N(0,1), X3 ~ Bernoulli(0.5), X4 ~ 

Bernoulli(0.3), X5,…,X7 ~ N(0,1) and X8,…,X10 ~ Bernoulli(0.5). Among the ten covariates, 

X1 − X4 are real confounders related to both the treatment and the outcome.

The continuous treatment is generated from N(m(X),1), where the mean function is defined 

for different scenarios. In Scenario (A), m(X) is a linear combination of the real 

confounders. In Scenario (B), we consider a nonparametric model that is similar to a tree 
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structure with main effects and one quadratic term while in Scenario (C), we add two 

interaction terms. The true forms of m(X) in different scenarios are displayed as follows:

• Scenario (A): m(X) = 6 + 0.3X1 + 0.65X2 − 0.35X3 − 0.4X4;

• Scenario (B): m(X) = 6 + 0.3I{X1 > 0.5} + 0.65I{X2 < 0} − 0.35I{X3 = 1} − 

0.4I{X4 = 0} + 0.65I{X1 > 0}I{X1 > 1};

• Scenario (C): m(X) = 6 + 0.3I{X1 > 0.5} + 0.65I{X2 < 0} − 0.35I{X3 = 1} − 

0.4I{X4 = 0} + 0.65I{X1 > 0}I{X1 > 1} + 0.3I{X1 > 0}I{X4 = 1} − 0.65I{X2 > 

0.3}I{X3 = 0}.

The potential outcome function for a subject with covariates X is generated from

where ε ~ N(0,1). Based on the data generation process, the true dose-response function is

(11)

4.2 Results

To compare different methods, we set the value of the parameter of interest to be 0.4, which 

is the coefficient of T in the dose-response function (11). We apply IPW to estimate the 

coefficient and employ four different methods to estimate m(X) in the generalized 

propensity scores: (1) linear approximation (Equation 6) using all the covariates; (2) linear 

approximation with variable selection; (3) L2 boosting by minimizing the empirical 

quadratic loss, called mboost by Bühlmann and Yu (2003); (4) boosting with the proposed 

stopping criteria: Pearson/polyserial, Spearman, Kendall and distance. In Method (2), we 

employ a variable selection technique that is similar to the idea suggested by Hirano and 

Imbens (2004) to select covariates in the generalized propensity score model. First, we 

divide the treatment variable into three groups with equal sizes. Then, we test if each 

covariate is distributed the same in different treatment “groups” using ANOVA at the 

significance level of 0.05. We only include those covariates that are significantly different 

among treatment “groups”. In Table 2, we denote Method (1) as Linear1 and Method (2) as 

Linear2. We generate 1000 data sets with a sample size of 500. The simulation results are 

shown in Table 2.

In Scenario (A), the true mean function m(X) is linear in the covariates, and hence the linear 

approximation proposed by Robins et al. (2000) leads to the smallest bias. In addition, 

Linear2 has smaller bias and MSE than Linear1, which indicates that variable selection in the 

propensity score model does improve the performance. Compared to Linear1 and Linear2, 

the proposed methods yield much smaller variances and MSEs, as well as better confidence 

interval coverages. Compared to the proposed methods, mboost based on L2 boosting yields 

larger bias and MSE. In Scenarios (B) and (C) where m(X) follows a tree structure, Linear2 

performs better than Linear1. In addition, the proposed methods are superior in terms of the 

bias, MSE and 95% confidence interval coverage. Our simulation results are not very 
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sensitive to the choice of the correlation matrices among Pearson/polyserial, Spearman and 

Kendall correlations. Distance leads to slightly more biased estimates compared to the other 

proposed criteria.

To further explore the proposed algorithm, we randomly select 100 datasets from the 

simulated datasets in each scenario. We then compare the number of trees selected by each 

criterion with the optimal number of trees that leads to the smallest absolute bias with 

respect to the true causal effect (0.4). Table 3 shows the average number of trees based on 

the 100 datasets. Compared to the “best” model with the optimal number of trees, “distance” 

tend to select smaller models, which explains that “distance” yields relatively larger bias 

than the other three criteria in the simulation. The differences in the number of trees between 

the “best” model and the models selected by “Pearson/polyserial”, “Spearman” and 

“Kendall” are relatively small. In Scenario (A) and (C), they yield slightly more complex 

models than the “best” models and in Scenario (B), they yield slightly smaller models.

5 Data Analysis Example

5.1 Early Dieting in Girls Study

It is reported that dieting increases the likelihood of overeating, weight gain, and chronic 

health problems (Neumark-Sztainer, Wall, Story, and Standish, 2012). We analyze the Early 

Dieting in Girls study, which is a longitudinal study that aims to examine parental influences 

on daughters’ growth and development from ages 5 to 15 (Fisher and Birch, 2002). The 

study involves 197 daughters and their mothers, who are from non-Hispanic, White families 

living in central Pennsylvania. The participants were assessed at five different waves. At 

each wave, daughters and their mothers were interviewed during a scheduled visit to the 

laboratory.

In this analysis, we study the influence of mothers’ weight concern on girls’ early dieting 

behaviour. The treatment variable is mother’s overall weight concern (M2WTCON), which 

is measured at daughter’s age 7. It is the average score of five questions in the questionnaire. 

A higher value implies the mother is more concerned about gaining weight. In the dataset, 

its values range from 0 to 3.4. The histogram in Figure 2 (A) and the QQ plot in Figure 2 (B) 

show that the treatment is approximately normally distributed. The outcome is whether the 

daughter diets between ages 7 and 11. We exclude those daughters who reported dieting 

before age 7, which results in 158 subjects, of which 45 daughters reported dieting. There 

are 50 potential baseline confounders in this study regarding participants’ characteristics, 

such as: family history of diabetes and obesity, family income, daughter’s disinhibition, 

daughter’s body esteem, mother’s perception of mother’s current size and mother’s 

satisfaction with daughter’s current body (Birch and Fisher, 2000).

5.2 Estimation of the Generalized Propensity Scores

Since the treatment is self-selected, to draw causal inferences, we need to adjust for the 

confounders in the study. Given a large number of potential confounders, we employ a 

boosting algorithm to estimate the generalized propensity scores. The simulation studies in 

Section 4 shows that the estimation results are not sensitive to the choice of the correlation 

matrices among Pearson/polyserial, Kendall and Spearman. Therefore, we use “Pearson/
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polyserial” as the main criterion to select the optimal number of trees in boosting. Figure 3 

displays the AACC value versus the number of trees from 1 to 20000. Based on the data, the 

optimal number of trees M = 4846 and AACC = 0.11. Figure 2 (C) & (D) show that the 

residuals from the boosting model (Ti − m̂ (Xi)) have approximately constant variance and 

they are normally distributed. Based on the residual plots, we conclude that the boosting 

model sufficiently estimates the treatment level given covariates.

Now we will focus on assessing the balance in the covariates. Notice that in the original 

data, AACC = 0.177, which is much larger than 0.1, the cut-off value. In addition, if we look 

at each covariate separately, there are many covariates whose absolute correlation 

coefficients with T are larger than 0.2. As shown in Figure 4, after applying the weights, 

most of the absolute correlations among the treatment and each covariate in the weighted 

sample are below 0.1 on both the original scale and the Fisher transformed scale. This 

indicates that the confounding effect of the covariates between the treatment and the 

outcome is greatly reduced after weighting.

5.3 Modeling the Mean Outcome

To draw causal inferences, the next step is to determine the functional form of the outcome 

model. The boxplot of the estimated inverse weights from our proposed method is displayed 

in Figure 5. As shown, most weights are distributed around the value of 1. However, there 

are some extreme weights with values larger than 10. Extreme weights are harmful to the 

analysis because they increase the variance of the causal estimates (Kang and Schafer, 

2007). When we estimate the dose-response function, we shrink the top five percent of the 

weights to the 95th quantile.

Since all the potential confounders are well-adjusted by the propensity model, we can model 

the outcome as a function of the treatment. Otherwise, we may also include covariates that 

are related to the treatment in the outcome model. We then assume a regression spline 

function as in (3). For binary outcomes, the regression spline function is

The weighted AIC and BIC displayed in (4) and (5) are employed to determine the optimal p 

and K. For a binary outcome, the first part of (4) and (5) should be replaced by

where p̂i is the estimated probability of early dieting for subject i. We consider three 

different values for p: p = 1,2, 3, which corresponds to piecewise linear, quadratic and cubic 

models. We consider K = 0,1,2,…, 9. We select the optimal number of p and K based on the 

values of BICw, which are displayed in Table 4. As shown, the best model is when p = 1 and 

K = 0. Therefore, the model we fit is
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The causal log odds ratio (β) is estimated as 0.1782 with a standard error 0.2865 (p-

value=0.5349). The standard error is obtained using sandwich formula by the survey 

package in R. We may also employ bootstrapping to estimate the standard error by 

repeatedly taking a bootstrap sample with replacement from the original dataset and 

applying the same estimating procedure. Based on 1000 replications, the bootstrapping 

estimate of the standard error is 0.2374, which is slightly smaller than the sandwich formula. 

It indicates that the probability of daughter’s early dieting increases when the mother’s 

weight concern increases. However, the causal effect is not significant at the significance 

level of 0.1

6 Discussion

In this article, we focused on the causal inference problem with a continuous treatment 

variable. We are mainly interested in estimating the dose-response function. IPW based on 

marginal structural models is a useful tool to estimate the causal effect. When the treatment 

variable is continuous, the generalized propensity score is defined as the conditional density 

of the treatment given covariates. Because the dimension of covariates is usually large, it is 

suggested that the conditional density can be estimated in two steps. First, a mean function 

of the treatment given covariates is estimated; secondly, the conditional density is normally 

approximated using residuals from the first step or nonparametrically estimated by a kernel 

method. We suggest using a boosting algorithm to estimate the mean function and propose 

an innovative stopping criterion based on the correlation metrics. The proposed stopping 

criterion is similar to generalized boosted model proposed by McCaffrey et al. (2004) for the 

binary treatment. Simulation results show that the proposed method performs better than the 

existing methods, especially when the function of the treatment given covariates is not 

linear.

It is known that, in causal inference problems, propensity scores are nuisance parameters 

and the parameter of interest is the causal treatment effect. It has been shown that a 

propensity score model with a better predictive performance may not lead to better causal 

treatment effect estimates (Drake, 1993, Lunceford and Davidian, 2004, Schafer and Kang, 

2008). Therefore, while modeling propensity scores, we should really focus on the property 

of the causal estimates (Brookhart and van der Laan, 2006, Galdo, Smith, and Black, 2008). 

However, the true causal treatment effect is unknown in practice. For example, in Brookhart 

and van der Laan (2006), an over-fitted parametric propensity score model is used as the 

reference model; Galdo et al. (2008) proposed a weighted cross-validation technique to 

approximate mean integrated squared error of the counterfactual mean function. From 

another perspective, some recent literature has focused on the estimation of propensity 

scores by achieving balance in the covariates (e.g., McCaffrey et al. (2004), Hainmueller 

(2012), Imai and Ratkovic (2014)). The underlying idea is that by achieving balance, the 

bias in the treatment effect estimate due to measured covariates can be reduced (Harder, 

Stuart, and Anthony, 2010). The stopping rules proposed for boosting in this study also falls 
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into this realm: we select the optimal number of trees in boosting by achieving balance in 

the covariates. The balance is measured through correlation between the treatment variable 

and the covariates in the weighted pseudo sample.

There are several potential areas for future research. For example, in the proposed algorithm 

described in Section 3.2, the correlations in the weighted pseudo sample are estimated using 

bootstrapping with unequal probabilities. However, bootstrapping in this case is 

computationally intensive, especially when the stopping criterion is based on distance 

correlation. A more straightforward approach is to develop the weighted Pearson or distance 

correlation for nonrandom samples using estimating equations. It may greatly improve the 

computation time.

In the data application, we use a cut-off value of 0.1 for AACC. In other words, if AACC < 

0.1, we claim that the confounding effect of the covariates (potential confounders) is small; 

Based on Cohen’s effect sizes for the Pearson correlation coefficient (Cohen, 1988), we may 

also claim that, when 0.1 < AACC < 0.3, the confounding effect is medium; and when AACC 

> 0.55, the confounding effect is large. However, more theoretical and empirical 

justification is needed for the choice of the cut-off value, which can be explored in future 

work.

Finally, we should point out that the estimation of the generalized propensity scores is a 

much more challenging task than the case of a binary treatment. The reason is that we are 

concerned about all moments of the conditional distribution of the treatment given 

covariates, while in the binary case, we are only interested in the conditional mean. In the 

proposed method, we follow a two-step procedure by first modeling the mean function of 

the treatment given covariates. As shown in (8), we assume that the random errors are 

normally distributed and have constant variance. If the model diagnostics (e.g., Figure 2) 

show that either of the two assumptions is invalid, we may transform the treatment variable 

(see the lottery example in Hirano and Imbens (2004)) or use nonparametric methods to 

estimate the density. For example, replace (7) by a kernel density estimator. Future research 

may explore the application of other machine learning algorithms or a mixture of normal 

distributions to estimate the conditional density.
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Appendix A: R codes

The following R function calculates the average absolute correlation coefficient (AACC) 

among a continuous treatment and covariates after applying the inverse probability weights. 

The subsequent R codes demonstrate how to estimate the dose-response function using a 

real dataset.
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F.aac.iter=function(i,data,ps.model,ps.num,rep,criterion) {

# i: number of iterations (trees)

# data: dataset containing the treatment and the covariates

# ps.model: the boosting model to estimate p(T_i|X_i)

# ps.num: the estimated p(T_i)

# rep: number of replications in bootstrap

# criterion: the correlation metric used as the stopping criterion

      GBM.fitted=predict(ps.model,newdata=data,n.trees=floor(i),

      type="response")

      ps.den=dnorm((data$T-GBM.fitted)/sd(data$T-GBM.fitted),0,1)

      wt=ps.num/ps.den

      aac_iter=rep(NA,rep)

      for (i in 1:rep){

            bo=sample(1:dim(data)[1],replace=TRUE,prob=wt)

            newsample=data[bo,]

            j.drop=match(c("T"),names(data))

            j.drop=j.drop[!is.na(j.drop)]

            x=newsample[,-j.drop]

            if(criterion=="spearman"|criterion=="kendall"){

            ac=apply(x, MARGIN=2, FUN=cor, y=newsample$T,

            method=criterion)

            } else if (criterion=="distance"){

                ac=apply(x, MARGIN=2, FUN=dcor, y=newsample$T)

            } else if (criterion=="pearson"){

                ac=matrix(NA,dim(x)[2],1)

                for (j in 1:dim(x)[2]){

                 ac[j]=ifelse (!is.factor(x[,j]), cor(newsample$T, x[,j],

                 method=criterion),polyserial(newsample$T, x[,j]))

                }

            } else print("The criterion is not correctly specified")

            aac_iter[i]=mean(abs(1/2*log((1+ac)/(1-ac))),na.rm=TRUE)

            }

       aac=mean(aac_iter)

       return(aac)

}

# Create the data frame for the covariates

x = data.frame(BMIZ, factor(DIABETZ1), G1BDESTM, G1WTCON,

factor(INCOME1), M1AGE1, M1BMI, factor(M1CURLS), factor(M1CURMT),

M1DEPRS, M1ESTEEM, M1GFATCN, M1GNOW, factor(M1GSATN),

M1MFATCN, M1MNOW, factor(M1MSAT), factor(M1NOEX), M1OGIBOD,

M1PCEAFF, M1PCEEFF, M1PCEEXT, M1PCEIMP, M1PCEPER, M1PDSTOT,
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M1RLOAD, factor(M1SMOKE), M1WGTTES, M1WTCON, M1YRED, factor(OBESE1),

g1discal, g1obcdc, g1ovrcdc, g1pFM, g1wgttes, m1cfqcwt, m1cfqenc,

m1cfqmon, m1cfqpwt, m1cfqrsp, m1cfqrst, m1cfqwtc, m1dis, m1hung,

m1lim, m1picky, m1rest, m1zsav, m1zsweet)

# Find the optimal number of trees using Pearson/polyserial correlation

library(gbm)

library(polycor)

mydata=data.frame(T=M2WTCON,X=x)

model.num=lm(T˜1,data=mydata)

ps.num=dnorm((mydata$T-model.num$fitted)/(summary(model.num))$sigma,0,1)

model.den=gbm(T˜.,data=mydata, shrinkage = 0.0005,

interaction.depth=4, distribution="gaussian",n.trees=20000)

opt=optimize(F.aac.iter,interval=c(1,20000), data=mydata, ps.model=model.den,

ps.num=ps.num,rep=50,criterion="pearson")

best.aac.iter=opt$minimum

best.aac=opt$objective

# Calculate the inverse probability weights

model.den$fitted=predict(model.den,newdata=mydata,

n.trees=floor(best.aac.iter), type="response")

ps.den=dnorm((mydata$T-model.den$fitted)/sd(mydata$T-model.den$fitted),0,1)

weight.gbm=ps.num/ps.den

# Outcome analysis using survey package

library(survey)

dataset=data.frame(earlydiet,M2WTCON, weight.gbm)

design.b=svydesign(ids= ˜1, weights=˜weight.gbm, data=dataset)

fit=svyglm(earlydiet˜M2WTCON, family=quasibinomial(),design=design.b)

summary(fit)

Appendix B: Cut-off value for AACC

In this section, we provide a heuristic proof for the cut-off value for AACC. In the 

continuous treatment case, denote a covariate as Xj and the treatment variable as T. If (Xj, T) 

has a bivariate normal distribution and Xj, T are independent, the Fisher transformed 

Pearson’s correlation coefficient, zj, has the following asymptotic distribution:

On the other hand, if we dichotomize the continuous treatment to a binary treatment with a 

sample size of n1 for the treatment group and n0 for the control group (n1 + n0 = n), we 

know the Cohen’s effect size is defined as:
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where s is the pooled standard deviation. If there is no difference between the two groups, 

asymptotically,

Therefore, if the cut-off value for the standardized mean difference is 0.2 in the binary 

treatment case, the cut-off value for AACC in the continuous treatment case should be 

, which has a maximum value of 0.1 when . In fact, this cut-off 

value is consistent with what has been claimed regarding the effect size of Pearson 

correlation coefficient r (Cohen, 1988). That is, when |r| < 0.1, the effect size is small; when 

0.1 < |r| < 0.3, the effect size is medium; when |r| > 0.5, the effect size is large.
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Figure 1. 
An illustration of Fisher Transformation
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Figure 2. 
Model diagnostics for the fitted boosting model.
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Figure 3. 
AACC value for M = 1,…, 20000.
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Figure 4. 
Absolute value of correlation coefficients between T and each covariate before weighting 

(black dots) and after weighting (red plus signs).The left panel shows the original scale and 

the right panel shows the Fisher transformed scale.
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Figure 5. 
Boxplot of the inverse probability weights using Pearson/polyserial correlation.
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Table 1

Stopping criteria based on different correlation coefficients

Criterion Continuous Xj Categorical Xj

Pearson/polyserial Pearson ρ polyserial ρ

Spearman Spearman ρ Spearman ρ

Kendall Kendall τ Kendall τ

distance distance r distance r
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Table 4

BICw for different K and p

K p = 1 p = 2 p = 3

0 215.20 219.43 221.42

1 220.20 220.33 225.84

2 219.88 227.68 228.32

3 225.69 226.35 234.54

4 225.24 230.33 235.60

5 231.95 233.94 239.36

6 231.51 235.47 242.31

7 236.21 238.53 248.72

8 240.47 243.61 249.15

9 242.38 249.14 251.93

J Causal Inference. Author manuscript; available in PMC 2016 March 01.


