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Unexpected outcomes can reflect noise in the environment or a change in the current rules. We should ignore noise but shift

strategy after rule changes. How we learn to do this is unclear, but one possibility is that it relies on learning to learn in un-

certain environments. We propose that acquisition of latent task structure during learning to learn, even when not necessary,

is crucial. We report results consistent with this hypothesis. Macaque monkeys acquired adaptive responses to feedback while

learning to learn serial stimulus-response associations with probabilistic feedback. Monkeys learned well, decreasing their

errors to criterion, but they also developed an apparently nonadaptive reactivity to unexpected stochastic feedback, even

though that unexpected feedback never predicted problem switch. This surprising learning trajectory permitted the same

monkeys, naı̈ve to relearning about previously learned stimuli, to transfer to a task of stimulus-response remapping at im-

mediately asymptotic levels. Our results suggest that learning new problems in a stochastic environment promotes the ac-

quisition of performance rules from latent task structure, providing behavioral flexibility. Learning to learn in a

probabilistic and volatile environment thus appears to induce latent learning that may be beneficial to flexible cognition.

[Supplemental material is available for this article.]

Our environment is both noisy and volatile, and we track the re-
sulting uncertainty to guide our choices (Behrens et al. 2007).
Monkeys and humans successfully make choices and switch strat-
egies in tasks with both features (Pleskac 2008; Rudebeck et al.
2008; Walton et al. 2010; Collins and Koechlin 2012; Donoso
et al. 2014; McGuire et al. 2014). In these studies, increasingly so-
phisticated models, often derived from Bayesian principles, ex-
plain behavior and its neural correlates in well-trained subjects.
But subjects are trained before data are acquired, and the training
process, during which subjects learn to learn about the different
causes of unexpected feedback, is surprisingly understudied. In
these tasks, an unexpected negative feedback might be due to
the noise, or more formally the stochasticity of an event or out-
come. Such feedback should be ignored for optimal performance.
Unexpected feedback may also be due to a change in the settings
or rules of our volatile environment. This should induce a switch
of choice strategy. Although we do not know how we learn to
learn about these features, learning to learn appears to provide
tuning of cognitive control processes required for efficient adapta-
tion (Collins and Frank 2013).

The way in which we learn is likely to modify our response
to stochastic elements of the environment. This is especially
true in many naturalistic settings, such as foraging. By learning
to be more efficient we may make the environment more change-
able by depleting resources quicker and so increasing the need to
switch strategies—this is a common problem for optimal choice in
foraging situations (Ollason 1980; McNamara and Houston 1985).
Hence improved learning can increase volatility, and in the con-
text of increased volatility, stochastic outcomes become less
easy to detect and ignore (Payzan-LeNestour and Bossaerts 2011).

This predicts that the response to stochasticity should mod-
ify with learning to learn. The strategies employed by human
subjects are shaped by a priori information about the types of
environmental uncertainty in the task (Hertwig et al. 2004;
Payzan-LeNestour and Bossaerts 2011). Across nature, learning

in stochastic (as opposed to deterministic) environments leads
to greater behavioral flexibility as measured by remapping tasks
(Gallistel et al. 2001; Biernaskie et al. 2009; Tebbich and Teschke
2014). So, in these cases, subjects learn to learn about uncertain
tasks and, in doing so, acquire abstract information about latent
task structure, even when not necessary (Kornell et al. 2007;
Gershman et al. 2010; Collins and Frank 2013). Deep neural net-
works can now acquire such latent structure and generalize it
across a range of tasks (Mnih et al. 2015), suggesting that this
acquisition process could be crucial to behavioral flexibility.
We sought to show that learning to learn in a stochastic and vola-
tile environment drives the acquisition of latent information.
Importantly, this latent information should impact performance
and strategy (Collins and Frank 2013) in ways that identify the na-
ture of the learning to learn process.

Learning to learn was established in deterministic tasks
in primates by the seminal work of Harlow on “learning sets”
(Harlow 1949). Monkeys acquire a learning set that provides opti-
mal performance on tasks of simple associative learning, as well as
reversal learning (Murray and Gaffan 2006). Learning set is posit-
ed as a memory-dependent performance rule, for example “win-
stay lose-shift” based on previous feedback (Murray and Gaffan
2006). But as soon as feedback is determined by any probabilistic
rule, optimal performance would require choice driven by more
than the single previous outcome—it is unclear whether simple
“win-stay lose-shift” is then adapted or modified in order to track
a longer feedback history.

Monkeys with learning set flexibly transfer between new
learning and remapping learning (Schrier 1966). This flexibility
derives from “win-stay lose-shift,” as in deterministic tasks the
rule applies equally to new and remapped associations. Hence,
monkeys naı̈ve to remapping or reversal learning are able to
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remap their knowledge very efficiently. These deterministic tasks
are a special case, but if such benefits of learning to learn are gen-
eralizable to more realistic stochastic settings, transfer effects to
remapping tasks should also be observable in such settings.

In this study, therefore, we follow the evolution of responses
to stochasticity across learning to learn in a paradigm in which the
level of volatility is driven by changing performance. We tracked
the progress of monkeys as they acquired new problems in a sto-
chastic environment. Each time monkeys successfully learned
a problem, a new problem was presented for learning, imposing
volatility in addition to the stochastic nature of the task. We fol-
lowed how the monkeys learned to learn over a large number of
problems, and showed that as volatility increased with learning,
monkeys acquired an exploratory response to the stochastic envi-
ronment, even though the task did not require this. We then test-
ed whether learning to learn in a volatile environment permitted
flexible choosing, as learning set does in deterministic settings.
Monkeys repeatedly remapped what they learned. Despite their
naivety to remapping, the monkeys were immediately able to do
so optimally.

Results

Adaptive responses to standard and unexpected

feedback differ through learning
Our study proceeded in two major steps. In the first, monkeys per-
formed an “Identity Task” (IT, Fig. 1B), in which they learned pairs
of object–response associations in a probabilistic environment on
a 90/10 schedule—that is 10% of trials received “Trap” feedback
where the opposing feedback was given compared to the rule
currently in force. We refer to this probabilistic feedback as the
stochasticity of the environment. A pair of these associations
formed a problem. Monkeys serially learned a long sequence of
new problems, changing problem after learning the current one
to a performance criterion. Each new problem was incidentally
signaled by a change in the identity of the stimuli, the first trial
of the new problem being a Switch trial. We measured the learn-
ing of the monkeys on individual problems by the number of er-
rors to reach the criterion. But in addition to this learning,
monkeys also “learned to learn,” by reducing the number of errors
to criterion over many problems (Fig. 2A), and learning to rapidly
adapt to new stimuli after a Switch (Supplemental Fig. S1). This
process eventually stabilized to consistently ,50 errors to criteri-
on (vertical dotted lines). We call this the “stabilized period” even
if some learning still occurred, as shown by the continuous im-
provement of percentage correct per problem (Fig. 2B).

Reward maximization in this task would require the monkeys
to learn the rule, ignore the Trap trials, and switch rule only in the
presence of new stimuli. While theoretically optimal performance
like this is obtainable in deterministic tasks, achieving optimality
in a stochastic environment is costly. In order to understand how
the monkeys adapted to feedback noise over learning, we studied
their response to the uninformative Trap trials.

Trap reactivity refers to the change in performance after a
Trap feedback compared to performance before it (example in
Fig. 4A). Initially monkeys appeared to take very little notice of
Trap feedback (Fig. 2D), showing Trap reactivity around 0. This po-
tentially maximized rewards, as Trap trials are uninformative
about the rule and unpredictable. Trap reactivity then increased
significantly over problems in all monkeys (Fig. 2D, glm, interac-
tion Trials × Learning_Bins, P , 0.001). This increase was strongly
correlated with performance (correlation between Trap reactivity
and percentage of correct responses per learning bin, R ¼ 0.7119,
P , 0.001, Fig. 2E), a counter-intuitive result. Optimal responding
demands that monkeys decrease Trap reactivity as they improve at

the task, given that a Trap feedback is never predictive of a switch.
But significantly improving performance is also increasing the
level of volatility (Fig. 2C), as monkeys reach criterion and switch
quicker. This is a naturalistic situation—in foraging, increased ef-
ficiency of foraging also requires increased shifting between
patches. In IT, by analogy, learning increases the ratio of switches
to Traps, making Traps harder to distinguish from switches. In this
context an increase in Trap reactivity is less counter-intuitive (cor-
relation between Trap reactivity and switch:trap ratio per learning
bin, R ¼ 0.6808, P , 0.001, Fig. 2F).

Trap reactivity increased even when the monkeys were per-
forming each problem well, when only exploitation periods
were considered (glm on exploitation trials only, interaction
Trials × Learning_Bins, P , 0.001) (Fig. 3A). This effect was robust
to variation in the criterion used for selecting exploration/exploi-
tation periods (Supplemental Fig. S2). Importantly, the increase in
Trap reactivity was not driven by an increase of general perfor-
mance with learning, but by a decrease of performance on trial
Trap+1 (Fig. 3B). Trap reactivity also increased during exploration
periods, although less strongly (glm on exploration trials only,
interaction Trials × Learning_Bins, P , 0.01) (Fig. 3C). Further,
the increase in Trap reactivity could not be accounted for by
the increase in correct trials with learning. Even when we consid-
ered only the Trap trials in the form of surprising negative feed-
back after a correct choice (“Negative Trap”), the effect persisted
(Separate glms for positive and negative Trap feedback. Interac-
tion Trials × Learning_Bins, P , 0.01 and P , 0.001, respectively)
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Figure 1. Task design. (A) Structure of a single trial—common to both
tasks. The monkey holds a touch screen “lever” to initiate the task, and
then selects one of the three targets in response to a central stimulus.
Monkeys learn about two stimuli concurrently. Positive or negative
visual feedback is horizontal or vertical bars, respectively. Positive feed-
back was followed by the delivery of a juice reward. (B) Identity Task.
Each problem comprised two mappings, between each of the two
stimuli and a single target. One stimulus at a time was randomly present-
ed. On Trap trials, misleading feedback was given: positive feedback with
a juice reward after an incorrect choice; negative feedback with no reward
after a correct choice. Trap trials occurred pseudorandomly with P ¼ 0.1.
After a performance criterion (17/20 correct responses), the problem
changed (Switch trial), and two new mappings with two new stimuli
were randomly selected. (C) Switch Task. Identical to the Identity Task,
except that stimuli remained the same when the problem changed.
Only the mappings between stimuli and responses changed. Thus,
Switches between problems were not visually detectable.
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(Fig. 3E,F). This increasing reactivity to unexpected feedback with
learning was specific to Trap feedback. We compared Trap reactiv-
ity across learning bins with Switch reactivity (taken here as the
mean performance on the trials following a switch). While perfor-
mance after a Trap decreased with learning (accounting for the in-
crease of Trap reactivity) (Separate glms for positive and negative
Trap feedback on performance at Trap+1, factor Learning_Bins,
P , 0.001 in both cases), performance on the trials following a
Switch trial increased after a negative feedback and remained
high and stable across learning after a positive feedback (Separate
glms for negative and positive Switch feedback on performance
at Switch+1,+2 and+3, factor Learning_Bins, P , 0.01 and P .

0.05) (Fig. 3G,H). This shows that monkeys are increasing the
volatility in part by becoming efficient at switching, and it is
specifically while they do this that they also increase their Trap
reactivity; they learn to switch well, but they also learn to
switch to unexpected outcomes. It should be noted that Switch re-
activity here is performance on the three trials after a Switch,
whereas Trap reactivity remains performance at Trap+1. The
Switch here provides new stimuli with no reward history (unlike
the Trap), and so an appropriate response to it requires integrating
feedback from more than one trial. A difference between the
effects on performance of Trap and Switch is also obtained;
however, if we check this result only on trial Switch+1 (Supple-
mental Fig. S3, separate glms for positive and negative Trap feed-
back on performance at Trap+1, factor Learning_Bins, P . 0.05 in
both cases).

In the stabilized period at the end of the IT, Trap reactivity
was highly significant and persistent (reverse Helmert contrast

comparing performance at trial Trap+1 versus previous trials,
P , 0.001, for the three monkeys) (Fig. 4A). Performance was
also lower two trials after a Trap (reverse Helmert contrast, trial
Trap+2 versus previous trials, P , 0.001, for the three monkeys)
but then returned to initial pretrap levels (reverse Helmert con-
trast, trial Trap+3 versus previous trials, ns, for the three monkeys)
(Fig. 4A). The Trap reactivity acquired by the monkeys had a
number of properties. Trap reactivity was stimulus specific—that
is specific to the stimulus associated with the Trap feedback
(glm, interaction Trials × Stimulus_Similarity, P , 0.001) (Fig.
4B, top). Trap reactivity showed a stronger value in response to a
positive Trap (after an incorrect response) compared to a negative
Trap (glm, interaction Trials × FB_Valence, P , 0.001) (Fig. 4B,
middle). Trap reactivity was also stronger in exploitation than ex-
ploration (glm, interaction Trials × Phase, P , 0.001) (Fig. 4B,
bottom), demonstrating that monkeys were not shedding their
Trap reactivity each time they mastered a problem. This shows
that Trap reactivity is a strategy adapted to the overall environ-
mental volatility in the whole task, and not simply a signal of ex-
ploration on an individual problem.

Monkeys apply different choice strategies following normal
or Trap feedback, further supporting this argument. In determin-
istic studies of learning set, a Win-Stay Lose-Shift (WSLS) structure
is latent within the task. Adopting a WSLS strategy provides an op-
timal performance rule, and this is posited as the rule acquired in
learning set (Murray and Gaffan 2006; Wilson et al. 2010). WSLS,
however, becomes nonoptimal in nondeterministic designs—in
our case because Trap feedback should be ignored. Nevertheless,
our monkeys acquired a significant WSLS strategy for normal feed-
back (binomial test, P , 0.05), but significantly more so than for
Trap feedback, which approached chance levels of WSLS (glm
on win-stay lose-shift values, main effect of Normal_or_Trap,
P , 0.001). Indeed, the monkeys showed significantly greater ac-
quisition of WSLS for normal feedback (same glm, interaction
Normal_or_Trap × Learning_Bins, P , 0.05) (Fig. 4C). This shows
that in the main our monkeys learn the stochastic task as other
monkeys have learned the deterministic one (Harlow 1949;
Izquierdo et al. 2004; Murray and Gaffan 2006)—using normal
feedback to apply WSLS. But in addition the monkeys clearly
learned to differentiate unexpected feedback (Trap and Switch tri-
als), and applied a different strategy to that class of feedback.
Specifically, on Trap trials monkeys are not using WSLS (Fig. 4C,
low WSLS after Trap), but they are significantly changing response
(Fig. 4A, Trap reactivity). Their strategy after Trap feedback there-
fore appears to be more random than these alternatives—and
could thereby be interpreted as exploratory.

Different responses to feedback and Trap reactivity were also
reflected in reaction times (RTs, Fig. 4D). RT decreased in the trial
following positive feedback (two-sample Kolmogorov–Smirnov
test, P , 0.05, for both (normal or trap) cases, for monkey D
and K. Monkey P’s data could not be analyzed due to technical
problems); and increased after negative feedback (two-sample
Kolmogorov–Smirnov test, P , 0.05). These post-correct speed-
ing and post-error slowing effects were accentuated significantly
after Trap trials (multifactor ANOVA on RT differences, factor
Normal_or_Trap: P , 0.001, in both negative and positive cases).

Over the course of learning to learn about a task in a proba-
bilistic environment, monkeys both adapted their responses to
the task contingencies, but also modified their response to unex-
pected feedback, even though such a response was not the most
rewarding strategy. Instead of learning to ignore Trap feedback,
they became reactive to all unexpected feedback, Trap or Switch.
This result suggests a fundamental influence of a probabilistic
learning environment on the way in which animals learn about
tasks. The explorative value of unexpected feedback, we propose,
drives a performance rule that although not necessary for the
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Figure 2. Acquisition of the Identity task. (A) Mean errors to criterion
across learning bins, showing significant learning. Vertical dotted lines in-
dicate the stabilization point of the curve for each monkey (see Materials
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learning bin. (C) The ratio of Switch over Trap trials (taken as an index
of the volatility), for each learning bin. (D) The value of the Trap reactivity
across learning bins. Trap reactivity is the difference in performance before
and after the Trap trial. It increases from an initial value around zero, espe-
cially later in learning (horizontal bars). (E) Correlation between Trap reac-
tivity and percentage correct. (F) Correlation between Trap reactivity and
the switch:trap ratio. In all figures: monkey P, blue; monkey D, yellow; and
monkey K, pink.
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initial task (cf. Collins and Frank 2013), is nevertheless important
in promoting generalization of the learning.

Adaptive responses to feedback promote

flexible decisions
In a second step, we sought to test how having learned to
learn with both stochasticity and volatility would serve the mon-
keys when moving to a task of higher complexity with less
information.

To test this we transferred the monkeys to the Switch Task
(ST). Here the identity of stimuli was fixed each day, and did not
change between problems. Only the rule that associated stimuli
to responses changed (Fig. 1C), requiring monkeys to remap
what they knew about the current objects and the responses with-
out any cue to the change of rule. Reversal learning is a specific
form of remapping task—here remapping was more complicated
than simple reversal given there were three options and two ob-
jects. It should be stressed that these monkeys, naı̈ve to cognitive
testing at the start of the experiment, had never relearned a new
rule for the same stimulus. We sought to compare monkeys’ per-
formance when starting ST with their initial performance on IT.
Monkeys made many errors when first exposed to IT (Fig. 2A).
Monkeys performing classical reversal learning for the first time
(Harlow 1949; Izquierdo et al. 2004) show high error rates, just
as when they start to learn simple discrimination problems. But
importantly monkeys’ initial error rates in reversal learning are
lower if they have previously acquired a deterministic learning
set (Schrier 1966). ST and IT maintained the same parameters in
terms of volatility and stochasticity of the environment, poten-
tially promoting good performance after transfer. Monkeys
worked to the same performance criterion, and worked on a 90/
10 schedule, receiving 10% Trap trials.

Monkeys maintained low and stable errors to criterion when
starting the ST compared with their performance at the end of the
IT. That is, their transfer from new problem learning to remapping
learning was perfect, regardless of the fact that these monkeys had
never remapped a response to a stimulus in their lives (no signifi-
cant difference between errors to criterion at the end of IT and the
start of ST, Kruskal–Wallis test, H ¼ 0.89, 1 d.f., P ¼ 0.34) (Fig. 5A).
This performance did not improve further, so the monkeys started
this task with immediately asymptotic learning (linear regression
over bins of problems, P . 0.05 for the three monkeys). We pro-
pose that this high level of performance was reached because a
learning to learn process on IT prepared monkeys to transfer to
the new and more complex task.

We cannot specifically attribute high-level performance on
ST after transfer to the learning of IT in a stochastic and volatile
setting. This is because we do not have a control group that ac-
quired a deterministic version of IT and then transferred to the
same stochastic ST as described here. It is very unlikely, given
the rich literature of training on remapping tests, that monkeys
with such a training regime would also show good and asymptotic
transfer to ST, but without such a control group we cannot make
that claim. We can nevertheless draw two conclusions. First, mon-
keys with our stochastic training regime are capable of asymptotic
task transfer. Second, there is at least some evidence to support an
assertion that this is because of the stochastic nature of IT.
Specifically, a number of results support the assertion that Trap re-
activity has driven efficient transfer. Trap reactivity on the ST
closely matched that of the IT, even though unexpected feedback
in the ST could be a signal of either a Trap or a change in rule. As
such it is important for the monkeys to discriminate Trap from
Switch trials. Trap reactivity was still present (reverse Helmert
contrast, on performance at trial Trap+1 versus previous trials,
P , 0.001, for monkeys P and D) (Supplemental Fig. S4A) and
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maintained at the level of the IT (glm, no significant interaction
Trials × Task, for the 50 last problems of IT versus 50 first problems
of ST (Fig. 5B), with no change over problems (glm, no significant
interaction Trials × Learning_Bins). Trap reactivity had the same
properties: a stronger effect on trials with the same stimulus as
the Trap trial (glm, interaction Trials × Stimulus_Similarity, P ,

0.001) (Supplemental Fig. S4B); and a stronger effect after positive
compared to negative Trap feedback (glm, interaction Trials ×
FB_Valence, P , 0.001) (Supplemental Fig. S4C). Trap reactivity
was still significantly stronger in exploitation trials than explora-
tion (glm, interaction Trials × Phase, P , 0.001) (Supplemental
Fig. S4D). We also observed post-correct speeding and post-error-
slowing (two-sample Kolmogorov–Smirnov test, P , 0.05, for
both (normal or trap) cases, for each monkey, except monkey K
showing no significant post-negative feedback slowing) (Supple-
mental Fig. S4E). In terms of RTs, monkeys reacted differently to
Trap compared with normal feedback only when the feedback
was positive (multifactor ANOVA on reaction time differences,

factor Normal_or_Trap: P , 0.05 and nonsignificant, for positive
and negative cases, respectively).

Trap reactivity is an adapted strategy for using unexpected
feedback to differentiate Switch from Trap trials. The only way
to distinguish Trap from Switch trials in ST is to maintain a record
of the feedback history a number of trials after unexpected feed-
back. Exploratory responses during this period will make adapta-
tion to Switch even more efficient. Monkeys were immediately
capable of doing this in ST, suggesting that they had learned to
learn in this fashion during IT. Monkeys very quickly discriminat-
ed the two situations (at trial +2 for monkey P, and trial +3 for
monkey D; glm, Performance at Switch versus Trap trial +3, P ,

0.001 for monkeys P and D, Monkey K was excluded from analysis
due to an insufficient number of trials), indicating that they were
able to efficiently integrate the feedback history (Fig. 5C). In fact,
Traps and Switches were theoretically dissociable after two trials,
when the continued presence of the unexpected feedback can first
be assessed, given that Trap trials never occur on two successive
trials. As such, from the start of ST, monkeys were distinguishing
volatility from stochasticity optimally or near optimally, despite
the fact that the ST contained far fewer cues to aid the monkeys.
The pattern of target selection after a Last Trap or a Switch did dif-
fer between the two tasks (Supplemental Fig. S4F). This shows that
monkeys were indeed sensitive to the lack of switch cue, but
adapted their behavior so rapidly that there were no significant
differences in errors to criterion. There were no differences in reac-
tion times in trials following a Last Trap compared to a Switch
(two-sample Kolmogorov–Smirnov test comparing distributions
for Last Trap versus Switch trials, nonsignificant).

Discussion

Three monkeys acquired a probabilistic task with signaled rule
switches. In doing so they increased their response to misleading
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the IT; and for the 50 first problems of the ST. (B) Trap reactivity is un-
changed by task transfer, having increased during learning, suggesting
that Trap reactivity acquired in IT is adaptive to ST. Gray bars represent av-
erages of all monkeys. (C) Contrast of behaviors around Last Trap trials
and Switch trials. Monkey P (top) shows performance that distinguishes
the two forms of unexpected feedback from trial 2—the earliest possible
moment. Monkey D’s performance (bottom) distinguishes at trial 3. In this
case only, the performance after Switch is calculated on the basis of the
rules of the previous problem, to provide a comparable score between
Switch and Trap. P-values compare the performance at LastTrap versus
Switch. (∗) P , 0.05; (∗∗) P , 0.01; (∗∗∗) P , 0.001; ns: nonsignificant.

A

C D

B

Figure 4. Trap reactivity on IT. (A) Percentage correct around Trap trial
(trial 0) for all monkeys. Trap reactivity is the drop of performance
between trials 0 and 1. (B) (Top) Trap reactivity is modulated by the stim-
ulus of the trial, specifically being present only when the subsequent trial
is on the same stimulus as the Trap trial. (Middle) Trap reactivity is greater
for “Positive” Traps (positive feedback after incorrect choice) than
“Negative” Traps (negative feedback after correct choice). (Bottom) Trap
reactivity is greater during exploitation compared to exploration period
(See Experimental procedure). (C) Proportion of trials upon which
Win-Stay Lose-Shift (WS-LS) strategy is applied after feedback in the
Identity Task, split between normal and Trap feedback. Fifty percent rep-
resents a random (not WS-LS) strategy. Box plots represent group data,
circles each monkey’s mean. WS-LS is significant and increasing across
learning for normal feedback, but absent for Trap feedback. (D) Effect
of feedback on reaction times (RTs). Plot shows the difference (trial 1—
trial 0) in RTs before and after the feedback in question. Full circles indicate
a significant (P , 0.001) difference between trials 0 and 1 in every case.
Feedback on trial 0 can be positive or negative, and that feedback can
either be Trap feedback or “normal.” (Left panel) Post-correct speeding,
which is further increased by Trap feedback. (Right panel) Post-error
slowing, again increased by Trap feedback. In all figures, Monkey P,
blue; monkey D, yellow; and monkey K, pink. Gray bars represent averag-
es of all monkeys. Stars indicate the significant difference between condi-
tions. (∗∗∗) P , 0.001; (∗) P , 0.05; ns: nonsignificant.
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information provided by Trap feedback. Hence monkeys’ perfor-
mance was good and stable, but they were not maximizing their
rewards for this specific task. This form of responding appeared,
however, to be adapted to the changing volatility over learning
and continued stochasticity of the reward environment, suggest-
ing that learning to learn led to a choice that was driven by a pro-
cess that takes these latent variables into account. Monkeys that
learned in this way transferred without cost to a more complex
version of the task with remapping of previously learned associa-
tions and unsignaled rule switches. Good transfer is therefore pos-
sible even from tasks that provide stochastic feedback.

The data from the IT show that over the course of learning
to learn about a task in a probabilistic environment, monkeys
will both adapt their responses to the task contingencies, but
also modify their response to unexpected feedback, even in cases
where such a response is not necessarily the most rewarding strat-
egy. This result demonstrates the fundamental influence of a
probabilistic learning environment on the way in which animals
learn about tasks. Trap reactivity continued to increase even
when errors-to-criterion was relatively stabilized. Stabilization
of learning to learn is therefore an important concern in train-
ing animals for neuroscience experiments, where we wish to sep-
arate learning effects from elements of the acquired task (Costa
et al. 2014). This consideration is also important in situations
where learning to learn might be used in wider applications
(e.g., Bavelier et al. 2012). If latent information is being acquired,
for example about the structure of the task (Collins and Frank
2013), classical measures of learning might not capture this ongo-
ing process, introducing a risk of cutting short the learning to
learn process before the attendant advantages can be obtained.

What is the specific process occurring as the monkeys
learn to learn? From a modeling perspective, adapting responses
to Trap feedback could be akin to a matching of the learning
rate for unexpected feedback to the volatility of the environment,
a process reflected in decision-making after learning in humans
(Courville et al. 2006; Behrens et al. 2007; Payzan-LeNestour
and Bossaerts 2011). But the emergence of a significant difference
in response strategy after different forms of feedback (Fig. 4C) is
striking, suggesting that monkeys are genuinely learning to detect
unexpected outcomes and explore after them. It is unclear wheth-
er a simple modulation of model learning rate could account for
such a categorical change in strategy, but this provides evidence
for at least two levels of information acquisition during learning
to learn. First, as in deterministic tasks, monkeys are increasing
their proportion of WSLS on normal feedback trials. Second, by
acquiring the information about the statistics of unexpected out-
comes, something that can only be learned by integrating across
many trials, monkeys learn to maintain an exploratory strategy
to these trials. What is particularly striking in the results from IT
is that monkeys are not obliged to acquire this exploratory strat-
egy on this task—there is a clear signal to explore in the change
of stimuli—yet they nevertheless do.

It is of note that monkeys’ final level of Trap reactivity in IT
represents the final Trap/Switch ratio in the task. The fact that
Trap reactivity is present in exploitation, increases with experi-
ence, and correlates with percentage correct reinforces the idea
that it is a learning-driven strategy. The explorative value of un-
expected feedback, we propose, drives a latent performance rule
that is not necessary for the initial task (cf. Collins and Frank
2013), but yet is robustly acquired, and might potentially be im-
portant in promoting generalization of the learning. Whether
this acts as an account of the role of probabilistic environments
in other species remains an open question (Gallistel et al. 2001;
Biernaskie et al. 2009; Tebbich and Teschke 2014).

Generalization of learning was expressed in the transfer from
new learning (IT) to remapping (ST). While there is some evidence

for this process being driven by the acquired Trap reactivity, the
aim of this study was to follow learning in a stochastic environ-
ment, and so we do not make the specific claim that good transfer
was because learning was in a stochastic as opposed to determin-
istic environment.

Nevertheless, our findings do show very clearly that remap-
ping can be performed at asymptotic levels without prior remap-
ping experience. Classically such remapping, and the special case
of reversal learning, has been associated with a process of cogni-
tive inhibition, in which subjects make large numbers of errors
on initial remapped problems, and subsequently acquire the abil-
ity to inhibit efficiently their previous learning. Here the monkeys
performed their first ever remapping problems just as well as they
had been performing new discriminations, a remarkable result
considering the difficulty usually induced by initial remapping
(Harlow 1949; Izquierdo et al. 2004). The result argues either
that monkeys do not need inhibition to complete the task, or
that in learning to learn the IT they acquired the ability to inhibit.
Monkeys never have cause to unlearn or ignore any of their previ-
ous stimulus learning during the IT, as stimuli are never repeated,
and so it is unlikely that they have learned to inhibit specific
stimulus-response associations. But rather, because monkeys treat
unexpected feedback in the same manner in ITand ST, we hypoth-
esize that this reactivity promotes a rapid differentiation of Trap
feedback from Switch feedback in ST, the crucial prerequisite for
efficient performance. A deterministic to stochastic transfer ex-
periment would confirm this hypothesis, contributing to a grow-
ing body of evidence that questions the importance of the
cognitive process of inhibition (Stuss and Alexander 2007).

Accounts of learning set in deterministic tasks have shown
that instead of inhibiting, monkeys are applying the prospective
memory-dependent WSLS performance rule as a result of their
learning set (Murray and Gaffan 2006; Wilson et al. 2010). This
rule explains the capacity to remap with only prior experience
of serial discriminations (Schrier 1966), as the rule applies equally
to both tasks. Both of these functions—learning set and inhibi-
tion—have been closely associated with frontal cortex and dam-
age to it (Browning et al. 2007; Miller and Cummings 2007), but
when the two explanations were explicitly contrasted, the learn-
ing set mechanism was clearly predictive of performance after le-
sions in monkeys (Wilson and Gaffan 2008), again calling into
question the cognitive inhibition process.

Our data link into this work on learning set in that both pro-
cesses require the integration of temporally discontinuous infor-
mation into coherent structures of action, a process strongly
associated with prefrontal cortex (Browning and Gaffan 2008;
Fuster 2008; Wilson et al. 2010). In the case of deterministic learn-
ing set, these structures need to link two consecutive trials in order
to apply the performance rule. In our data, the capacity to link a
longer series of outcomes over time, and to extract from those
outcomes a performance rule that generalizes to all unexpected
feedback, is crucial to adapting responses to volatility (Behrens
et al. 2007). This process is also likely to be dependent on frontal
cortex mechanisms, and more specifically the mid cingulate cor-
tex (Kennerley et al. 2006; Quilodran et al. 2008). Our study has
shown the complex time-course of this process, laying the
groundwork for longitudinal electrophysiological investigation
of the physiological mechanisms. Learning to learn in a probabi-
listic environment therefore drives formation of these extended
temporal structures, inducing latent learning effects.

Materials and Methods

Subjects and materials
Three rhesus monkeys (Macaca mulatta), two females and one
male, weighing 7, 8, and 8.5 kg (monkeys P, K, and D, respectively)
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were used in this study. Ethical permission was provided by
the local ethical committee “Comité d’Éthique Lyonnais pour
les Neurosciences Expérimentales,” CELYNE, C2EA 42, under ref-
erence C2EA42-11-11-0402-004. Animal care was in accordance
with European Community Council Directive (2010) (Ministère
de l’Agriculture et de la Forêt) and all procedures were designed
with reference to the recommendations of the Weatherall report,
“The use of non-human primates in research.” Laboratory autho-
rization was provided by the “Préfet de la Région Rhône-Alpes”
and the “Directeur départemental de la protection des popula-
tions” under Permit Number: #A690290402.

Monkeys were trained to perform the task seated in a primate
chair (Crist Instrument Co., USA) in front of a tangent touch-
screen monitor (Microtouch System, Methuen, USA). An open-
window in front of the chair allowed them to use their preferred
hand to interact with the screen (all three monkeys were left-
handed). Presentation of visual stimuli and recording of touch po-
sitions and accuracy was carried out by the EventIDE software
(Okazolab Ltd, www.okazolab.com).

Behavioral tasks

Principle of the task

The task is an adaptation for monkeys of the task described for hu-
man subjects in Collins and Koechlin (2012). Across successive tri-
als, a problem consisted in the monkey concurrently finding, by
trial and error, the correct mappings between stimuli and targets,
within a set of two stimuli (stimulus 1 and 2) and three targets (tar-
get A, B, and C) (Fig. 1). For example, a problem would consist in
concurrently finding the two associations: “stimulus 1 with target
A” and “stimulus 2 with target C.” Monkeys learned problems to a
behavioral criterion. The task contained stochasticity, in the form
of unreliable feedback, and volatility, in the form of switches be-
tween problems.

Monkeys initially learned a version of the task in which the
volatility was made evident by changes in stimulus (Fig. 1B).
During this version, we tracked the monkeys’ learning about sto-
chasticity and volatility of the environment. We then studied how
this learning was applied in a second version of the task in which
volatility was unsignaled (Fig. 1C).

Procedure of the task

Trial procedure. The structure of a single trial and a single problem was
always the same, regardless of the form of the task. Monkeys
initiated each trial by touching and holding a lever item,
represented by a white square at the bottom of the screen (Fig.
1A). A fixation point (FP) appeared. After a delay period, a
stimulus was displayed at the top of the screen (Stim ON signal),
and was followed after a delay by the appearance in the middle
of the screen of three targets (Targets ON signal). Stimuli
consisted of square bitmap images of either an abstract picture or
a photograph, of size 65 × 65mm. Targets were three empty gray
squares, of the same size as the stimulus. After a further delay all
targets turned white, providing the GO signal following which
monkeys were permitted to make their choice by touching a
target. Monkeys maintained touch on the chosen target for a
fixed amount of time in order to receive visual feedback on that
choice. Feedback consisted of horizontal (positive) or vertical
(negative) bars within each of the three targets. A positive
feedback was followed by the delivery of �1.8 mL of 50% apple
juice. After the completion of a trial, a new stimulus was picked
within the set of two stimuli and monkeys were allowed to
begin a new trial. Timing for each event gradually increased
across learning to progressively train monkeys to hold their
hand on the screen without moving after each action.

Problem procedure. A problem consisted of the monkeys learning
about two stimuli concurrently. For a given trial, one of the two
stimuli was pseudorandomly selected (50% of each stimulus over
10 consecutive trials). The two concurrent stimuli were never
associated to the same target. Hence, there were six possible

mappings of the two stimuli and the three targets. Each mapping
was randomly selected (with the constraint that the two
mappings of a problem had to be different from each other), so
that the two mappings of a problem could never be predicted
nor learned. The only way to find them was to proceed by trial
and error based on feedback provided after each choice.

After reaching a performance criterion (defined as a total of
17 correct responses out of 20 successive trials), the problem
changed and two new mappings were randomly selected. We refer
to this change of problem as a “Switch.” Switches only occurred
after the performance criterion was reached and after a correct re-
sponse. These Switches provide the volatility in the environment
of the task.

In addition to and separate from this volatility, a stochastic
reward environment was created by providing misleading feed-
back (called “Trap feedback”) on 10% of trials. Trap trials occurred
pseudorandomly once every 10 trials, with the constraint that
there were at least two consecutive normal trials between each
Trap trial. Trap feedback was the inverse of that determined by
the current mapping—as such Trap feedback after a correct re-
sponse consisted of negative feedback (see below) and no reward;
Trap feedback after an incorrect response consisted of positive
feedback and a reward.

Task version. We trained the monkeys in two successive steps: (1) the
Identity Task (IT) (Fig. 1B) and (2) the Switch task (ST) (Fig. 1C).
The two tasks were strictly identical at the level of individual
trials and at the level of the problems, and both tasks contained
10% Trap trials, thus monkeys learned each task directly in a
probabilistic environment.

The single but crucial difference between the two tasks was
the nature of the Switch between problems. In the initial IT,
when the problem switched, both the identity of the stimuli and
the responses were changed. That is, after a problem Switch, mon-
keys learned about new objects and new rules. Stimuli were always
novel to the monkey in a new problem. In contrast, in the ST, mon-
keys worked on the same pair of stimuli throughout the session. As
such only the responses were changed—the stimuli remain the
same across problems, and so the monkeys were learning about
new rules for the same objects after a problem Switch. Thus,
Switches between problems were visually detectable in the Identi-
ty Task whereas the only way to detect a Switch in the Switch task
was by trial and error using feedback on subsequent trials.

Task motivation. In order to motivate and maintain performance at
a stable level throughout each daily session, animals were asked
to complete a fixed number of problems each day (number
varying throughout learning between 100 and 350 trials). Upon
successfully completing this number of problems, monkeys
received a large reward bonus (50 mL of fruit juice, calculated
based on the effectiveness in motivating the monkey).

Behavioral and statistical analyses

Principles of analyses

The major behavioral measure in these tasks was errors to criteri-
on, the number of errors made by the monkey to reach the per-
formance criterion of 17 correct answers out of 20 successive
trials. In addition, we studied the mean percentage of correct re-
sponses on specific subclasses of trials. In particular, we focused
on trials around the Trap and Switch by aligning on these events
and calculating percentage correct for the surrounding trials.
Trap or Switch trials were referred to as trial Trap0 and Switch0,
respectively.

Behavioral analyses focused on two major questions: first the
learning of volatility, in the form of improvement in performance
across problems and hence the formation of a learning set. Second
the learning of stochasticity, in the form of changes in response
to the Trap trials, which provided unreliable feedback on 10%
of trials.

Learning to learn about uncertain feedback

www.learnmem.org 96 Learning & Memory

http://www.okazolab.com
http://www.okazolab.com
http://www.okazolab.com


Analysis of volatility: learning set and errors to criterion

We analyzed the data from IT both during acquisition of the learn-
ing set and during the subsequent stable performance. Data were
analyzed up until the endpoint where the monkey had completed
400 problems with ,50 errors to criterion. Monkeys did not learn
at the same rate, but to render performance equivalent in terms of
learning progression, we separated the data into 25 bins, referred
to as learning bins. Therefore, the bins for each monkey did not
contain exactly the same number of problems, but after the 25
bins all 3 monkeys had reached the same behaviorally defined lev-
el of stable performance (Fig. 2A).

We then split these data into an acquisition phase and a sta-
ble phase. The acquisition phase was completed when the learn-
ing set had been acquired to the point of stabilization of the
errors to criterion per problem i.e., when the learning curve
became flat. As a marker of this transition we determined the
“stability point” (dashed lines on Fig. 2A). This was determined
for each monkey by a sliding linear regression (window of 40
points) on the errors to criterion curve in order to detect when
the slope would become nonsignificant at P , 0.05. Data after
the stability point were deemed to be in the stable period.

Analysis of stochasticity: Trap trials and logistic regression

Effect of Trap feedback on performance. In order to initially test the effect
of a Trap feedback on performance, we used Reverse Helmert
coding. This compares each level of a categorical variable to the
mean of the previous levels, by using a specific contrasts matrix
within a generalized linear model of the binomial family. We
compared performance at the trial following a Trap (trial Trap
+1) with the mean performance of the trials before and
including the Trap (trials Trap 3, 2, 1, and 0). In order to test for
the subsequent recovery of performance, we compared
performance at trial Trap +2 and Trap +3 with the mean
performance of trials Trap 3, 2, and 1.

Modulation of Trap reactivity. We observed modulations of performance
after Trap trials (hereafter named Trap reactivity). Trap reactivity
was modulated by a number of different factors, showing
the different influences on the learning of stochasticity. To
evaluate these modulations, trial-by-trial performance was fitted
with logistic regressions. Models were of the form: Yi ¼ b . Xi,
where X corresponds to fixed-effects design matrix. We also
measured the score of win-stay lose-shift strategy after a Trap or
a normal feedback (with a score of 1 for a change or a
maintenance of previous response after an incorrect or a correct
feedback, respectively, and a score of 0 for the reverse pattern of
responses) and evaluated modulations of this strategy using the
same binomial models as for the performance. We also observed
modulation of the counts of different targets types selected after
a Trap or a Switch trial. We fitted these counts with a glm using
a Poisson regression for the model “Target” (see above). All
models were applied to the two tasks, except the “Trap or
Switch” model that was applied on ST data only. All statistical
procedures were performed using R (R Development Core Team
2008, R foundation for Statistical computing) and the relevant
packages (MASS, car).

Different combinations of the following factors were includ-
ed as explanatory variables to calibrate the different models: (1)
“Monkey” (three levels: monkey P, K, or D); (2) “Trials” (trial 1
pre-Trap or trial 0 Trap; and trial+1 post-Trap) referring to the trial
before and the trial after a Trap trial; (3) “Learning_bins” corre-
sponding to 25 bins of trials in the IT. The size of the groups dif-
fered for each monkey; (4) “Trap_Valence” (positive or negative)
referring to the valence of the Trap feedback (positive after an
incorrect response, or negative after a correct response); (5)
“Stimulus_Similarity” (same or different), referring to the fact
that the considered trial tested the same stimulus or not as the
Trap trial; (6) “Phase” (exploration or exploitation), referring to
the phase within the problem. We used the following criterion:
“exploration” trials were trials associated with a performance of
no more than 3/5 correct over a sliding window of five trials,

whereas “exploitation” trials were those with a performance of
4/5 or more; (7) “Trap_or_Switch,” referring to the identity of tri-
als being either around a Trap or around a Switch trial. Here, only
the last trap trial before each Switch trial was considered.
Similarly, a factor “Normal_or_Trap” was used for distinguishing
the effects of normal versus Trap feedback; and (8) “Target_
type” (“Good,” “Second,” or “Exploratory”), referring to the
type of target selected. “Good” indicates the correct target for
the stimulus in the current trial; “Second” indicates the other cor-
rect target of the problem, which is incorrect in the current trial;
and “Exploratory” indicates the third target, which is never cor-
rect in the current problem).

We tested the data using five different models to understand
the different influences on the learning of volatility:

“Learning-Set” model. This model tested whether Trap re-
activity was modulated across learning. It included the factors
“Monkey,” “Trials,” and “Learning_bins,” and was applied selec-
tively on trials that had the same stimulus as the Trap trial. A pos-
sible confounding factor of a learning effect on Trap reactivity was
the valence of the Trap feedback. At the beginning of learning,
monkeys made more errors and thus received positive feedback
on Trap trials more often than at the end of learning. The effect
of learning on Trap reactivity could partially be the consequence
of this unequal number of positive versus negative Trap feedback,
and on the unequal relevance of each feedback valence. To ac-
count for this possibility, we applied the “Learning-Set” model
on a subset of data with only positive Trap trials and on another
subset with only negative Trap trials. An influence of learning
on Trap feedback reactivity would be represented as a significant
“Trials × Learning_bins” interaction. Significant interactions
“Trials × Learning_bins” in both models would indicate that the
effect of learning is not independent from the valence of the
Trap feedback.

“Trap reactivity modulation” model. This model
tested the influence of the behavioral context on established
Trap reactivity, and contained the factors “Monkey,” “Trials,”
“Trap_Valence,” and “Phase.” This model was tested on the stable
period of performance after the stability point. Similarly, we test-
ed in a separate model this influence of the factor “Stimulus_
Similarity.”

“Trap or Switch” model. This model tested how fast mon-
keys were able to differentiate between a Trap trial and a Switch tri-
al on the ST, when there was no stimulus change to signal the
difference. It included the factors “Monkey,” “Trials,” and
“Trap_or_Switch.” To render the trials included as equivalent as
possible, we included only data around each Switch and the
Trap that immediately preceded it (“Last Trap”). We also selected
only trials with the same stimulus as the Trap or Switch, and only
in the stable period. For procedural reasons unrelated to the cur-
rent experiment, Monkey K provided limited data on the ST.
There were thus insufficient trials to power this analysis, and
that monkey’s data were excluded.

“WSLS” model. This model tested modulations of the win-
stay lose-shift strategy after a normal compared to a Trap trial, as a
function of learning bins. We thus used the factors “Normal_or_
Trap” and “Learning_Bins”.

“Target” model. This model tested how fast monkeys
were able to differentiate between a Trap trial and a Switch
trial, in terms of proportions of targets selected by monkeys.
We thus compared counts of each type of target selected after
a Trap or Switch. We included the factors “Target_type,”
“Trap_or_Switch,” and “Monkey.”

Model selection

Models were selected using a standard procedure of constructing
the model starting with all possible interactions between the
included factors as described above. In a stepwise manner we
evaluated the contribution of each level of fixed effect. We used
the drop1 function, repeatedly testing the effect of dropping
the highest-order interaction fixed-effect term on the fit (Zuur
et al. 2008). Models were selected using AIC, and changes in
AIC between models were tested using a x2 test (P , 0.05). The
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principle of model selection was identical for all models. It should
be noted that the factor Monkey was included in these models, ac-
counting for individual differences between monkeys and im-
proving fit.

Reaction times

Reaction times were calculated as the time between the GO signal
and the lever release (in order to further select a target on screen).
Measures beyond 2 sec were not included in the analysis. Due to a
technical fault in the software, reaction time measurements for
monkey P were inaccurate during the first task (IT), and were ex-
cluded from analyses. This fault was corrected for the second
task (ST).
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