Table 3. Prediction of regulatory types - E. coli data sets.
Method | Cold | Heat | Oxidative | Lactose diauxie | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GGM | + | − | TN | TP | + | − | TN | TP | + | − | TN | TP | + | − | TN | TP |
0.027 | 0.016 | 0.994 | 0.006 | 0.029 | 0.019 | 0.994 | 0.002 | 0.029 | 0.017 | 0.995 | 0.004 | 0.026 | 0.022 | 0.995 | 0.004 | |
ARACNE | — | — | 0.937 | 0.088 | — | — | 0.963 | 0.102 | — | — | 0.969 | 0.063 | — | — | 0.887 | 0.242 |
CLR | — | — | 0.968 | 0.028 | — | — | 0.968 | 0.039 | — | — | 0.968 | 0.033 | — | — | 0.968 | 0.027 |
L1 | 0.004 | 0 | 0.994 | 0.005 | 0.004 | 0 | 0.994 | 0.005 | 0.003 | 0 | 0.994 | 0.004 | 0.005 | 0 | 0.994 | 0.007 |
L1/2 | 0.003 | 0 | 0.994 | 0.005 | 0.003 | 0 | 0.994 | 0.005 | 0.003 | 0 | 0.994 | 0.004 | 0.007 | 0 | 0.994 | 0.006 |
L0 | 0.003 | 0 | 0.994 | 0.005 | 0.003 | 0 | 0.994 | 0.005 | 0.003 | 0 | 0.994 | 0.004 | 0.004 | 0 | 0.994 | 0.006 |
GENIE3 | — | — | 0.968 | 0.273 | — | — | 0.968 | 0.295 | — | — | 0.968 | 0.277 | — | — | 0.968 | 0.275 |
Global silencing | 0.347 | 0.327 | 0.968 | 0.195 | 0.367 | 0.312 | 0.968 | 0.208 | 0.362 | 0.278 | 0.968 | 0.256 | 0.340 | 0.318 | 0.968 | 0.217 |
Network deconvolution | 0.374 | 0.298 | 0.968 | 0.275 | 0.406 | 0.279 | 0.968 | 0.254 | 0.391 | 0.278 | 0.968 | 0.284 | 0.344 | 0.315 | 0.968 | 0.280 |
Proposed approach | 0.247 | 0.156 | 0.968 | 0.246 | 0.247 | 0.156 | 0.968 | 0.256 | 0.247 | 0.156 | 0.968 | 0.264 | 0.247 | 0.156 | 0.968 | 0.257 |
The fraction of correctly predicted activating (+) and repressing (−) regulatory relationships with respect to the experimentally verified regulations from RegulonDB are presented for the four different data sets. The fractions of true positive (TP) and true negative (TN) edges irrespective of the regulatory type are also included. The ‘—’ is considered where the method is not able to infer the regulatory type