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Summary

Fibroblast growth factor 21 (FGF21) is a hormone induced by various metabolic stresses, 

including ketogenic and high carbohydrate diets, that regulates energy homeostasis. In humans, 

SNPs in and around the FGF21 gene have been associated with macronutrient preference, 

including carbohydrate, fat and protein intake. Here we show that FGF21 administration markedly 
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reduces sweet and alcohol preference in mice, and sweet preference in cynomolgus monkeys. In 

mice, these effects require the FGF21 co-receptor β-Klotho in the central nervous system and 

correlate with reductions in dopamine concentrations in the nucleus accumbens. Since analogs of 

FGF21 are currently undergoing clinical evaluation for the treatment of obesity and type 2 

diabetes, our findings raise the possibility that FGF21 administration could affect nutrient 

preference and other reward behaviors in humans.

Graphical Abstract

Introduction

FGF21 is induced in liver in response to fasting and other forms of metabolic stress 

including ketogenic and high carbohydrate diets (Badman et al., 2007; Dushay et al., 2015; 

Inagaki et al., 2007; Sanchez et al., 2009; Zhao et al., 2015). FGF21 in turn regulates diverse 

aspects of energy homeostasis, including hepatic fatty acid oxidation and ketogenesis, 

circadian behavior, growth and female reproduction (Owen et al., 2015). Pharmacologically, 

FGF21 causes weight loss and improves insulin sensitivity in obese mice, monkeys and 

humans (Gimeno and Moller, 2014). Long-acting analogs of FGF21 are currently in clinical 

trials for the treatment of obesity and type 2 diabetes.

FGF21 acts through a cell surface receptor composed of a conventional FGF receptor in 

complex with β-Klotho, a single-pass transmembrane protein (Owen et al., 2015). FGF21 

crosses the blood-brain barrier (Hsuchou et al., 2007) and exerts many of its actions, 

including its effects on growth, female reproduction and weight loss, by acting on its 

cognate receptor in the CNS (Bookout et al., 2013; Douris et al., 2015; Liang et al., 2014; 

Owen et al., 2013; Owen et al., 2014; Sarruf et al., 2010). Among its central actions, FGF21 

induces corticotropin-releasing factor and suppresses arginine vasopressin expression in the 

hypothalamus (Bookout et al., 2013; Liang et al., 2014; Owen et al., 2013; Owen et al., 

2014).
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In humans, SNPs in and around the FGF21 gene are associated with changes in 

macronutrient preference, including increases in carbohydrate consumption and decreases in 

fat and protein intake (Chu et al., 2013; Tanaka et al., 2013). These findings raise the 

possibility of additional effects of FGF21 on the brain. In this report, we examine the effect 

of FGF21 on sweet and alcohol preference in mice and monkeys.

Results and Discussion

Since FGF21 is induced by carbohydrates in rodents and humans (Dushay et al., 2015; 

Sanchez et al., 2009), and SNPs in the FGF21 gene are associated with carbohydrate intake 

in humans (Chu et al., 2013; Tanaka et al., 2013), we investigated whether chronic FGF21 

exposure affects sweet preference. Two-bottle preference assays with water and either 3% 

sucrose or 0.2% saccharin (Krishnan et al., 2007; Tordoff and Bachmanov, 2003) were 

performed using wild-type and Fgf21-transgenic (Tg) mice expressing supraphysiological 

concentrations of FGF21 (Inagaki et al., 2007). Saccharin was included to eliminate the 

potentially confounding effect of caloric content. As expected, wild-type mice showed a 

strong preference for drinking water sweetened with either sucrose or saccharin (Figure 1A 

and B, Table S1). Notably, the Tg(Fgf21) mice had significant decreases in both sucrose and 

saccharin preference (Figure 1A and B).

To determine whether FGF21 acts on the CNS to regulate sweet preference, we 

administered recombinant FGF21 or vehicle by osmotic minipump to groups of control mice 

with floxed β-Klotho alleles (Klbfl/fl) or mice specifically lacking β-Klotho in the CNS 

(KlbCamk2a), and two-bottle saccharin preference tests were performed. FGF21 strongly 

suppressed saccharin preference in Klbfl/fl mice but had no effect in KlbCamk2a mice (Figure 

1C, Table S2). As reported (Camporez et al., 2013), administration of recombinant FGF21 

increased total fluid intake, and this effect required β-Klotho in the CNS (Table S2). In 

contrast, total fluid intake was unchanged in Tg(Fgf21) compared to control mice (Table S1 

and S2). The reason for this difference between transgenic FGF21 overexpression and 

recombinant FGF21 administration on fluid intake is not known. Nevertheless, FGF21 

decreased sweet preference in both contexts.

In additional two-bottle preference tests, FGF21 had no effect on preference for 1% 

sunflower oil (data not shown) or quinine (Figure 1D), indicating that FGF21 does not affect 

responses to fatty acids or bitter taste. FGF21 administration also had no effect on either tail-

suspension or forced-swim tests, both standard measures of behavioral despair (Figure S1A 

and B). We conclude that FGF21 acts directly on the brain to regulate sweet preference 

without causing despair.

To determine whether FGF21 also affects sweet preference in primates, we analyzed 

saccharin preference in obese cynomolgus monkeys administered PF-05231023, a long-

acting FGF21 analog consisting of two molecules of modified FGF21 linked by an antibody 

scaffold (Dong et al., 2015; Giragossian et al., 2015; Weng et al., 2015). We first tested this 

analog in mice. PF-05231023 administration decreased saccharin preference to a similar 

degree as native FGF21, with maximal efficacy observed 3–5 days after dosing (Figure 2A). 

For the monkey study, PF-05231023 or vehicle was administered on days 1, 4 and 7 of the 
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three-week experiment. Notably, PF-05231023 administration significantly decreased 

saccharin preference in the monkeys (Figure 2B). The effect on saccharin intake in the 

monkeys was striking even within one day of receiving a single dose of the FGF21 analog, 

and the effect was sustained for several days after receiving the last dose. Thus, FGF21 also 

affects sweet preference in primates.

The neurotransmitter dopamine has a central role in regulating reward behavior, including 

sucrose and saccharin preference (Fernstrom et al., 2012). To examine whether FGF21 

affects dopamine signaling, including the mesolimbic pathway, we first measured β-Klotho 

expression in the ventral tegmental area (VTA), nucleus accumbens (NAc), medial 

prefrontal cortex (PFC) and caudate putamen (CP) of Klb+/− and Klb−/− mice, with the latter 

mice serving as a negative control. As expected (Bookout et al., 2013; Liang et al., 2014), 

Klb mRNA was detected in the suprachiasmatic nucleus/paraventricular (SCN/PVN) 

nucleus region of the hypothalamus in Klb+/− mice by qPCR (Figure 3A). Klb mRNA was 

also detected in VTA and NAc in Klb+/− mice, albeit at relatively low levels, but not the 

PFC or CP (Figure 3A). As expected, Klb mRNA was not detected in any of the regions in 

the Klb−/− control mice (Figure 3A). Consistent with the qPCR data, Klb mRNA was 

detected by in situ hybridization in SCN and a small subset of cells in the VTA and NAc 

(Figure S2A). Expression of FGF receptor 1, which partners with β-Klotho to form the 

FGF21 receptor, was detected by qPCR in all of these brain regions (Figure S2B).

The FGF21 receptor expression data led us to examine whether FGF21 affects the levels of 

dopamine and its metabolites in NAc, which coordinates reward behaviors. Notably, FGF21 

administration for two weeks significantly decreased dopamine, 3,4-dihydroxyphenylacetic 

acid (DOPAC), homovanillic acid (HVA) and 3-methoxytyramine (3-MT) concentrations 

(Figure 3B). FGF21 administration did not decrease dopamine, DOPAC, HVA or 3-MT 

concentrations in the CP (Figure S2C). FGF21 administration also caused changes in the 

expression of dopamine-related genes, including an increase in the dopamine transporter in 

the NAc and CP and a decrease in catechol-O-methyl transferase in the VTA and CP (Figure 

3C and D). FGF21 had little or no effect on the mRNA levels of tyrosine hydroxylase or 

dopamine receptor 1 in these brain regions (Figure S2D and E) nor did it change the levels 

of total and phosphorylated tyrosine hydroxylase in VTA (Figure S2F). Taken together, 

these data suggest that FGF21 may affect sweet preference via effects on dopamine 

signaling. However, additional experiments will be required to confirm this possibility and 

to determine the mechanism whereby FGF21 reduces dopamine concentrations.

Since dopamine signaling impacts ethanol drinking behavior (Gonzales et al., 2004), we 

examined whether FGF21 also affects alcohol preference. Groups of wild-type and 

Tg(Fgf21) mice were exposed stepwise to increasing concentrations of ethanol in a two-

bottle preference assay. Tg(Fgf21) mice had a decreased ethanol preference ratio at the 4%, 

8%, 12% and 16% ethanol concentrations (Figure 4A, Table S3). In an ethanol 

bioavailability test, there was no difference between wild-type and Tg(Fgf21) mice in 

plasma ethanol concentrations at 1 and 3 hours after ethanol administration (Figure 4B). 

Thus, FGF21 suppresses ethanol preference without affecting its bioavailability.
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In summary, we show that FGF21 regulates sweet and alcohol preference in mice, and sweet 

preference in monkeys. Since circulating levels of FGF21 increase in response to 

carbohydrate consumption in rodents and humans (Dushay et al., 2015; Sanchez et al., 2009; 

Zhao et al., 2015) and alcohol consumption in rodents (Zhao et al., 2015), this may represent 

a feed forward regulatory pathway for limiting consumption. In mice, the effects on sweet 

and alcohol preference correlate with reductions in dopamine concentrations in the NAc, 

which coordinates reward behavior. These results suggest a mechanistic basis for the 

association between SNPs in and around the FGF21 gene with macronutrient preference in 

humans (Chu et al., 2013; Tanaka et al., 2013). Moreover, since FGF21 is currently in 

clinical trials for treating obesity and type 2 diabetes, these findings suggest that additional 

studies are warranted to assess the effects of FGF21 on sweet and alcohol preference and 

other reward behavior in humans.

Methods

Mouse experiments with FGF21

All mouse experiments involving native FGF21 were approved by the Internal Animal Care 

and Use Committee of the University of Texas Southwestern Medical Center. Wild-type and 

Tg(Fgf21) mice were on a C57BL/6J background. Klbfl/fl and KlbCamk2a mice were on a 

mixed C57BL/6J;129/Sv background as described (Bookout et al., 2013). All experiments 

were performed with 2- to 4-month-old male mice. Tg(Fgf21) and Klbfl/fl mouse 

experiments were performed with littermates. Mice were housed on a standard 12-hour light/

dark cycle and had free access to chow. Recombinant human FGF21 protein was provided 

by Novo Nordisk and administered by subcutaneous osmotic minipumps (Alzet) at a dose of 

1 mg/kg/day. Mice were allowed to recover from minipump surgery for 1 week prior to 

preference tests. Mice were single caged following minipump surgery, which was conducted 

under isoflurane anaesthesia and 24 hour buprenorphine analgesia.

Two-bottle preference assays

For the two-bottle sucrose and saccharin preference assays, mice were acclimated to cages 

with 2 bottles of just water for 4 d. Mice were then given access to bottles with water and 

water containing 3% sucrose or 0.2% saccharin (w/v). For the quinine preference assay, 

mice were given access to water and water containing 2 mg/dl quinine. In each case, 

consumption was measured daily for at least 3 days. For ethanol preference assays, mice 

were given access to two bottles, one containing water and the other containing either 2, 4, 

8, 12 or 16% ethanol (v/v) in water. The same mice were exposed to an ascending 

concentration of each ethanol concentration for 5 days. The position of the two bottles was 

changed every two days to exclude position effects. Water and ethanol-containing water 

intake were measured each day.

Mouse immobility assays

Tail-suspension and forced-swim tests were performed as described (Can et al., 2012a; Can 

et al., 2012b) on mice administered either FGF21 or vehicle by osmotic minipump for 7–14 

days. In both tests, the experimenter was blinded to the treatment group. For the forced-

swim test, mice were placed in cylindrical tanks (20 cm in diameter) filled with water (25 ± 
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2°C). The cylinder was filled to a depth of 12 cm to prevent the mice from using their tails 

to support themselves in the water. In both experiments, the cumulative time spent immobile 

was recorded over the course of a six minute experiment.

Ethanol clearance assays

Mice were intraperitoneally injected with ethanol (4 g/kg) in saline, and tail vein blood was 

drawn at regular intervals. Plasma ethanol levels were measured using the EnzyChrom™ 

Ethanol Assay Kit (BioAssay Systems).

Microdissection of brain regions

Mouse brains were extracted from the skull and kept under dry ice vapor for all dissections. 

Coronal sections (1mm thick) were cut using a brain-slicing matrix (Braintree Scientific). 

Medial prefrontal cortex, whole NAC (shell and core), the hypothalamic suprachiasmatic 

and paraventricular region, CP (striatum) and VTA were identified by gross architectural 

landmarks (Paxinos and Franklin, 2004). Medial prefrontal cortex and the hypothalamic 

suprachiasmatic and paraventricular region were dissected using a 14-gauge tissue punch. 

NAC, CPA and the VTA were dissected using a 16-gauge tissue punch. Tissue was 

homogenized by passage through a 26½-gauge syringe in RNA-STAT60.

Quantitative PCR analysis

Total RNA was isolated from tissue using RNA-STAT60 reagent and RNA was reverse-

transcribed into cDNA (Invitrogen). Gene expression was measured with an Applied 

Biosystems 7900HT Sequence Detection System using the ΔΔCT assay and normalized to 

GAPDH.

In situ hybridization analysis

Brains were dissected from male C57BL/6J mice, embedded in OCT compound (Sakura) 

and flash frozen in cooled isopentane. Coronal sections (14–16 μm) were cut using a 

cryostat (Leica) followed by fixation for 15 min at 4°C with 10% neutral buffered formalin. 

In situ hybridization was performed using the RNAscope 2.5 brown chromogenic assay 

pretreatment and detection kits (Advanced Cell Diagnostics). Probes for cyclophilin B 

(positive control), dapB (negative control) and Klb were purchased from Advanced Cell 

Diagnostics. Hybridized sections were counterstained with hematoxylin, dehydrated, cleared 

and mounted with Ecomount (Biocare Medical). Images were taken using a Zeiss Axioscan 

Z1 at 40X magnification. The signal from the mRNA was highlighted using the color 

threshold function in Image J.

Western blot analysis

Western blot analysis was performed using antibodies for total (Cell Signaling, #2792) and 

Ser40 phosphorylated tyrosine hydroxylase (AbCam, #51206). Data were acquired and 

quantified using an ImageQuant LAS 4000 and Multi Gauge v3.1 software (Fujifilm).
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Dopamine measurements

Dopamine and its metabolites were measured by HPLC by the Vanderbilt Neurochemistry 

Core.

Mouse and monkey experiments with PF-05231023

All animal care and experimental procedures for studies involving PF-05231023 were 

conducted in compliance with the US Animal Welfare Act and the ILAR Guide for the Care 

and Use of Laboratory Animals, 1996. The procedures used in these studies were reviewed 

and approved by the Pfizer Institutional Animal Care and Use Committee (AUP# 

GTN-2013-00793).

Male C57BL/6J mice fed a 60% high fat diet (Research Diets D12492i) for 12–14 weeks 

were used for the saccharin studies. Mice were singly housed with access to regular water 

and 0.1% saccharin (S6047, Sigma-Aldrich, St. Louis, MO) water throughout the study. 

Water intake was monitored using a BioDaq system (Research Diets Inc., New Brunswick, 

NJ). The position of sweetened and unsweetened water bottles was switched each day to 

eliminate positional preference. Mice were acclimatized to the cage for 10–14 days, after 

which they were stratified based on body weight and baseline saccharin water intake. 

PF-05231023 (Huang et al., 2013; Weng et al., 2015) or vehicle were administered 

subcutaneously twice per week for a total of 3 doses at 10 mg/kg.

Male Macaca fascicularis (cynomolgus monkeys) from Charles River Labs were single-

housed under a 12-hour light/dark cycle. Monkeys were between 7–24 years of age and 

weighed between 7–12 kg. Monkeys were provided standard lab diet 5K91 (LabDiet, St. 

Louis, MO) supplemented once a day with fruits and peanuts. The two-bottle saccharin 

preference assay was performed as described (Tordoff and Bachmanov, 2003). The monkeys 

underwent a training period during which the standard water system was shut off and 2 

bottles, one with water and the other with water containing 0.2% saccharin, were attached 

side-by-side to the cage. To determine the amount water consumed, bottles were weighed 

before and after filling, with the difference in weight equated to the volume consumed. The 

position of sweetened and unsweetened water bottles was switched each day to eliminate 

positional preference. Several animals in the original cohort were eliminated from the study 

due to water bottle damage, failure to adapt to the water bottle or if one of the allocation 

endpoints represented an outlier.

Fifteen monkeys were divided into 2 groups based on body weight, triglyceride and fasted 

glucose levels and baseline daily food and water consumption. Following a baseline period, 

PF-05231023 or vehicle (30 mM lactate pH 4.8, 9% Trehalose, 0.05 mg/ml EDTA, 0.1 

mg/ml L-methionine, 0.5 mg/ml Tween 20) was administered intravenously to 8 and 7 

animals, respectively, on days 1, 4 and 7. Dosing was performed in a blinded manner. Water 

consumption was monitored at least twice daily.
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Statistical analyses

All data are expressed as means ± S.E.M. Statistical analysis between the two groups was 

performed by unpaired two-tailed Student’s t test using Excel or GraphPad Prism (GraphPad 

Software, Inc.), or by using R software (Fraley et al., 2012; Pinheiro et al., 2013).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. FGF21 decreases sweet preference ratio in mice by acting on the CNS
(A) Two-bottle preference assay in wild-type (WT) and Tg(Fgf21) mice administered water 

vs. 3% sucrose. Representative 24 hour data from day 2 after initiating the assay are shown 

as the sucrose preference ratio (sucrose intake volume/total fluid intake volume). n = 10–11/

group.

(B) Two-bottle preference assay in WT and Tg(Fgf21) mice administered water vs. 0.2% 

saccharin. Representative 24 hour data from day 2 after initiating the assay are shown. n = 

10–11/group.

(C) Two-bottle preference assay with water vs. 0.2% saccharin for Klbfl/fl and KlbCamk2a 

mice administered either FGF21 (1 mg/kg/day) or vehicle. Representative 24 hour data from 

day 3 after initiating the assay are shown. n = 6–9/group.

(D) Two-bottle preference assay with water vs. 2 mg/dl quinine for Klbfl/fl and KlbCamk2a 

mice administered either FGF21 (1 mg/kg/day) or vehicle. n = 4/group.

Values are means ±S.E.M. *, p<0.05; ***, p<0.001; ###, p<0.001 by Student’s t-test.

See also Figure S1, Table S1 and S2.
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Figure 2. A stable FGF21 analog decreases saccharin preference in mice and monkeys
(A) Two bottle preference assay with 0.1% saccharin in diet-induced obese mice 

administered either PF-05231023 (10 mg/kg) or vehicle on days 0, 3, 7 and 10.

Data are shown as the mean ± S.E.M.; n = 8/group. **p < 0.01, ***p < 0.001 versus vehicle 

group.

(B) Two bottle preference assay with 0.2% saccharin in obese cynomolgus monkeys 

administered either PF-05231023 (n=8; 10 mg/kg) or vehicle (n=7) on days 1, 4 and 7. Data 

are presented as mean percentage change in saccharin water intake ± S.E.M. for vehicle-

treated (closed blue circles) and PF-05231023-treated (open red circles) monkeys. Solid 

lines are locally weighted scatterplot smoothing fits to the means of percent change. Mixed 

effect modeling fitted to these longitudinal data using R, version 3.1.2 (Pinheiro et al., 
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2013), showed a significant difference (p = 0.003) between groups. Number of days after 

first treatment, treatment type, and the interaction term between treatment groups and time 

were specified as fixed effects and monkey labels as a random effect.
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Figure 3. FGF21 affects dopamine signaling
(A) β-Klotho (Klb) mRNA levels in the suprachiasmatic nucleus/paraventricular nucleus 

(SCN/PVN) region of the hypothalamus, ventral tegmental area (VTA), nucleus accumbens 

(NAc), medial prefrontal cortex (PFC) and caudate putamen of Klb+/− and Klb−/− mice (n = 

6/group). Ct values are shown in the bars. ND, not detected.

(B) Concentrations of dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic 

acid (HVA) and 3-methoxytyramine (3-MT) in the NAc of mice administered either vehicle 

or FGF21 for 2 weeks by osmotic minipump (n = 12/group).
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(C) mRNA levels of dopamine transporter (Slc6a3) or (D) catechol-O-methyl transferase 

(Comt) in VTA, NAc and caudate putamen of mice administered either vehicle or FGF21 for 

2 weeks by osmotic minipump (n = 7–8/group). Ct values are shown.

Values are means ±S.E.M. *, p<0.05; **, p<0.01; ***, p<0.001 versus control group by 

Student’s t-test.

See also Figure S2.
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Figure 4. FGF21 decreases alcohol preference
(A) Ethanol preference ratio in wild-type (WT) and Tg(Fgf21) mice at the indicated ethanol 

concentrations (n = 9/group).

(B) Plasma ethanol concentrations in groups of WT and Tg(Fgf21) mice 1 or 3 hours after 

i.p. injection of ethanol (4g/kg) (n = 4–5/group).

Values are means ±S.E.M. *, p<0.05; **, p<0.01; and ***, p<0.001 versus control group by 

Student’s t-test.

See also Table S3.
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