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Abstract

Purpose

We assessed the effects of anti-angiogenic therapy (AAT) on radiation therapy (RT), evalu-

ating the tumor growth and perfusion patterns on dynamic contrast enhanced MR (DCE-

MR) images.

Methods

Thirteen nude mice with heterotopic xenograft cancer of human lung cancer cell line were

used. To observe the interval change of the tumor size and demonstrate the time-signal

intensity enhancement curve of the tumor, the mice were subdivided into four groups: con-

trol (n = 2), AAT (n = 2), RT (n = 5), and combined therapy (AART, n = 4). DCE-MR images

were taken four weeks after treatment. Perfusion parameters were obtained based on the

Brix model. To compare the interval size changes in the RT group with those in the AART

group, repeated measures ANOVA was used. Perfusion parameters in both the RT and

AART groups were compared using a Mann-Whitney U test.

Results

Tumor growth was more suppressed in AART group than in the other groups. Control group

showed the rapid wash-in and wash-out pattern on DCE-MR images. In contrast to RT

group with delayed and prolonged enhancement, both AAT and AART groups showed the

rapid wash-in and plateau pattern. The signal intensity in the plateau/time to peak enhance-

ment (P<0.016) and the maximum enhancement ratio (P<0.016) of AART group were

higher than those of RT group.
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Conclusions

AART showed synergistic effects in anticancer treatment. The pattern of the time-intensity

curve on the DCE-MR images in each group implies that AAT might help maintain the perfu-

sion in the cancer of AART group.

Introduction
The main goal of radiation therapy (RT) is local cancer control for a better outcome. To
improve the cure rates or reduce side effects, the combination treatment of RT and pharmaceu-
tical agents such as anti-angiogenic (AA) agents or anti-vascular drugs is being used and clini-
cally investigated [1, 2]. However, the mechanism of the enhanced effect of the combination
therapy of RT and drugs such as AA agents is still unclear.

AA agents can induce primary tumor shrinkage by pruning the formation of immature
tumor vessels. Because RT can cause cell injury by inducing oxygen-free radicals in tumor cells,
oxygen is essential for achieving the anti-cancer effect of RT. However, RT can induce exten-
sive necrosis especially in the central portion of a tumor. Necrosis with decreased blood supply
causes a hypoxic condition of the tumor and eventually decreases the tumoricidal effect of RT
by reducing the oxygen-free radicals [3–6].

The hypothesis that AA therapy (AAT) may help normalize the vascular structures of a
tumor and promote improved blood perfusion was recently suggested [7]. The hypoxic area in
the tumor may eventually decrease, and the effect of RT could be optimized. The perfusion
changes can be demonstrated on dynamic contrast enhanced-magnetic resonance (DCE-MR)
images by obtaining the time-signal intensity curves and analyzing the perfusion parameters
[1, 8, 9]. For example, high values of the peak enhancement and the time to peak enhancement
(TTP) of a tumor have been shown after RT, compared to those of non-irradiated tumors [10].
This finding suggests that the prolonged enhancement and delayed wash-out pattern of the
contrast materials were due to the increased extracellular extravascular space, i.e., the necrotic
component, and the decreased vascular permeability of the irradiated tumor [10].

In this study, we demonstrated and evaluated the tumor growth and perfusion changes
induced by RT and the combination therapy of RT and an AA agent in a murine cancer model.
With DCE-MR imaging, we might help to draw insights into the synergistic effect of the com-
bination therapy of AAT and RT.

Methods
The Institutional Animal Care and Use Committee in Asan Medical Center approved this
study, and all the experiments were performed in accordance with the committee guidelines.
Animal care and treatment were guided according to the 8th edition of the Guide for the Care
and Use of Laboratory Animals.

Animal and experimental protocol
Thirteen nude mice were implanted with A549 heterotopic xenograft cancer cells from the
human lung cancer cell line (CCL-185TM; American Type of Culture Collection, Manassas,
VA, USA), which was cultivated in Dulbecco’s modified Eagle’s Medium (DMEM, GIBCO,
Carlsbad, CA, USA) mixed with 10% heat-inactivated FBS and 1% streptomycin-neomycin
(GIBCO) at 37°C in a humidified CO2 environment. With the harvested amount of 3 x 106
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cancer cells, a total volume of 50 μL of Hank’s Balanced Salt Solution (HBSS; GIBCO) was
implanted in the left thigh muscles of the seven-week-old male BALB/c nude mice (OrientBio,
Sungnam, Korea).

Each mouse was randomly assigned to one of the following four groups: (1) the control
group (n = 2); (2) AAT group (n = 2); (3) RT group (n = 5); and (4) the combination therapy
(AART) group (n = 4). The second-generation multi-targeted receptor tyrosine kinase inhibi-
tor, SU11248 (sunitinib malate, Pfizer Inc., New York, NY, USA), inhibits cellular signaling
by targeting the receptors of the platelet-derived growth factor (PDGF) and the vascular
endothelial growth factor (VEGF), which have important roles in cancer angiogenesis and
proliferation. Using this drug, an experimental trial for the evaluation of the additional effect
of an AA agent on RT was performed. In the AAT group, 25 mg/kg/day of SU11248 with a
dimethyl sulfoxide (DMSO, GIBCO, Carlsbad, CA, USA) solution was given orally. For the
control group and the RT group, the DMSO solution was given as a placebo. The tumor was
subjected to the scheduled RT (8x2.5 Gy, three times/week) three times a week from Day 0
while the other body parts were shielded (Clinac 21EX, Varian Medical Systems, Palo Alto,
CA, USA).

The tumor diameters (length and width) were measured with calipers on Days 0, 2, 4, 7, 9,
11, 14, 16, 18, 21, 23, and 25. The tumor growth in each group was evaluated by measuring the
volumes (width2 x length/2) of the tumors on a given day [1]. The tumor volume on a given
day was calculated as the ratio of the initial volume (V0) at the onset of the treatment (Day 0)
to the volume of the given day. To avoid potential adverse events related to the expected out-
come, all tumors should not exceed 20 mm in a longest diameter and be no more than 10%
body weight.

Mice were fed with sterilized food and housed in laminar flow filtered hoods. All mice were
monitored their conditions twice per day. We have planned to euthanize for any mice found to
be moribund, cachectic, lethargic, bleeding from the tumor, or with any conditions unable to
eat or drink. However, there were no severely ill animals prior to the endpoint of the study.
Two mice died during the anesthesia for MR acquisition. On the 25th day, thirteen mice under-
went MR imaging followed by euthanasia using carbon dioxide.

MR imaging technique
The shortening of the T1-relaxation time by the contrast agent enhanced the tissue. The
T1-weighted gradient-echo was also used in the DCE-MR imaging to estimate the T1-relaxa-
tion rate and to measure the contrast agent concentration. The baseline DCEMR images at the
start of the experiment and the follow-up image were obtained after four weeks in each group.
The DCE-MR images of the right thigh tumor masses were obtained using a 4.7-T MR scanner
(Biospec; Bruker Medical System, Karlsruhe, Germany) and a 30 mm, single-tuned surface
coil. The transverse T1-weighted dynamic MR images were acquired for 12 minutes and 48
seconds (repetition time/echo time = 60.0/4.5 msec; flip angle = 70°; slice thickness = 1 mm;
field of view = 30x30 mm; and matrix size = 128x128). After the four initial images were
obtained as the baseline images, a contrast agent (gadoteric acid, Gd-DOTA, Guerbet, Roissy
CdG, France) was intravenously injected into the tail vein of each mouse. In all the mice,
3 μmol/g (6 μL/g) of gadoteric acid was administered at a flow rate of 129 mL/hr. One hundred
continuous dynamic MR images were acquired every 7.6 seconds for 12 minutes and 48 sec-
onds. During the MR imaging, anesthesia was maintained using 1.5% isoflurane in a 1:2 mix-
ture of O2/N2O. Gadoteric acid was intravenously injected with a 25-gauge needle into the tail
vein. A heated pad was placed under each mouse to maintain its body temperature during the
MR examination.
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MR image analysis and perfusion parameters
The tumor time-signal intensity curve of each MR image was drawn with dots that indicated
the signal intensities of the 100 continuous MR images of each mouse. Four initial images were
marked at the starting point, and the other signal intensities were counted based on the ratio of
the initial point to the following points. The time-signal intensity curves were obtained and
interpreted according to the wash-in and wash-out patterns (Fig 1); for example, Pattern I, the
rapid wash-in followed by wash-out phase; Pattern II, rapid wash-in followed by a plateau after
the peak enhancement; and Pattern III, delayed wash-in and prolonged enhancement. Simi-
larly, a previous report that evaluated the perfusion changes in seven patients with unresectable
hepatocellular carcinoma using DCE-MR imaging after treatment with the AA agent thalido-
mide showed a significant change in the enhancement slope of the time-intensity curve after
the treatment [11].

In this study, the Brix model [12, 13], a linear two-compartment open model where in the
peripheral compartment has negligible effects on the central compartment, was used because it
did not need T10 mapping or arterial input function measurements. In the Brix model, with
the S0 (baseline signal intensity), TA (time of arrival), and AH (the constant that corresponded
to the size of the interstitial space), we obtained each parameter according to the following for-
mula.

SðtÞ=S0 ¼ 1þ AH � Kep � ½ðexp�Kep ðt�TAÞ � exp�Kelðt�TAÞÞ=ðKel � KepÞ�

As the concentration of the contrast agents decreased in the plasma due to the renal excre-
tion of the contrast, the contrast agents diffused back into the plasma from the interstitial space
in the target lesion. This phenomenon is represented by the rate constant Kep (sec

-1, exchange
rate constant from the extracellular space back to the plasma in the vascular structure, Kep =
Ktrans / ve, in the Tofts model parameters) [14]. Kel (sec

-1, the elimination rate constant from
the plasma to the renal excretion, although some contrast agents show hepatic excretion) is the
elimination coefficient used to denote the amount of the renal excretion of contrast from the
plasma. This model showed dynamic tissue responses after the intravenous bolus contrast
injection. Splat (the signal intensity in the plateau), TTP (time to peak enhancement), and MER
(maximum enhancement ratio) were also analyzed by an in-house program developed using
Matlab™ (The Mathworks, Inc., Natick, MA, USA).

Two radiologists measured the five quantitative perfusion parameters, i.e., Kep, Kel, AH,
Splat/TTP, and MER, in the regions of interest (ROIs) of the tumors all together, and the ROIs

Fig 1. Patterns of the time-intensity curves demonstrating the perfusion state of a tumor on dynamic contrast-enhancedMR images. (A) Pattern I:
Rapid wash-in followed by the washout phase. (B) Pattern II: Rapid wash-in followed by a plateau after the peak enhancement. (C) Pattern III: Delayed wash-
in and prolonged enhancement.

doi:10.1371/journal.pone.0148784.g001
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were placed within the tumors to avoid overlap with normal tissue and the far peripheral zone.
Because oxygen can be supplied to the peripheral zone of a tumor through diffusion and with-
out adequate vascular supply, necrosis is usually initiated in the central portion of the tumor.
According to this concept, the central area was selected for the estimation of the effect of the
AA agent, and the ROIs were located in the tumors, 2 mm from their peripheral margin. Each
ROI was obtained three times, and the average value of each parameter was calculated.

Statistical analysis
To show the interval increase in the tumor size, the control, AAT, RT, and AART groups were
used. The ratio of the tumor growth in each group on the follow-up dates was plotted as
median and interquartile range (25th– 75th percentile). To compare the interval size changes in
the RT group with those in the AART group, repeated measures ANOVA was used. Due to the
small sample size, to evaluate the additive effect of the combination therapy, the parameters
obtained based on the Brix model from the T1-weighted DCE-MR images in both the RT and
AART groups were analyzed using a Mann-Whitney U test (SPSS 20.0 version, SPSS Inc., Chi-
cago, IL, USA). In the statistical analysis, a value was considered significant when the p value
was less than 0.05.

Results

Tumor growth rate
The maximum volume of the tumors was 780 mm3 in the control group (mean 215 mm3 for all
time points), and the maximum diameter of the tumors was 13.5 mm. All measured serial vol-
umes of the tumors are demonstrated in S1 Table. The tumor growth rate was more suppressed
in the group treated with AART (n = 4) than in the RT alone group (n = 5) (p<0.001) (Fig 2).

Fig 2. Tumor growth curves obtained by measuring the volumes of the tumors in the study groups.
The volume ratio of the tumor was obtained from the initial volume (V0) at the onset of the treatment (Day 0) to
the following day. On the tumor growth curve, the mean volume ratio in each group on the follow-up dates
was plotted. In the AART group, the tumor growth rate is much more suppressed than those in the other
groups. RT, radiation therapy; AAT, antiangiogenic agent therapy; and AART, AAT plus RT.

doi:10.1371/journal.pone.0148784.g002
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Moreover, compared to the control group that showed an increase in the tumor volume, which
was measured at the last follow-up day, approximately five times that in the initial state, the
AART group showed approximately only a two-fold increase from the initial state.

MR images and enhancement-time curve
The MR images showed the interval changes of the tumors in each group (Figs 3–6). The post-
treatment DCE-MR images of the control group showed significant increases in the tumor
sizes and extensive poorly enhanced areas that suggested central necrosis. A wide central
poorly enhanced area was also noted in the RT group. The tumors in the AAT group treated

Fig 3. Initial and post-treatment MR images of the control group. The sizes of the tumors increase and
show low signal intensity changes in the central portion of the tumors that indicate necrosis.

doi:10.1371/journal.pone.0148784.g003

Fig 4. Initial and post-treatment MR images of the antiangiogenic therapy (AAT) group. Tumors in the
AAT group mildly increase in size and show a better-perfused state with enhancement than the tumors in the
control or radiation therapy group.

doi:10.1371/journal.pone.0148784.g004

DCE-MR for Anti-Angiogenic and Radiation Therapy

PLOS ONE | DOI:10.1371/journal.pone.0148784 February 10, 2016 6 / 12



only with SU11248 showed a better-perfused state with enhancement than the tumors in the
control and RT groups.

To show the time-signal intensity curves at the post-treatment states, the measured serial
signal intensities in each tumor were plotted (Fig 7). In the control group, the graph slope, i.e.,
the speed of enhancement, was steep and gradually decreased after the peak enhancement as
Pattern I. On the other hand, in the RT group, the slope of the time-signal intensity curve four
weeks after the treatment was flat, and its Pattern III indicated delayed enhancement of the
tumor. In the tumors in the AAT group that were treated only with the SU11248, the slope of
the time-signal intensity curve after the treatment showed Pattern II, i.e., rapid wash-in and a
plateau. Although the tumors in both the RT and AAT groups also showed interval growths
with internal necrosis on their DCE-MR images, considering the time-signal intensity curve,
the extent of the tumor necrosis seemed lesser in the AAT group than in the RT group. Among
the four groups, the tumors in the AART group showed strong and rapid enhancement and a
plateau, similar to Pattern II of the AAT group, and had smaller necrotic areas on the MR
images than those in the other groups.

Fig 6. Initial and post-treatment MR images of the combination therapy (AART) group. The tumors in
the AART group minimally increase and enhance without remarkable necrosis.

doi:10.1371/journal.pone.0148784.g006

Fig 5. Initial and post-treatment MR images of the radiation therapy group. The tumors increase in size and show extensive central necrosis with low
signal intensity and peripheral enhancement.

doi:10.1371/journal.pone.0148784.g005
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MR perfusion biomarkers
The measured perfusion parameters in the two groups are shown in Table 1. In the AART
group, the MER of the tumors was significantly high (p = 0.016), and the Splat/TTP, i.e., the
time to peak enhancement, which indicates the speed of enhancement, was significantly shorter
(p = 0.016) than in the RT group (Table 1). The other parameters, such as Kep, Kel, and A

H, did
not differ significantly between the two groups.

Discussion
In this study, we showed that the combination therapy of RT and AAT has a synergistic effect
on anticancer treatment using DCE-MR imaging. As a tumor grows, its oxygen demand

Table 1. The five measured perfusion parameters in the RT-alone and AART groups.

Parameter RT (n = 5) AART (n = 4) P-value

Kep 0.0002 (0.0001, 0.0049) 0.00006 (0.00003, 0.00012) 0.190

Kel 0.0062 (0.0032, 0.0214) 0.0490 (0.0202, 0.0753) 0.063

Splat/TTP 0.0049 (0.0035, 0.0061) 0.0107 (0.0078, 0.0142) 0.016

AH 9.40 (1.85, 162.3) 794.05 (201.13, 1958.61) 0.063

MER 1.49 (1.354, 1.6126) 1.81 (1.7488, 1.8925) 0.016

The data are medians with the interquartile ranges in parentheses. RT, radiation therapy; AART, SU11248

plus RT; Kep (sec
-1), exchange rate constant from the extracellular space back to the plasma in the

vascular structure; Kel (sec
-1), elimination rate constant from the plasma to the renal excretion; Splat, signal

intensity in the plateau; TTP, time to peak enhancement; AH, constant corresponding to the size of the

interstitial space; and MER, maximum enhancement ratio.

doi:10.1371/journal.pone.0148784.t001

Fig 7. Tumor time-signal intensity curves obtained from the initial and post-treatment MR images of the four cases in each group that represented
the interval changes. In the control group, the time-signal intensity curve of the post-treatment MR showed a rapid enhancement and rapid washout pattern.
In the AAT group, the enhancement ratios of the tumor are markedly decreased compared to the initial curve even though it shows prolonged enhancement.
In the RT group, the signal intensity curve shows a delayed and prolonged enhancement pattern. The rapid wash-in and a plateau pattern of the
enhancement in the AART group is similar to that of the tumor managed with AAT alone. However, the enhancement ratio is still higher than those in the AAT
case. AAT, antiangiogenic therapy; AART, combination therapy; RT, radiation therapy; SIR, signal intensity ratio—measured by comparison with the initial
signal intensity on the precontrast MR images.

doi:10.1371/journal.pone.0148784.g007
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increases. However, if the cancer vessels cannot supply enough oxygen to the central portion of
the tumor, the tumor becomes hypoxic in the central area. Finally, the increased tumor burden
and the hypoxic environment that decreases the oxygen-free radicals result in the tumor radio-
resistance [15]. AA agents can inhibit PDGF and VEGF signaling and suppress the formation
of immature cancer angiogenesis, which is vulnerable to RT. AA agents can also help to retain
normal vasculature in the tumor, and thus, reduce the hypoxic area after RT in the tumor [9].

In the RT group, the radiation induced extensive necrosis in the central portion of the
tumor and decreased vascular supply. Necrosis with decreased blood supply creates a hypoxic
area and decreases the tumoricidal effect of RT by reducing the oxygen-free radicals. However,
the tumors in the AAT group showed strong and rapid enhancement with a plateau, although
they also showed an interval growth similar to that of the tumors in the RT group. Moreover,
the tumors in the AART group were highly enhanced without significant necrosis, and their
growth was more significantly suppressed than that of the tumors in the three other groups.
These results are consistent with those of previous studies that showed that AA agents sup-
pressed immature angiogenesis and might have helped maintain the normal vasculature in the
tumor [7, 9]. By maintaining the tumor perfusion and reducing tumor necrosis, the tumorici-
dal effects of the oxygen radicals induced by RT could be increased even in the central area of
the tumors.

The enhancement curve of the AAT group appeared similar to that of the AART group in
terms of the rapid enhancement and maintained plateau even after the treatment. The similar
patterns of the time-signal intensity curves on the DCE-MR images imply the similar perfusion
patterns of the tumors. Rodgan et al. demonstrated that the microvessel density of a tumor was
correlated with the early enhancement of the tumor, and the necrotic tumor portion was corre-
lated with late enhancement [16]. These suggest that the tumors in the AAT group and the
AART group might have retained their microvessel density to show rapid and early enhance-
ment; that is, the AA agent might have helped prevent tumor necrosis. Because AA agents can
help reduce tumor growth by suppressing the cancer angiogenesis while preserving the normal
vasculature, they can eventually help reduce tumor hypoxia [15]. In the other studies, the oxy-
gen levels might have increased in the combination therapy rather than in the RT alone [17–
19]. On the other hand, the RT group showed a delayed enhancement pattern with an
increased time to peak enhancement. This suggests that the vulnerable cancer vessels in the
tumor had been damaged by RT and resulted in more necrotic portions than in the other
groups. It has been reported that the time to the peak enhancement of the parotid gland had
increased on the DCE-MR images as the vascular permeability decreased and the extracellular
extravascular space increased after the RT of the parotid gland [10].

The perfusion changes after each treatment were demonstrated by the DCE-MR images
with the expected biomarkers. In this study, the AART group showed a significantly higher
Splat/TTP (P< 0.016) and MER (P< 0.016) than the RT group. There are many published stud-
ies that attempted to find the quantitative imaging parameters related to the treatment effect
on DCE-MR images. The usefulness of Ktrans and Kep in the assessment of the treatment
response has been mentioned in several reports [20–23]. Akisik et al. suggested that the pre-
treatment Ktrans for pancreatic tumors might be useful in predicting the treatment response to
an AA agent [24]. The effect of anticancer therapy measured by DCE-MR imaging has also
been reported with regard to neoadjuvant chemotherapy [25–28] and RT [29–32]. In this
study, we showed that one of the explanations of the synergistic effect of AAT on RT could be
the retention of the tumor perfusion, which was represented by the higher values of Splat/TTP
and MER. These results suggest that the early and prolonged enhancement with the plateau
seen in the AART group was due to the relatively small portion of the necrosis and from the
maintenance of the perfusion in the tumor.
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This study had several limitations. First, we used only one type of cancer model, A549,
which is a well—differentiated human lung cancer cell line. However, the treatment effect
might be diversely demonstrated according to the tumor-specific characteristics such as the
expression level of PDGF or VEGF, the angiogenesis potential, the oxygen tension, or the
tumor stage. Therefore, the results of this study cannot be directly applied to other types of can-
cer models. To overcome this limitation, tumor-specific experiments in each cancer cell line
and in various clinical settings are needed. Second, as we used only one kind of AA agent, a
receptor tyrosine kinase inhibitor, the various mechanisms of AA agents pertaining to RT can-
not be sufficiently inferred. Other types of AA agents that target the matrix metalloprotease,
inhibit the angiogenesis growth factors and the activation of endothelial cells, and have multi-
ple or unknown mechanisms of action should be investigated for combination with RT [33,
34]. Third, because we have performed MR twice for each mouse before and after the treat-
ment, we could not demonstrate the serial course of tumor changes in each group. To better
visualize the perfusion changes in the tumors, follow-up MR during each treatment could be of
value. Fourth, although we did not obtain the specimens of the tumors from the mice, the
imaging-pathologic correlation could help explain the perfusion changes of the tumors. Finally,
this study was not designed to see the tumor changes according to the treatment dose or sched-
ule. Such changes could also affect the tumor condition. A patient’s general health condition
could also influence the treatment effect in the clinical setting.

Conclusion
The combination therapy of an AA agent and RT showed synergistic effects in the anticancer
treatment. The AA agent helped maintain the perfusion in the central portion of the cancer
mass in the AART group during and after the radiation therapy. The different pattern of the
time-signal intensity curve on the DCE-MR imaging in each group implied the perfusion
changes of the tumors, which were shown by the perfusion parameters such as Splat/TTP and
MER on the DCE-MR imaging.
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