
Review Article
Interplay between Cellular and Molecular Inflammatory
Mediators in Lung Cancer

Mario Orozco-Morales,1 Giovanny Soca-Chafre,1 Pedro Barrios-Bernal,1

Norma Hernández-Pedro,1 and Oscar Arrieta1,2

1Experimental Oncology Laboratory, National Cancer Institute of Mexico (INCan), 14080 Mexico, DF, Mexico
2Thoracic Oncology Unit, National Cancer Institute of Mexico (INCan), 14080 Mexico, DF, Mexico

Correspondence should be addressed to Oscar Arrieta; ogar@unam.mx

Received 28 November 2015; Accepted 10 January 2016

Academic Editor: Zvi Granot

Copyright © 2016 Mario Orozco-Morales et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Inflammation is a component of the tumor microenvironment and represents the 7th hallmark of cancer. Chronic inflammation
plays a critical role in tumorigenesis. Tumor infiltrating inflammatory cells mediate processes associated with progression, immune
suppression, promotion of neoangiogenesis and lymphangiogenesis, remodeling of extracellular matrix, invasion and metastasis,
and, lastly, the inhibition of vaccine-induced antitumor T cell response. Accumulating evidence indicates a critical role of myeloid
cells in the pathophysiology of human cancers. In contrast to the well-characterized tumor-associated macrophages (TAMs), the
significance of granulocytes in cancer has only recently begun to emerge with the characterization of tumor-associated neutrophils
(TANs). Recent studies show the importance of CD47 in the interaction with macrophages inhibiting phagocytosis and promoting
the migration of neutrophils, increasing inflammation which can lead to recurrence and progression in lung cancer. Currently,
therapies are targeted towards blocking CD47 and enhancing macrophage-mediated phagocytosis. However, antibody-based
therapies may have adverse effects that limit its use.

1. Non-Small Cell Lung Cancer (NSCLC)

Lung cancer remains the leading type of cancer worldwide
and in LatinAmerica [1, 2].Thedisease burden is significantly
high, with around 2.5 million new cases per year and 1.5
million deaths worldwide [3]. The two main histological
subtypes of lung cancer are small-cell lung cancer (SCLC),
which comprises 15% of cases, and non-small-cell lung cancer
(NSCLC) accounting for 85% of cases [4] which include
adenocarcinoma, squamous cell carcinoma, and large cell
carcinoma [5]. Among all newly diagnosed NSCLC cases,
adenocarcinomas are the most frequent subgroup following
by squamous cell carcinomas [6, 7]. Cigarette smoking is the
major risk factor for lung cancer but around 10–20% of cases
are found in never smokers; also wood-smoke is a major risk
factor in countries like Mexico [8–11].

Surgery is the selected treatment for early stage NSCLC
with the greatest probability of long-term survival in such
patients [12]. In advanced NSCLC, conventional therapies

are based on chemotherapy and radiotherapy but with low
efficacy. Over the last decade, there have been advances in the
study of molecular pathways underlying tumor development
leading to the development of targeted therapies such as
tyrosine kinase inhibitors (TKIs) and antibodies directed
against the two main actionable genes in NSCLC up to
now: mutations in the epidermal growth factor receptor
(EGFR) gene targeted by TKIs like gefitinib [13, 14], erlotinib
[9, 15, 16], and afatinib [17–19] and translocations involving
the anaplastic lymphoma kinase (ALK) gene treated with
the TKI crizotinib [20], alectinib [21], and ceritinib [22].
Benefits have been shown in a subset of 15–20% of patients
harboring EGFR mutations which correlate with definite
clinical characteristics: adenocarcinoma histology, female
sex, Asian ethnicity, and nonsmokers [23–25]. Despite these
improvements in therapeutic strategies, early diagnosis is
very difficult; most cases are diagnosed at an advanced stage
and cancer metastasis is very frequent; therefore, there is still
an exceedingly low 5-year survival rate of 11–24% [26–28].
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The immunotherapy approach has opened new therapeu-
tic options in advanced NSCLC with the advent of antibodies
against immune checkpoints [29, 30]. Recently, the anti-
programmed death-1 (PD-1) antibodies nivolumab and pem-
brolizumab have been approved in the treatment of advanced
metastatic NSCLC based on results from clinical trials after
prior chemotherapy [31, 32]. Both antibodies block signaling
through PD-1 and may restore antitumor immunity with
benefits in overall survival [33, 34]. For example, nivolumab,
a fully human monoclonal antibody, has recently shown
greater overall survival than docetaxel [35]. Pembrolizumab
has demonstrated safety and efficacy as single agent for
the treatment of NSCLC [32]. These antibodies exhibit a
reasonable toxicity profile but they should be administered
in selected patient populations based on biomarkers such
as PD-L1 expression to avoid serious immune-mediated
adverse effects [36]. Although these checkpoint inhibitors
have proven efficacy in patients, their mechanism of action
implies side effects as the onset of autoimmune diseases and
a series of endocrine disorders [37, 38]. This is the rationale
for further research into other molecular and cellular factors
of the immune system that could be effectively targeted to
develop novel therapeutic strategies for the management of
advanced NSCLC.

Recent findings indicate that inflammation plays a key
role in tumor progression and survival across several cancer
types [39]. Cancer related inflammation affects many aspects
ofmalignancy including proliferation, survival, angiogenesis,
and tumor metastasis [40]. Inflammatory components in the
development of the neoplasm include diverse leukocytes pop-
ulations, like macrophages and neutrophils, which respond
immediately to inflammatory stimulus [41]. Immunoreg-
ulatory cytokines secreted in a proinflammatory environ-
ment also contribute to tumor growth and metastases and
identify patient subsets in advanced NSCLC with differen-
tial prognosis [42]. Both macrophages and neutrophils are
increased in patients with lung cancer; this is associated
with poor clinical outcomes, suggesting that these cells
might have important tumor-promoting activities [43, 44].
Tumors escape phagocytosis and immune response through
overexpressing CD47 that interacts with the signal regulatory
protein alpha (SIRP𝛼) preventing engulfment [45]. Their
effects are mediated through complex regulatory networks.
Human cytokine profiles could define patient subgroups and
represent new potential biomarkers.

2. Tumor-Associated Macrophages (TAMs)

Macrophages within the tumor microenvironment are called
tumor-associated macrophages (TAMs). TAMs have a com-
plex relationshipwith tumor cells; at an early stage they attack
tumor cells avoiding tumor spread; however, over time they
begin producing reciprocal growth factors and establish a
symbiotic relationship with tumor cells [46]. Macrophages
are polarized into two functionally distinct formsM1 andM2,
mirroring theTh1 andTh2 nomenclature of T cells [47]. Dif-
ferentiation of the M1 macrophages is induced by interferon-
𝛾, lipopolysaccharides, tumor necrosis factor (TNF) 𝛼, and
granulocyte-monocyte colony-stimulating factor. The M1

macrophages produce high levels of interleukin- (IL-) 12, IL-
23, TNF𝛼, IL-1, IL-6, CXC ligand 10 (CXCL10), inducible
nitric oxide synthase (iNOS), human leukocyte antigen-
(HLA-) DR, and reactive oxygen and nitrogen intermediates
[47, 48]. Differentiation of theM2macrophages is induced by
IL-4, IL-10, IL-13, IL-21, activin A, immune complexes, and
glucocorticoid [47].TheM2macrophages express high levels
of IL-10, IL-1 receptor antagonist, CC ligand 22 (CCL22),
scavenger, mannose receptor, galactose receptor, arginase I,
and CD163 antigen, reduce the expression of iNOS, and
inhibit antigen presentation and T cell proliferation [47, 49].

Factors that shift TAMs towards a M2 phenotype include
the location of TAMs within the tumor microenvironment,
tumor stage, and type of cancer. Nevertheless, it is still
not fully defined whether the diversity within the TAM
population is due to the maturation of unique monocytic
precursors or due to various factors within the local tumor
microenvironment [50]. The M2 macrophages have been
found to encourage the growth of various tumour cells in vitro
and to increase tumor cell survival [51, 52]. M1 macrophage
significantly decreased A549 cell viability and proliferation as
well as invasion ability [53].

Studies suggest that in solid tumors established and
progressively growing TAMs are reprogrammed to induce
immune suppression in situ in the host through cytokines,
prostanoids, and other humoral mediators [54, 55]. Tumor
microenvironment can influence the functional status of
macrophages in situ [56]. IL-1 and IL-6 expression in TAMs
differs in ovarian cancer compared to peripheral blood
monocytes. TAMs in the ovary produce low levels of IL1 and
increase the release of IL-6, which contributes to elevated
acute phase proteins and increased malignancy [55].

There is an association between the number of
macrophages and prognosis in a variety of human tumors.
TAM infiltration increased in carcinomas of breast, cervix,
and bladder and correlates with a poor prognosis. However,
in prostate, lung, and brain, increasing TAMs is associated
with regression of tumors [46].

TAMs can regulate the development of new blood ves-
sels within tumors. In hypoxic sites, they stimulate the
production of enzymes and extracellular matrix molecules
that regulate endothelial cell activity by stimulating factors
such as vascular endothelial growth factor (VEGF), basic
fibroblast growth factor (bFGF), tumor necrosis factor-𝛼
(TNF-𝛼), transforming growth factors- 𝛼 and 𝛽 (TGF- 𝛼,
𝛽), interferons, thrombospondin, IL-8, and epidermal growth
factor (EGF) [57].

3. Tumor-Macrophage Interactions in Lung

Innate immunity in lung involves alveolar macrophages
(AMs) which act as a barrier avoiding penetration of
pathogens. Conversely, macrophages contribute in part to the
pathogenesis of lung disease due to toxic particles ingestion,
releasing lysosomal enzymes that can kill the macrophage
itself, or contribute to the recruitment of new macrophages
inducing chronic inflammation [58]. Clinical evidence has
indicated that the activation of alveolar macrophages by SiO2
produces rapid and sustained inflammation characterized by
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Figure 1: Smoke exposure mediated pathogenesis of pulmonary disease. The exposition to cigarette smoke by macrophages leads to release
of lysosomal enzymes able to inhibit phagocytosis by macrophages. Activation of alveolar macrophages deregulates expression of adhesive
molecules (CD36, CD91, and CD44) and activated RhoA inhibiting efferocytosis. The rapid and sustained inflammation may contribute to
the lung injury and tumorigenesis.

the generation of monocyte chemotactic protein 1, which, in
turn, induces fibrosis [59].

Exposure to cigarette smoke activates NF-E2-related fac-
tor 2 (Nrf2) in macrophages and reduces neutrophil recruit-
ment, reduces AMs phagocytic ability and expression of sev-
eral important recognition molecules, and impairs clearance
of apoptotic cells through oxidant-dependent activation of
RhoA [60, 61]. In current smokers, the exposure to cigarette
smoke affects several important recognition molecules on
AMs and downregulates CD31, CD91, CD44, and CD71 on

these cells [60]. AMs with defective phagocytosis lead to
chronic inflammation and significantly increase the likeli-
hood of developing chronic obstructive pulmonary disease,
lung injury, and cancer [62] (Figure 1).

The infiltration of alveolar macrophages promotes the
death of tumor cells in those sites of primary tumor growth
and/or metastasis in lung [63]. The antitumor activity of
alveolar macrophages from lung cancer patients decreases
with increased metastasis, tumor size, and development of
pleural invasion [64].The onset of malignant disease triggers
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Figure 2: Inflammation: a component of the tumor microenvironment. During malignant transformation until progression disease, the
recruitment of immune cells and secretion of soluble factors play an important role in tumor genesis. Tumor killing is promoted for
proinflammatory microenvironment where polarized M1 macrophages and N1 neutrophils are recruited. The production of soluble factors,
such as TNF-𝛼, NO, H

2
O
2
, proteases, and metalloproteinase by immune cells, inhibits tumor growth. However, the generation of an anti-

inflammatory environment and the alternative activation ofM2macrophages andN2neutrophils promote tumor growth. Also, growth factors
and angiogenic factors (GM-CSF, TNF-𝛽, IL6, and IL8) contribute to tumor proliferation and the inhibition of immune response through
prostaglandins.

the immune response recruiting TAMs into the tumor site.
High numbers of intratumor TAMs have been linked with
invasion, angiogenesis, hypoxia, and early occurrence of
metastasis in different tumor types including lung cancer
[48, 50] (Figure 2).

In patients with NSCLC, the M1 macrophage phenotype
has been associated with the expression of IL-1, IL-12, tumor
necrosis factor-𝛼 (TNF-𝛼), and iNOS and also has been
correlated with extended survival time [65]. In a study, M1
TAMs were identified using CD68 and iNOS markers in
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tumor compared to nontumor tissue in NSCLC patients.
Results indicate that iNOS expression is lower in tissues from
patients with adenocarcinoma and squamous cell carcinoma
compared to nontumor tissues but surprisingly this was not
the case in large cell lung carcinomas [66]. The classically
activated M1 macrophages produce effector molecules such
as reactive oxygen intermediates, reactive nitrogen interme-
diates, and TNF𝛼, to limit tumor growth. Overall there is an
association of M1 TAMs with better lung cancer prognosis.

At the other end are the alternatively activated M2
macrophages which have been correlated with tumor ini-
tiation, progression, metastases, by secretion of matrix-
degrading enzymes, angiogenic factors, and immunosup-
pressive cytokines chemokines, inhibiting inflammation [65,
67, 68]. M2 macrophages polarized by cigarette smoke lead
to proliferation, migration, and invasion of alveolar basal
epithelial cells, and exposition to these cigarette smoke-
induced M2 macrophages also significantly increased the
cell population in G2/M phase causing proliferation in lung
cancer cells [69].

Patients with combination gene signature of M1/M2
macrophages exhibited high median overall survival [53]. In
NSCLC, the concentration of macrophages M2 was 70% in
comparison with 30% M1. Density of macrophages M1 in
the tumor islets, stroma, or islets and stroma was positively
associated with patient’s survival time [66]. Also, M1 in islet
is a predictive response value to survival [66].

4. Tumor-Associated Neutrophils (TANs)

Neutrophils are also polarized into N1/N2 subgroups, N1
being proinflammatory, while N2 is anti-inflammatory. N1
and N2 represent a dichotomy in neutrophil subpopulations
present in patients and animal models with cancer where
they play distinctive roles in the pathogenesis of disease [70].
TANs have a complex interaction with T cells in the tumor
microenvironment [71]. They displayed an activated phe-
notype that included chemokine receptors as CCR5, CCR7,
CXCR3, andCXCR4. Also, TANs produced proinflammatory
factors MCP-1, IL-8, MIP-1𝛼, and IL-6, as well as the anti-
inflammatory IL-1R antagonist [72]. Also, TANs exhibit high
activated phenotype compared with peripheral neutrophils.
In cancer patients, TANs could drive antitumoral immunity
through regulating cytotoxic T lymphocytes. In early stages of
lung cancer disease, TANs increased T cell IFN-𝛾 production
and activation and increase T cell proliferation [72]. The
blockage of TGF-𝛽 is able to polarize N2 TANs to N1 TANs
in murine models of mesothelioma and lung cancer [73].

Resolution of inflammation involves cessation of neu-
trophils recruitment and initiation of apoptosis and clearance
[74]. If apoptotic neutrophils within the tissues are not
removed in an efficient and timely manner, they will become
necrotic and release cytotoxic granule proteins that may
perpetuate host tissue damage. Thus, neutrophils apoptosis
and clearance is a critical limiting factor for the successful
resolution of inflammation [75]. In colon adenocarcinoma
cell line,massive infiltration of neutrophils showed regression
of tumor [76].

So far, the possible mechanisms by which neutrophils are
increased inNSCLCpatients have not been described; despite
this, these cells are dysfunctional [77]; increased levels of IL-
8 could explain this accumulation; however, the mechanisms
by which this occurs are not known [42].

5. CD47 and Immune Evasion

Chronic inflammation confers higher risk of developing
cancer. Neutrophils are recruited to tumor sites through
transendothelial migration involving the CD47:SIRP𝛼 recog-
nition (signal regulatory protein alpha) creating an inflam-
matory environment [78]. Malignant cells escape phago-
cytosis displaying high levels of CD47 on their surface
which binds to SIRP𝛼 in macrophages and dendritic cells.
After binding to SIRP𝛼, CD47 induces a dephosphorylation
cascade preventing phagocytosis through impaired synaptic
myosin accumulation [79]. In this way, CD47 can regulate the
function of cells in the monocyte/macrophage lineage [80–
82].

CD47 is a ubiquitous cell-surface molecule from the
immunoglobulin (Ig) superfamily that interacts with SIRP𝛼,
thrombospondins, and integrins [83]. CD47 was first isolated
in association with integrin in neutrophil granulocytes and
was later shown to regulate integrin function [84, 85]. It plays
a role in cellular processes like proliferation, apoptosis, adhe-
sion, and migration [86] and in immunological processes
such as inflammatory response, immune response, and tumor
immunity [87, 88]. This receptor is recognized as a marker
of “self” [89] highly expressed by circulating hematopoi-
etic stem cells, red blood cells, macrophages, macrophages
neutrophils, and many cancer types [90]. CD47 has also
been identified as a tumor marker, and its dysregulation
contributes to cancer progression and evasion of antitumor
immunity [91–94].

CD47 is expressed ubiquitously whereas its counter-
receptor SIRP𝛼 is more abundant in myeloid-lineage cells
such as macrophages, neutrophils, and dendritic cells [95].
Several processes are regulated through the CD47:SIRP𝛼
signaling system of macrophages, including phagocytosis
mature red blood cells (RBCs) in the spleen, phagocytosis of
senescent cells and apoptotic bodies, rejection of transplants
of hematopoietic stem cells (HSCs), and immunosurveillance
thereby preserving tissue integrity and function [96–99].
Remarkably, there are many factors positively regulating
phagocytosis while SIRP𝛼-CD47 is the only negative regula-
tor preventing self-phagocytosis [88].

CD47 is critical for transepithelial and transendothe-
lial migration of neutrophils or polymorphonuclear leuko-
cytes (PMN) facilitating diapedesis through endothelial
cells while targeted CD47 deletion decreases neutrophil
extravasation [100, 101].The SIRP𝛼-CD47 interaction initially
recruits PMNs to tumor sites or sites of injury but later
negatively regulates these cells to end the inflammatory
response. However, in a postacute stage of inflammation,
neutrophils experience cleavage of the cytoplasmic signaling
domains of SIRP𝛼, correlating with increased recruitment
and neutrophil-associated damage. Truncated SIRP𝛼 acts like
a decoy, able to bind CD47 but not signaling intracellularly
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therefore maintaining the inflammatory microenvironment
and being a caveat for CD47 targeted therapies [102–105].
Additionally, SIRP𝛼 binding to CD47 in vitro downregulates
CD18 as marker of neutrophil activation thus playing a role
in the inflammatory activation state of PMNs [106, 107].

The dual role of CD47 in promoting inflammation
through neutrophilmigration and recognition of self through
blocking phagocytosis in macrophages plays a role in the
development of cancer and later in tumor immune evasion.
Loss of CD47 induces phagocytosis by macrophages in vitro
and blocks tumor development and metastasis in vivo [108].
This receptor is strongly overexpressed in several cancer
types including both hematological and solid tumors [80,
91, 109, 110]. A high CD47 expression has been a poor
prognostic factor for patients with these diseases [80, 111,
112]. CD47 is also highly expressed in tumor initiating cells
(TICs) or cancer stem cells (CSC) where it is a marker of
more aggressive tumor cells, with highermetastatic potential,
and less sensitive to engulfment by macrophages, thereby
escaping from immune surveillance while increasing cell
proliferation through activation of the PI3K/Akt pathway
[92, 113–116]. Therefore, CD47 becomes an attractive target
for therapeutic approaches with both antitumor and anti-
inflammatory properties and anti-CD47 antibodies are being
tested with positive results in preclinical and clinical settings
[80, 111, 112, 117].

In lung cancer and in several types of cancers including
breast, bladder, colon, pancreatic, and hematological cancers,
blocking CD47 in tumor cells leads to increased phagocytosis
by macrophages and later activation of T cells [94]. The
CD47:SIRP𝛼 interaction is involved in the pathogenesis of
lung cancer and other cancer types when tumors release
cytokines promoting tumor growth and stimulating the
conversion of macrophages from M1 to M2 phenotype [118].
Systemic administration of nanoparticles with anti-CD47
siRNA showed efficient inhibition of lungmetastasis to about
30% of controls [94]. In patients with lung metastasis, the
number of circulating tumor cells (CTC) with the phenotype
EPCAM(+)CD44(+)CD47(+)MET(+) were associated with
poor overall survival and increased metastasis and CD47 was
a marker associated with the fraction of metastasis-initiating
cells within the pool of CTCs [119].

Antisense suppression of CD47 in squamous lung tumors
prior to irradiation showedbenefit obtaining a 71% tumor size
reduction.This protection could possibly be exerted through
thrombospondin-1 signaling to recover from radiation stress,
revealing a strategy to protect normal tissues from radiation
damage using anti-CD47 antibodies which could be useful in
the application of combined radiation with targeted therapies
in lung cancer [120].

There is a close relationship between macrophage, neu-
trophil infiltration, and upregulation or CD47 with poor
prognosis and lack response to treatment. Nowadays, thera-
pies are developed to block the interaction of tumor cells with
macrophages through CD47, thereby offering an opportunity
to turnTAMs againstNSCLC cells by allowing the phagocytic
behavior of resident macrophages. Also, anti-CD47 could
regulate the recruitment of neutrophils into tumor and
diminish the chronic inflammation Figure 3.

6. Therapeutic Approaches: TAMs and TANs

Preclinical studies showed that peptide to M2-like TAM
improves survival of tumor bearing mouse [121]. Inhibition
of CSF-1 receptor, which is essential for macrophage dif-
ferentiation significantly increased survival and suppressed
established tumors, accompanied by decreasedM2-like TAM
[122]. Treatment with metformin is able to reduce the metas-
tases in vivo, through blocked matrix metalloproteinase-9
and expression of MMP-2, maintaining the components of
the extracellular matrix, avoiding the separation of tumor
cells, inhibiting the growth and metastasis of tumors [123].
Also, metformin prevented M2-polarization of macrophages
regulated AMPK𝛼1 and, besides, inhibited IL-1 induced
release of the proinflammatory cytokines IL-6 and IL-8 in
macrophages [124, 125]. Combination ofmetforminwith TKI
inhibitor reduces pulmonary fibrosis trough decreased TGF-
beta [126].

Glycodelin (gene name PAEP) is a proliferation suppres-
sor and apoptosis inducer of T cells, monocytes, B cells,
NK, and regulated pulmonary immune response in asthmatic
inflammation. However, atypical expression is observed in
squamous cell carcinomas and adenocarcinomas of NSCLC
[127]. In vitro, silencing by siRNA-transfection of PAEP in
two NSCLC cell lines resulted in significant upregulation of
immune system modulatory factors such as PDL1, CXCL5,
CXCL16, MICA/B, and CD83 as well as proliferation stimu-
lators EDN1 and HBEGF [127]. This kind of therapy provides
a mechanism to overcome tumor immunosurveillance.

As mentioned above, currently the only FDA-approved
immunotherapies for the treatment of NSCLC are nivolumab
and pembrolizumab. These antibodies inhibit checkpoint
molecules such as CTL-4 and PDL-1, improving the survival
and response to treatment [128]. CTLA-4 is thought to
regulate T cell proliferation early in an immune response,
primarily in lymph nodes, whereas PD-1 is upregulated
in current smokers and suppresses T cells [129]. These
antibodies switch on immune system cells mediated by T
cells, increasing their ability to recognize and destroy cancer
cells [128, 130]. Monoclonal antibodies specific for tumor cell
antigens, coupled with appropriate cytokines, may provide
rational basis for designing trials to employ the neutrophil
cytotoxic potential as adjuvant therapy in cancer patients
[131].

7. Conclusion

Chronic inflammation seems to play a major role in the onset
and development of cancer. Understanding the interaction
between the cellular and molecular factors that mediate
inflammation in NSCLC, including the rather unexplored
components of innate immunity such as macrophages and
neutrophils, can elucidate novel targets affecting key onco-
genic pathways in this malignancy and allow preventing can-
cer cell proliferation, angiogenesis, andmetastasis. Inhibiting
CD47 as promoter of neutrophil extravasation andmigration
may reduce inflammation thereby preventing cancer, and
blocking the antiphagocytic signal of CD47 on the surface of
tumor cells can overcome immune suppression, harnessing
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the immune system to target malignant cells more effectively.
On the other hand, the potential side effects should be
addressed by careful selection of patient populations based
on biomarkers such as tumor CD47 overexpression.
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