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Abstract

We develop a multi-group epidemic framework via virtual dispersal where the risk of infection is 

a function of the residence time and local environmental risk. This novel approach eliminates the 

need to define and measure contact rates that are used in the traditional multi-group epidemic 

models with heterogeneous mixing. We apply this approach to a general n-patch SIS model whose 

basic reproduction number R0 is computed as a function of a patch residence-times matrix ℙ. Our 

analysis implies that the resulting n-patch SIS model has robust dynamics when patches are 

strongly connected: there is a unique globally stable endemic equilibrium when R0 > 1 while the 

disease free equilibrium is globally stable when R0 ≤ 1. Our further analysis indicates that the 

dispersal behavior described by the residence-times matrix ℙ has profound effects on the disease 

dynamics at the single patch level with consequences that proper dispersal behavior along with the 

local environmental risk can either promote or eliminate the endemic in particular patches. Our 

work highlights the impact of residence times matrix if the patches are not strongly connected. 

Our framework can be generalized in other endemic and disease outbreak models. As an 

illustration, we apply our framework to a two-patch SIR single outbreak epidemic model where 

the process of disease invasion is connected to the final epidemic size relationship. We also 

explore the impact of disease prevalence driven decision using a phenomenological modeling 

approach in order to contrast the role of constant versus state dependent ℙ on disease dynamics.
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1. Introduction

Sir Ronald Ross must be considered the founder of mathematical epidemiology [62] despite 

the fact that Daniel Bernoulli (1700-1782), was most likely the first researcher to introduce 

the use of mathematical models in the study of epidemic outbreaks [8, 28] nearly 150 years 

earlier. Ross’ appendix to his 1911 paper [62] not only introduces a nonlinear system of 

differential equations aimed at capturing the overall dynamics of the malaria contagion, a 

disease driven by the interactions of hosts, vectors and the life-history of Plasmodium 

falciparum, but also includes a tribute to mathematics through his observation that this 

framework may also be used to model the dynamics of sexually transmitted diseases [62]. 

Ross’ observation has motivated the use of mathematics in the study of the impact of human 

social interaction on disease dynamics [9, 18, 21, 23, 22, 34, 40, 45, 46, 47, 71]. In 

particularly, Ross’ work introduced the type of framework needed to capture and modify the 

dynamics of epidemic outbreaks; new landscapes where public policies could be tried and 

tested without harming anybody, complementing and expanding the role that statistics plays 

in epidemiology. Suddenly scientists and public health experts had a “laboratory” for 

assessing the impact of transmission mechanisms; evaluating, a priori, efforts aimed at 

mitigating or eliminating the deleterious impact of disease dynamics.

The study of the dynamics of communicable disease in metapopulation, multi-group or age-

structure models has also benefitted from the work of Ross. Contact matrices have been used 

in the study of disease dynamics to accommodate or capture the dynamics of heterogeneous 

mixing populations [1, 19, 29, 38]. The spread of communicable diseases like measles, 

chicken pox or rubella is intimately connected to the concept of contact, “effective” contact 

or “effective” per capita contact rate [25, 38]; a clear measurable concept in, for example, 

the context of sexually transmitted diseases (STDs) or vector-borne diseases. The values 

used to define a contact matrix emerge from the a priori belief that contacts can be clearly 

defined and measured in any context. Their use in the context of communicable diseases is 

based often on relative rankings; the result of observational subjective measures of contact 

or activity levels. For example, since children are believed to have the most contacts per unit 

of time, their observed activity levels are routinely used to set a relative contact or activity 

scale. Traditionally, since school children are assumed to be the most active, they are used to 

set the scale with the rest of the age-specific contact matrix usually completed under the 

assumption of proportionate (weighted random) mixing (albeit other forms of mixing are 

possible [2, 9, 18, 20, 29, 38] and references therein). In short, mixing or contact matrices 

are used to collect re-scaled estimated levels of activity among interacting subgroups or age-

classes; a phenomenological estimation process based on observational studies and surveys 

[59]. Our belief that contact rates cannot, in general, be measured in satisfactory ways for 

diseases like influenza, measles or tuberculosis, arises from the difficulty of assessing the 

average number of contacts per unit of time of children in a school bus, or the average 

number of contacts per unit of time that children and adults have with each other in a 

classroom or at the library, per unit of time. The issue is further confounded by our inability 

to assess what an effective contact is: a definition that may have to be tied in to the density 

of floating virus particles, air circulation patterns, or whether or not contaminated surfaces 

are touched by susceptible individuals. In short, defining and measuring a contact or an 
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effective contact, turns out to be incredibly challenging [59]. That said, experimental 

methods may be used to estimate the average risk of acquiring, for example, tuberculosis 

(TB) or influenza, to individuals that spend on the average three hours per day in public 

transportation, in Mexico City or New York City.

In this paper we propose the use of residence times in heterogeneous environments, as a 

proxy for “effective” contacts per unit time. Catching a communicable disease would of 

course depend on the presence of infected/infectious individuals (a necessary condition), the 

level of “risk” within a given “patch” (crowded bars, airports, schools, work places, etc), and 

the time spent in such environment. Risk of infection is assumed to be a function of the time 

spent in pre-specified environments; risk that may be experimentally measured. We argue 

that characterizing a landscape as a collection of patches defined by risk (public 

transportation, schools, malls, work place, homes, etc) is possible, especially if the risk of 

infection in such “local” environments is in addition a function of residence times and 

disease levels. Ranking patch-dependent risks of infection via the values of the transmission 

rate (β) per unit of time, may therefore be possible and useful. The reinterpretation of β and 

the use of residence times move us away from the world of models that account for 

transmission via the use of differential susceptibility to the world where infection depends 

on local environmental risk.

Consequently, we introduce a residence times framework in the context of a multi-group 

system defined by patch-dependent risk (defined by β). We study the role of patch residence 

times on disease dynamics within endemic and single outbreak multi-group scenarios. 

Specifically, the study of the impact of patch residence times (modeled by a matrix of 

constants) on disease dynamics within a Susceptible-Infected-Susceptible (SIS) framework 

is carried out first, under the philosophy found in [10, 11, 13, 15, 17, 21, 34, 48]. Individuals 

move across patches as a function of their assessment of relative levels of infection in each 

area (studies using alternative classical approaches are found in [15, 16, 35, 69]). The 

concept of modeling disease dynamics where the population is structured into several 

communities goes back to Rushton and Mautner [63]. They considered an SI model with a 

constant population size in each community and derived solutions for their model. Multi-

group models have surged in the literature to model sexually transmitted diseases. 

Lajmanovich and Yorke [56] proposed an SIS model in the study of gonorrhea in a 

heterogeneous population. They obtained conditions to prove the global stability of both the 

disease free equilibrium and the endemic equilibrium (EE). Nold [60] proposed some 

extensions, allowing a more general contact form, of the model in [56]. Other multi-group 

models with different settings (including differential infectivity in each group) have been 

considered in [30, 39, 49, 52, 53, 54, 57, 65, 67]. Hethcothe and Thieme [39] proved the 

uniqueness and the local stability of the EE if R0 > 1 for an SIRS multi-group model. Lin and 

So [57] proved the global stability of the EE if the effective contact rates between groups are 

small. Recently, authors in [30, 66] revisited the Lajmanovich and Yorke’s model [56]. Guo 

et al. in [32, 33] used a combination of Lyapunov functions and elements of graph theory to 

prove the global stability of the EE of an SIR and SEIR multi-group models. Shuai and van 

den Driessche [66] used a similar approach to study the asymptotic behavior of equilibria for 

some epidemic multi-group models. Typically, a sharp threshold property [66], for which 
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the disease dies out if R0 ≤ 1 and persists if R0 > 1, holds if the transmission (and contact) 

matrix B = (βij)1≤i,j≤n is irreducible.

In this paper, we explore the disease dynamics when the residence times matrix ℙ could be 

irreducible or not. First, we prove that the irreducibility of the residence times matrix ℙ lead 

to a sharp threshold property. This property also holds when ℙ is replaced by the irreducible 

matrix ℙDℙt where D is a particular diagonal matrix and the residence times matrix ℙ could 

be rectangular. Then we study the disease dynamics at patch level by relaxing the irreducible 

condition on the residence times matrix ℙ. Generalizations are explored through simulations 

of the two-patch SIS model with state-dependent residence times within our framework. The 

results are compared to the disease dynamics generated by constant residence times. More 

specifically, the paper is organized as follows: Section 2 introduces a general n patch SIS 

model that accounts for residence times. Theoretical results on the role of residence times 

matrix (ℙ) on disease dynamics are carried out using the residence times dependent basic 

reproduction number R0(ℙ). The patch-specific reproduction numbers (ℙ), i = 1, …, n are 

defined to determine the disease persistence at the patch level. The usage of R0(ℙ) allows us 

to explore the cases when the network configuration of patches is the non-strongly 

connected. In addition, we also apply our framework to a SI model and a SIS model without 

demographics. Section 3 explores, through simulations, the dynamics of the SIS model under 

a state-dependent residence times matrix in a two-patch system; ℙ ≡ ℙ(I1, I2). That is, when 

the decisions to spend time in a patch are a function of patch-disease prevalence. Section 4 

highlights our framework in the case of a two patch single outbreak SIR model following the 

work of Brauer [10, 17], and discusses the role of ℙ on the final epidemic size. Section 5 

collects our observations, conclusions and discusses future work. The detailed proofs of our 

theoretical results are provided in the Appendix.

2. A general n-patch SIS model with residence times

A general n-patch SIS model with residence time matrix ℙ is derived. The global analysis of 

the model is carried out via the basic reproduction number R0. We also include patch-

dependent disease persistence conditions.

2.1. Model derivation

We model disease dynamics within an environment defined by n patches (or risk areas) and 

so, we let Ni(t), i = 1, 2, …, n denote resident population at Patch i at time t. We assume that 

Patch i residents spend pij ∈ [0, 1] time in Patch j, with , for each i = 1, …, 

n. In extreme cases, for examples, we may have, for pij = 0, i ≠ j, that is Patch i residents 

spend no time in Patch j while  (or equivalently pii = 0) would imply that 

Patch i residents spend all their time in Patch j (with j = 1, …, n and j ≠ i) even though their 

patch is (labelled) i. In the absence of disease dynamics, the population of Patch i residents 

is modeled by the following equation:

(1)
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where the parameters bi, di represent the birth rate, and the natural per capita death rate in 

Patch i, respectively. Hence, the Patch i resident population approaches the constant  as 

t→∞.

In the presence of disease, we assume that disease dynamics are captured by an SIS model, 

thus, the Patch i resident population is divided into susceptible and infected classes, 

represented by Si, Ii, respectively, with Si + Ii = Ni. We further assume that (a) there is no 

additional death due to disease; (b) the Patch i Infected resident population recovers and 

goes back to the susceptible class at the per capita rate γi; (c) the residence time matrix 

 collects the proportion of times spent by i-residents in j-environments, i 

= 1, …, n and j = 1, …, n. The disease dynamics are therefore described by the following 

equations:

(2)

We model Si infection within Patch j in the following way:

• Since each pij entry of ℙ denotes the proportion of time that Patch i residents spent 

mingling in Patch j, we have that:

– There are Nipij = Sipij + Iipij Patch i residents in Patch j on the average at time t.

– The total Patch j, the total effective population is , of which 

 are infected. Hence, the proportion of infected individuals in Patch j 

is  and well defined, as long as there exists a k such that pkj > 0; so 

that the population in Patch j is nonzero.

• Hence, the [Si infected per unit of time in Patch j] can be represented as the product 

of the following three items:

The transmission takes on a modified frequency-dependent form that depends on 

how much time individuals of each epidemiological class spend in a particular area, 

and where βj differs by patch to reflect spatial differences in potential infectivity. 

More precisely, βj is assumed to be a patch-specific measure of disease risk per unit 

of time with its effectiveness tied in to local environmental and sanitary conditions. 

Therefore,
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(3)

provided that there exists k such that pkj > 0.

Model (2) can be rewritten as follows:

(4)

with, the dynamics of the Patch i resident total population modeled by the equation: (t) = 

bi − diNi(t), where Si + Ii = Ni, which implies that  as t→+∞. Theory of 

asymptotically autonomous systems for triangular systems [24, 70] guaranties that System 

(4) is asymptotically equivalent to:

(5)

for i = 1, 2, …, n, with residence times matrix  satisfying the conditions:

HP1. At least one entry in each column of ℙ is strictly positive; and

HP2. The sum of all entries in each row is one, i.e.,  = 1 for all i.

Remarks on Model (5)

1. Time scales: We assume that the disease dynamics occurs at the comparable time 

scale as to the demographic dynamics, and individuals enter or leave the patches at 

the relative faster time scale, e.g., daily, or even hourly. The case when there is no 

demographics in the context of a single epidemic outbreak scenario, has been 

considered in Section 4.

2. In our current modeling framework, we assume that the residence times matrix ℙ is 

a n×n matrix. This approach could generalize the concept of k social groups and l 

patches by letting n = max{k, l}, pij|i>k = 0 and pij|j>l = 0. The consequence of this 

generalization is that ℙ could have zero rows (when k < l = n) or columns (when l < 

k = n). The alternative treatment has been provided in the subsection 2.3 (thanks to 

the referee).

3. We do not assume that the residence times matrix ℙ being irreducible, instead, we 

assume that it satisfies relaxed conditions HP1-HP2. More specifically, we will 

explore the following two cases: (1) the global dynamics of Model (5) when the 

residence times matrix ℙ is irreducible; (2) the persistence of disease dynamics at 
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the patch level under conditions of HP1 and HP2 in the following subsection 

which includes the scenario when ℙ is not irreducible.

2.2. Equilibria, the basic reproduction number and global analysis

To analyze the system, we investigate the basic reproduction number of the system with 

fixed residence times to better understand its properties in the absence of behavioral 

responses to risk. We let B = (β1, β2, …, βn)t define the risk of infection vector; βi a measure 

of the risk per susceptible per unit of time while in residence in Patch i.

Letting S = (S1, S2, …, Sn)t, I = (I1, I2, … In)t,  and 

. Then System (5) can be rewritten in the following 

compact (vectorial) form:

(6)

with state space in . The set Ω = {I ≥ 0ℝn, I ≤ } is a compact positively invariant that 

attracts all trajectories of System (6). This implies that the populations involved are 

“biologically” well-defined since solutions of (6) will converge to and stay in Ω. We 

therefore restrict the dynamics of (6) to the compact set Ω.

The analysis of System (6) is naturally tied in to the basic reproductive number R0 [27, 68]; 

the average number of secondary cases produced by an infected individual during its 

infectious period while interacting with a purely susceptible population. R0 is given by (see 

the detailed formulation in Appendix):

(7)

where V = −diag(dI + γI), dI = (d1, d2, …, dn)t and γI = (γ1, γ2, …, γn)t.

The basic reproduction number R0 is used to establish global properties of System (6). For 

the relevant literature on global stability for multi-group or metapopulation models, see [5, 

51, 55, 56, 65] and the references therein. We define the disease free equilibrium (DFE) of 

System (6) as I∗ = 0ℝn and the endemic equilibrium (when R0 > 1) as  where all 

components are positive. By using the same approach as in [51, 56], we arrive at the 

following theorem regarding the global dynamics of Model (6).

Theorem 2.1.—[Global dynamics of Model (6)] Suppose that the residence times matrix ℙ 

is irreducible, then the following statements hold:

• If R0 ≤ 1, the DFE I∗ = 0ℝn is globally asymptotically stable. If R0 > 1 the DFE is 

unstable.
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• If R0 > 1, there exists a unique endemic equilibrium  which is GAS.

Remarks: The detailed proof of Theorem 2.1 is provided in Appendix B. These results 

imply that System (6) is robust, that is, disease outcomes are completely determined by 

whether or not the reproduction number R0 is greater or less than one. The results of 

Theorem 2.1 while powerful, do not provide easily accessible insights on the impact of the 

residence matrix ℙ on the levels of infection within each patch.

Direct insights on the effects of ℙ, are derived by focusing on the levels of endemicity 

within each patch. The following two definitions help set the stage for the discussion:

• The basic reproduction number for Patch i in the absence of movement (pii = 1 or 

, SIS model, is defined as , which determines whether 

or not the disease will be endemic in Patch i. In short disease will die out if  ≤ 1 

with a unique endemic equilibrium, that is GAS, if  > 1.

• The basic reproduction number associated with Patch i, under the presence of 

multi-patch residents, is defined as follows:

We explore the role that (ℙ) plays in determining the impact of all residents on disease 

dynamics persistence in Patch i in the following theorem.

Theorem 2.2.—[The endemicity of disease in Patch i] Assume that the residence times 

matrix ℙ satisfies Condition HP1 and HP2 but that some of its entries can be zeros.

• If (ℙ) > 1, then the disease persists in Patch i.

• If the following conditions hold:

then we have

Thus, when Condition H holds and  < 1, then endemic levels of disease 

cannot be supported in Patch i. That is,
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Remarks: The detailed proof of Theorem 2.2 is provided in Appendix C. The results of 

Theorem 2.2 give insights on the role that the infection risk (measured by B) and the 

residence time matrix (ℙ) have in promoting or suppressing infection. Further, a closer look 

at the expression of the general basic reproduction number in Patch i, namely

leads to the following observations:

1. The movement between patches, modeled via residence time matrix ℙ, can promote 

endemicity: For example, if  ≤ 1, i.e., there is no endemic disease in 

patch i. Then, the presence of movement connecting Patch i to possibly all other 

patches can support endemic disease levels in the following ways:

• Via the presence of high risk patches, that is, there exists a patch j such that 

 is large enough. For example, letting pkl = 1/n for all k, l with the total 

population in each patch being the same (  = K for all k; K a constant) then 

 and consequently, if , then Patch i 

will promote the disease at endemic levels.

• Whenever individuals spend more time in high risk than in low risk patches. 

For example, in the extreme case, pij = 1 with , we have that (ℙ) > 

1, and thus, endemic disease levels in Patch i can be supported. Patch j (j = 

1, …, n and j ≠ i) can therefore be considered the source and Patch i (i ≠ j) 

the sink [3, 4, 5, 6, 55, 56, 65, 64].

2. Under the assumption  > 1, for an isolated Patch i, conditions that lead to disease 

extinction in the same Patch i under the movement can be identified. According to 

Theorem 2.2, Condition J should be satisfied and so the expression of (ℙ) 

reduces to
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Therefore, the only way to have the value of (ℙ) be less than one, would be when the 

amount of time spent in Patch i is such that . Therefore, we 

conclude that the synergy between the residence time matrix ℙ and the existence of 

sufficient low risk patches (i.e., βj ≪ βi) can suppress a disease outbreak in Patch i.

2.3. Social groups versus patch environments

We assume that there are n social groups interacting in m different patch environments. Let 

pij be the proportion time of social group i spent at patch environment j, then the residence 

time matrix ℙ =  is a n×m matrix. Following the same modeling approach of 

the system (5), Model 5 is rewritten as the following form:

(8)

where

Model (8) is isomorphic to those considered in [30, 32, 33, 66], which could be rewritten in 

the simplified form (6) as Model (5). Denote the disease transmission matrix B = (bik)1≤i,k≤n, 

then we also have the form of B = ℙdiag(B)diag( )−1ℙt which is symmetric. We could see 

that Theorem 2.1 still holds if the irreducibility of ℙ is replaced by the irreducibility of B. 

We should also expect similar results of Theorem 2.2 for Model (8) when B is not 

irreducible.

The difference between the models in the aforementioned papers (e.g., [30, 32, 33, 66]) and 

our model (8) is that: In the former models, the disease transmission coefficient βij involves 

the contact rate between group j and group i, see the case of bilinear incidence [32, 33, 66] 

and proportional of βij for the frequency-dependent incidence [30, 32]. In our case, the 

disease transmission matrix B = (bik)1≤i,k≤n is symmetric and incorporates the environmental 

risks in different patches and the proportion of times that different social groups spent in 

each patch.

Now we apply the approach above to a SIS model without demographics and a SI model 

with the disease induced death rate ci for each social group i as follows.

Bichara et al. Page 10

Bull Math Biol. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1. A SIS model without demographics (i.e., assume that the total population size Ni at 

each patch i is constant and the natural death rate di = 0) could be rewritten in the 

form of:

(9)

whose simplified form is

where  is symmetric, 

and G = (γiδik)1≤i,k≤n with δik being the Kronecker delta. The basic reproduction 

number of Model (9) is ρ(BG−1) which determines whether the disease persists or 

dies out. Both our theorem 2.1 and 2.2 could be applied to Model (9)

2. A SI model with the disease induced death rate ci for each social group i could be 

rewritten in the form of:

(10)

whose simplified for

where C = (ciδik)1≤i,k≤n, and 

 is still symmetric but 

depending on the total population size Nl in each patch. Notice that  = −clIl, we 

expect the total population at each patch approaches zero as time is large enough. 

This is confirmed by simulations. Simulations also suggest that the infection 

dynamics have similar patterns as the prevalence of the SIR model studied in 

Section 4, and the limit of Ii(t)/Ni(t) goes to 1 for each patch as time is large 

enough.

3. Two patch models: state-dependent residence times matrix

We now extend the analysis of disease dynamics to the case where susceptible individuals 

respond to variations in risk in an automatic way. In particular, we consider the case when 

susceptible individuals make programmed responses to variations in disease risk, and do not 

choose their response to optimize an index of wellbeing (see for example [10, 13, 15, 17]). 

While this may not be a very good approximation of disease risk management in real 

systems, it enables us to explore the implications of certain types of phenomenologically 

modeled behavioral responses by assuming, for example, that the proportion of time spent in 

a particular patch depends on the numbers of infected individuals on that particular patch; 

that is ℙ ≡ ℙ(I1, I2).
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Possible properties of the proportion of time spent by resident of Patch i into Patch j, i ≠ j, 

(pij) may include: increases with respect to the growth of infected resident in patch i (Ii), or 

decreases with respect to infected resident in patch j (Ij). Mathematically, we would have 

that

In a two-patch system, the use of the relationship pij (I1, I2) + pji(I1, I2) = 1, reduces the 

above four conditions on ℙ, to the following conditions:

Examples of functions pij(I1, I2) with these properties include,

and

where σij are such the .

More complex behavioral response formulations may also depend on the states of total 

populations N1 and N2, but the current specification captures important components of risk 

(infections) and allows us to retain the asymptotic equivalence property applied in the case 

of fixed residence times. Hence, using the same notation as in System (6) leads to the 

following two dimensional system with ℙ = ℙ(I1, I2):

(11)

where

and
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where X(I1, I2), Y(I1, I2) and Z(I1, I2) are positive functions of I1 and I2.

The basic reproduction number R0 is the same as in the previous section since it is computed 

at the infection-free state, i.e.

where, in this case, we have that  and σij = pij(0, 0), ∀{i, j} = {1,2}.

The properties of positiveness and boundedness of trajectories of System (6) are preserved 

in System (11). In addition, System (11) has a unique DFE equilibrium whose local stability 

is determined by the value of the R0: the DFE is locally asymptotically stable if R0 < 1 while 

it is unstable if R0 > 1.

Let us consider whether System (11) can have a boundary equilibrium such as (0, ) or ( , 

0). The assumption that System (11) has such a boundary equilibrium (0, ) with  > 0 

implies that Y(0, ) = 0. Since p11(0, I2) =  and p22(0, I) = σ22, we deduce that

This indicates that Y(0, I2) = 0 if and only if σ21 = 0 and σ12 = 0, which requires that:

A similar arguments can be applied to the boundary equilibrium ( , 0). Therefore, we 

conclude that System (11) will have a boundary equilibrium ((0, ) or ( , 0)) only in the 

trivial case of isolated patches, that is, where there is no movement between two patches. 

This conclusion differs from the state-independent residence matrix model (6), since for 

example, the two-patch model (6), according to Theorem 2.1, boundary equilibrium (0, ) 

or ( , 0) can exist when p11 = p22 = 0 (p12 = p21 = 1).

To illustrate the difference between the state-dependent residence matrix model (11) and the 

state-independent residence matrix model (6), we look at the situation when σ11 = σ22 = 0, 

σ12 = σ21 = 1 (p11 = p22 = 0, p12 = p21 = 0 for the state-independent residence matrix model 

(6)). Under the condition of σ11 = σ22 = 0, σ12 = σ21 = 1, we have Model (11), that
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and

This difference has significant impact on disease dynamics (see Fig 1(a) and Fig 1(b), red 

curves).

In Fig 1(b), we see that the infection in Patch 2 (high risk) persists in the state-dependent 

case whereas it dies out when ℙ is constant. That is due to the fact that pii(I1, I2) will not 

equal zero whereas pij (I1, I2) with i ≠ j may. For the constant residence times matrix, the 

dynamics of the disease in each patch is also independent, where people in patch i infect 

only susceptible in patch j with i ≠ j. In Fig 1(b) (red solid curve), we observe that the 

disease dies out in Patch 2 with  = 0.8571. For the state-dependent case, 

unless there is no disease in both patches or one disease-free Patch, the proportion of time 

residents spend in their own patch is nonzero. This leads the disease to persist in both 

patches if R0 > 1 (see Fig 1(b), red dashed curves). However, even in this case, the disease 

dies out in both patches if R0 < 1 (See Fig 3, red curves, for instance).

3.1. Applications and comparisons: the two patch cases

The analytical results of the global dynamics on the asymptotic behavior of Model (11) are 

still unresolved. Hence, we ran simulations to gain some insights on the role of ℙ(I1, I2) on 

endemic dynamics. We observe that trajectories converge towards an endemic equilibrium 

whenever R0 > 1; however, there are substantial differences in the transient dynamics 

generated by state-dependent ∙(I1, I2) when compared to those generated with a constant 

residence times matrix.

Unless stated otherwise, we suppose the following generic values for the simulations: β1 = 

0.3, β2 = 1.2, b1 = 9, d1 = 1/7, b2 = 9, d2 = 1/10 and γ1 = γ2 = 1/4. We carried out numerical 

simulation for a range of residence times matrices. It is observed that:

1. For the symmetric case where p12 = p21 = 0.5, the disease is endemic in both 

patches as predicted by Theorem 2.1 since R0 = 2.0466. For the state-dependent 

case, simulations suggest (Fig 1(a) and Fig 1(b), black dashed curves) that 

trajectories tend to be endemic in both patches. However, the level of endemicity is 

lower than the constant case in Patch 1 (low risk patch) and is greater in Patch 2 

(high risk patch).

2. Fig 2 sketches the overall prevalence in both patches with three different scenarios 

of residence times matrix ℙ, both the constant and state-dependent case. The 

disease persists since the overall R0 > 1 in all three cases.
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3. The case where there is no movement between patches, that is, p12 = p21 = 0 (p11 = 

p22 = 1) and σ12 = σ21 = 0 (or p12(I1, I2) = p21(I1, I2) = 0), corresponds to the case 

where the system behaves as two isolated patches. In this case the disease dies out 

or persists in Patch i if  is above or below unity in both approaches. This is 

illustrated on Fig 1(a) and Fig 1(b) where the disease dies out in Patch 1 (Fig 1(a), 

blue solid line) where  = 0.7636 and the disease persists in Patch 2 

(Fig 1(b), blue solid curve) where  = 3.4286. For the state 

dependent case (dashed blue curves on on Fig 1(a) and Fig 1(b)) the outcome is 

similar to the constant residence times case.

4. In Fig 4(a) and 4(b), we explore the cases where there is symmetry (σij = σji) with 

σij = pij (0, 0). We supposed in this case that Patch 2 has higher risk (β2 = 1.2) and 

Patch 1 has lower risk (β1 = 0.3). As can be intuitively deduced, the prevalence in 

Patch 1 is at its highest in the case of “high mobility” (σ12 = σ21 = 1), and 

decreasing as σij decreases (with i ≠ j). Conversely, prevalence in Patch 2 is at its 

highest under very “low mobility” (σ12 = σ21 = 0) and decreases as σij increases. 

Note that σij, with i ≠ j is proportional to pij (I1, I2) which is the actual residence 

time.

5. We continue to explore the asymmetric case (σij ≠ σji), that is, there is more 

mobility towards one patch. In Fig 5(a), the prevalence in Patch 1 (low risk) is at its 

highest if there is “high mobility” from Patch 1 to Patch 2 (σ12 = 1) and no mobility 

from Patch 2 to Patch 1 (σ21 = 0), the prevalence decreases along with σ12. If the 

programmed response of residents of Patch 1 is to reduce their mobility (σ12 = 0) 

then, even if the mobility of residents in the high risk Patch 2 is extremely high (σ21 

= 1), still the prevalence in Patch 1 is at its lowest. Similar remarks hold for Fig 

5(b) regarding the prevalence in Patch 2 (high risk) under different mobility 

schemes.

6. Finally, Figure 6 presents the dynamics of the infected in both patches for the 

(conventional) case where p12 = 0 (and p11 = 1). This case is particularly interesting 

since the residence time matrix ℙ is not irreducible (hence the hypothesis of 

Theorem 2.1 fails) but (ℙ) = 1.8929 > 1. As predicted by Theorem 2.2, the 

disease in Patch 2 is persistent. Also, it is worth noticing that in Fig 6, I1 persists as 

well even though (ℙ) = 0.4455 < 1, as the condition (ℙ) > 1, for i = 1, 2, is 

sufficient but not necessary for persistence in Patch i.

4. Final epidemic size

The study of the role of residence time matrices on the dynamics of a single outbreak within 

a Susceptible-Infected-Recovered (with immunity) or SIR model without births and deaths 

is relevant to the development of public disease management measures [14, 26, 36]. Under 

the parameters and definitions introduced earlier, and making use of the same notation, we 

arrive at the following system of nonlinear differential equations:
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(12)

where Ri denotes the population of recovered immune individuals in Patch i, αi is the 

recovery rate in Patch i and Ni ≡ Si + Ii + Ri, for i = 1, 2.

The basic reproduction number R0, is by definition the largest eigenvalue of 2×2 (n×n for 

the general case) next generation matrix,

It has been shown (see [37], for example) that not everybody gets infected during an 

outbreak, and so, estimating the size of the recovered population (the final epidemic size in 

the absence of deaths or departures) is tied in the solutions of the final size relationship, 

given in this case, by the system:

(13)

where

The relationship (13) is obtained by using the fact that, in (12), we have 

. This implies that limt→∞ Ii(t) = 0 (for i = 1, 2), since Si and Ii are 

positive and integrating Si in (12), we obtain, after some tedious algebra Expression (13). 

The references [10, 12] give more details on the computation of the final size relationship. 

We would like to point out that the next generation matrix and the matrix K defining the 

final epidemic size have the same eigenvalues.

The residence time matrix ℙ plays an important role as evidenced by the dependence of the 

final epidemic size relation as in Fig 7. As we can notice in Fig 7, the prevalence in low risk 

Patch 1 is highest in the high mobility scheme where as in high risk Patch 2, the high 

mobility leads to the lowest prevalence. Also, as stated before (  Ii(t) = 0, for i = 1, 2) 

with any typical outbreak model, the disease ultimately dies out from both patches [38].
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5. Conclusion and Discussions

Heterogeneous mixing in multi-group epidemic models is most often defined in terms of 

group specific susceptibility and average contact rates captured multiplicatively by the 

transmission parameter β. However, contact rates, in general, cannot be measured in 

satisfactory ways for diseases like influenza, measles or tuberculosis, due to the difficulty of 

assessing the average number of contacts per unit of time of susceptible populations in 

different locations for varied activities. In this paper we propose the use of residence times 

in heterogeneous environments, as a proxy for “effective” contacts over a certain time 

window; and develop a multi-group epidemic framework via virtual dispersal where the risk 

of infection is a function of the residence time and local environmental risk. This novel 

approach eliminates the need to define and measure contact rates that are used in the 

traditional multi-group epidemic models with heterogeneous mixing.

Under the proposed framework, we formulate a general multi-patch SIS epidemic model 

with residence times. We calculate the basic reproduction number R0 which is a function of 

a patch residence-times matrix ℙ. Our global analysis shows that the model is robust in the 

sense that the disease dynamics depend exclusively on the basic reproductive number when 

the residence times matrix ℙ is “constant” (Theorem 2.1). We proved that the disease free 

equilibrium is globally asymptotically stable (GAS) if the basic reproduction number R0 ≤ 1 

and that a unique interior endemic GAS equilibrium exists if R0 > 1. This results holds as 

long as the residence time matrix ℙ is irreducible, that is, the graph of the patches is strongly 

connected.

If the residence time matrix ℙ is not irreducible, that is, the network of the patches is not 

strongly connected, Theorem 2.1 does not apply. For these cases, our further analysis 

(Theorem 2.2) provides accessible insights on the impact of the residence matrix ℙ on the 

infection levels within each patch. Our results imply that the infection risk (measured by B) 

and the residence time matrix (ℙ) can play an important role in the endemicity at the patch 

level. More specifically, the right combinations of the environmental risk level (B) and 

dispersal behavior (ℙ) can either promote or suppress infection for particular patches. For 

example, we are able to apply Theorem 2.2 to the two patch case when residents of Patch 1 

visit Patch 2 but not conversely. Theorem 2.2 allows us not only to characterize the patch-

specific disease dynamics as a function of the time spend by residents and visitors to the 

patch of interest, but also to classify patches as sources or sinks of infection, a role that 

depends on risk (B) and mobility (ℙ).

The entries of residence times matrix ℙ could be prevalence dependent, i.e., not constant 

anymore. The disease dynamics are expected to be different than the cases when ℙ is 

constant. To explore these differences, we study a two patch model with the state-dependent 

residence times matrix ℙ, and assume that each entry pij (I1, I2) of the residence times P(I1, 

I2) is negatively correlated with the prevalence in Patch j. When the residence times P(I1, I2) 

is prevalence dependent, our analysis and simulations suggest that (1) its disease dynamics 

may be prone to persistent by comparing to the case when ℙ is constant (e.g. Fig 1, 2); and 

(2) the disease endemic level could be rather complicated (e.g. Fig 3, 4, 5, 6).
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We have extended our framework to a two-patch SIR single outbreak model to explore how 

the residence time matrix ℙ may affect the final endemic size. We first derived the final 

epidemic size relationship in order to capture the size of the outbreak. Our analysis and 

simulations support that the residence time matrix ℙ plays an important role in the final 

epidemic size. For example, as observed in Fig 7, the prevalence in low risk Patch 1 is 

highest in the high mobility scheme where as in high risk Patch 2, the high mobility leads to 

the lowest prevalence.

In both conventional and phenomenological approaches to residence times used in this 

paper, humans behavior and responses to disease risk are automatic: ℙ is constant and 

predefined functions of health status. Recent studies [31, 42, 43, 44, 61] have incorporated 

behavior as a feedback response coupled with the dynamics of the disease. A model of the 

decision to spend time in patch i = 1, 2 based on individuals’ utility functions that include 

the possibility of adapting to changing contagion dynamics in the above two patch setting, 

using previous work [31, 58], is the subject of a separate study.
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Appendix A: Computation of R0

Proof

The general SIS model with residence time is described by the system (6)

The right hand member of the above system be can clearly decomposed as F + V where

The Jacobian matrix at the DFE of F and V are giving by:

The basic reproduction number R0 is given by the spectral radius of the next generation 

matrix −FV−1 [27, 68]. Hence, we deduce that
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Appendix B: Proof of Theorem 2.1

The proof uses the method in [51] which is based on Hirsch’s theorem [41].

Theorem B.1 (Hirsch [41])

Let  = F (x) be a cooperative differential equation for which  is invariant, the origin is an 

equilibrium, each DF (x) is irreducible, and that all orbits are bounded. Suppose that

Then all orbits in  tend to zero or there is a unique equilibrium p∗ in the interior of 

and all orbits in  tend to p∗.

Proof of Theorem 2.1.

Equation (6) can be written as:

(14)

where F = diag( )ℙdiag(B)diag( )−1ℙt and V = −diag(dI + γI), as defined in Appendix A. 

Let us denote by X(I) the semi flow induced by (14). Hence

(15)

where W (I1, I2) = diag(ℙdiag(B)diag( )−1ℙtI). Since ℙ is irreducible and I ≤ , DX(I) is 

clearly Metzler irreducible matrix. That means, the flow is strongly monotone. Plus, DX(I) is 

clearly decreasing with respect of I. Hence, by Hirsch’s theorem either all trajectories go to 

zero or go to an equilibrium point  ≫ 0. From the relation (15), we have DX(0) = F + V 

where F and V are the one defined previously in Appendix A. However, since F a 

nonnegative matrix and V is Metzler, we have the following equivalence

where α(F + V) is the stability modulus, i.e: the largest real part of eigenvalues, of F + V and 

ρ(−FV−1) the spectral radius of −FV−1. Hence, the DFE is globally asymptotically stable if 

R0 = ρ(−FV−1) < 1. And if R0 > 1, i.e: α(F + V) > 0, the DFE is unstable [68]. Since, we 

have proved that DX(I) is a Metzler matrix, to prove the local stability of the endemic 

equilibrium  ≫ 0, we only need to prove that it exists w ≫ 0 such that DX( )w < 0 [7]. 

The endemic equilibrium  ≫ 0 satisfies the equation
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Hence,

Hence, with w = , we deduce that  is locally stable. With the attractivity of  guaranteed 

Hirsh’s theorem, we conclude that the endemic equilibrium  ≫ 0 is globally asymptotically 

stable if R0 > 1.

Finally, if R0 = 1, we have α(F + V) = 0. It exists c ≫ 0 such that (F+V )tc = 0. By 

considering the Lyapunov function V = 〈c|I〉. This function is definite positive and its 

derivation along the trajectories if (14) is

(16)

Plus  = 0 only at the DFE. Hence the DFE is GAS if R0 = 1. This completes the proof of 

the theorem 2.1.

Appendix C: Proof of Theorem 2.2

Proof

Since Model (6) has the compact global attractor Ω, then according to Theorem (2.1), we 

can expect that limt→∞I(t) < , thus for time large enough, we can have we have  − Ii > 

0, therefore

which indicates follows when (ℙ) > 1
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Then apply the average Lyapunov Theorem [50], we can conclude that lim inft→∞ Ii(t) > 0, 

i.e., the disease in the residence Patch i is persistent if (ℙ) > 1.

If pij > 0 and pkj = 0 for all k = 1, .., n, and k ≠ i, this implies that if there is a portion of the 

residence Patch i population flowing into the residence Patch j, then there is no other 

residence Patch k where k ≠ j, i.e.,

which also implies that

then we can conclude that Model (6) can have an equilibrium since under these conditions,

Therefore, if the conditions pkj = 0 for all k = 1, .., n, and k ≠ j whenever pij > 0 hold, then 

we have

Therefore, Ii = 0 is the invariant manifold for Model (6).

On the other hand, when these conditions hold, then we have

Therefore, if , then we have the following inequality:
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Therefore, we have limt→∞ Ii(t) = 0, i.e., there is no endemic in the residence Patch i.
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Figure 1. 
Coupled Dynamics of I1 and I2 for constant pij (solid) and state dependent pij (dashed). The 

red lines is case of high mobility, i.e. p12 = p21 = σ12 = σ21 = 1. The black lines represent the 

symmetric case, i.e: p12 = p21 = σ12 = σ21 = 0.5 and the blue line represent the polar case, 

i.e.: p12 = p21 = σ12 = σ21 = 0.
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Figure 2. 
Coupled Dynamics of I1+I2 for constant pij (solid) and state dependent pij (dashed). The 

overall prevalence is higher if the residence times is symmetric (solid and dashed black 

curves). The black curves represent the symmetric case (p12 = p21 = σ12 = σ21 = 0.5 ), and 

the blue lines represent the polar case (p12 = p21 = σ12 = σ21 = 0) and red curves represent 

high mobility case (p12 = p21 = σ12 = σ21 = 1).
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Figure 3. 
Dynamics of I1 and I2 for varying σij for the state-dependent pij (I1, I2) where R0 < 1. This is 

obtained by using the values β1 = 0.2 and β2 = 0.3. In all the three cases, the disease dies out 

in both patches. The black curves represent the symmetric case (p12 = p21 = σ12 = σ21 = 

0.5 ), the blue line represent the polar case (p12 = p21 = σ12 = σ21 = 0) and red curves 

represent high mobility case (p12 = p21 = σ12 = σ21 = 1).
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Figure 4. 
Dynamics of I1 and I2 for varying σij for the state-dependent pij (I1, I2) approach.
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Figure 5. 
Dynamics of and I1 and I2 for varying σij, but non-symmetric, for the state-dependent pij (I1, 

I2).
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Figure 6. 
Dynamics of I1 and I2 where p12 = 0. In this case the residence time matrix ℙ is not 

irreducible, the disease in Patch 2 persists nonetheless as predicted by the theorem 2.2.
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Figure 7. 
The prevalence in patch 1 (low risk) reaches its highest when in extreme mobility case (solid 

blue line) and is lowest when there is no mobility between the patches. The opposite of this 

scenario happens in patch 2 (high risk).
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