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Abstract

Purpose of the review—To review recent insights into the impact of HIV-associated immune 

activation on AIDS and non-AIDS morbidity and mortality.

Recent findings—Immune activation has long been recognized as an important consequence of 

untreated HIV infection and predictor of AIDS progression, which declines but fails to normalize 

during suppressive antiretroviral therapy (ART), and continues to predict disease in this setting. 

Thus, a major research agenda is to develop novel therapies to reduce persistent immune 

activation in treated HIV infection. Yet, the optimal targets for interventions remain unclear. Both 

the specific root causes of immune activation and the many interconnected pathways of immune 

activation that are most likely to drive disease risk in HIV-infected individuals remain 

incompletely characterized, but recent studies have shed new light on these topics.

Summary—In the context of this review, we will summarize recent evidence helping to elucidate 

the immunologic pathways that appear most strongly predictive of infectious and non-infectious 

morbidity. We will also highlight the likelihood that not all root drivers of immune activation - 

and the discrete immunologic pathways to which they give rise - are likely to produce the same 

disease manifestations and/or be equally attenuated by early ART initiation.
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Introduction

The first clue that immune activation was a central feature of HIV pathogenesis came in the 

first case reports of AIDS in 1981, long before HIV-1 was even recognized as the cause of 

AIDS [1]. In this initial report, Gottlieb et al noted that the young gay men dying of 

pneumocystis pneumonia in Los Angeles had not just very low CD4+ T cell counts, but also 

extraordinarily high levels of the surface marker “T10” on their lymphocytes. This marker 

T10 was later renamed CD38 and became one of the most commonly used markers to assess 

T cell activation in the pre-antiretroviral therapy (ART) era. Giorgi and colleagues 
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subsequently demonstrated that greater CD38 expression on CD8+ T cells predicted more 

rapid disease progression independently of CD4+ T cell count and the extent of viral 

replication (and in later work, more strongly than the degree of viral replication) [2, 3]. It is 

also noteworthy that during this same period, neopterin and β2-microglobulin - markers of 

innate immune (and more specifically monocyte/macrophage) activation – were also found 

to be abnormally high in untreated HIV infection and to predict more rapid progression to 

AIDS, though not quite as strongly as T cell activation [2, 4]. This was an important initial 

clue that while HIV caused generalized activation of the innate and adaptive immune 

systems, it was the adaptive immune defects that seemed to be playing a more important role 

in driving AIDS and other infectious complications. While this may seem intuitive, it is an 

important insight, suggesting that several distinct pathways of immune activation 

differentially drive end organ disease manifestations.

Persistent Immune Activation during ART

While ART-mediated viral suppression causes significant reductions, many immune 

activation pathways remain abnormal during suppressive ART, particularly among those 

who initiated ART at late disease stages [5–11]. Indeed, early initiation of ART (within the 

first 6 months of infection) appears to achieve a lower immune activation set-point than 

when ART is delayed even a few years [12, 13]. Nevertheless, even very early ART – 

initiated in the first few weeks of HIV infection – fails to completely normalize several 

pathways of innate immune activation [14], suggesting that while many pathways of 

immune activation clearly get worse with progressive untreated infection, some irreversible 

drivers of immune activation are established very early. Conversely, hypercoagulability (i.e. 

D-dimer elevations) and some adaptive immune defects are nearly completely reversed by 

very early ART [14, 15], suggesting that some pathways of HIV-associated immune 

dysfunction (and presumably their drivers) require at least several months of untreated 

infection before defects become irreversible. This is an important point as the two largest 

clinical trials of early ART (START and Temprano) primarily demonstrated benefit of this 

strategy in reducing infectious complications and malignancies (mostly infection-

associated), with less evidence for a robust decline in cardiovascular events [16, 17].

While the specific drivers of persistent immune activation during suppressive ART are 

incompletely characterized, HIV persistence (particularly in lymphoid tissues), microbial 

translocation, and chronic viral co-infections (particularly cytomegalovirus [CMV]) likely 

contribute [18]. A critical issue that remains largely unaddressed is whether these putative 

drivers of persistent immune activation, each of which may get worse (and potentially less 

reversible) with progressive untreated HIV disease, are equally ameliorated by the very early 

initiation of ART and/or drive the same end-organ disease manifestations. Indeed, just as 

discrete immune activation pathways had differential prognostic capacity in the pre-ART 

era, not all immune activation pathways –and their root drivers – are likely to predict 

specific morbidities equally with suppressive ART. For example, among ART-suppressed 

HIV-infected individuals in North America, innate immune activation and inflammatory 

markers were much more strongly predictive of mortality than T cell activation (the opposite 

inference from the pre-ART era) [19, 20], presumably because most of the causes of death 

were non-infectious in etiology (e.g., cardiovascular, non-AIDS cancer, etc). Conversely, 
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among ART-suppressed individuals in resource-limited settings, where infectious 

complications remain much more important causes of death [16, 17], T cell activation and 

pathways conferring adaptive immune defects are much stronger predictors of mortality 

[21–23]. Thus, it would not be surprising if the final common immunologic pathways 

driving disease vary by end-organ complication. For example, adaptive immune defects may 

be more important for infectious complications and infection-related malignancies whereas 

monocyte/macrophage activation may be more important for cardiovascular, metabolic, and 

neurocognitive complications [24–26]. Much less discussed, however, is whether the root 

drivers of immune activation may vary in their contributions to these pathways. For 

example, since HIV is preferentially expressed in inductive lymphoid tissues, it would not 

be surprising if HIV reservoirs were a primary mediator of adaptive immune defects that 

persist during ART. Conversely, other co-infections like CMV may be preferentially 

expressed in endothelial tissues, potentially playing a more important role in cardiovascular 

complications [27–29]. These hypotheses will be important to address to identify the most 

important interventional targets to prioritize for clinical trials, the specific morbidities (or 

their surrogates) to include as primary outcome measures, and the specific patient 

populations at highest risk (i.e., those who began ART during early vs. advanced HIV 

infection).

Specific Immunologic Pathways that Predict Disease in HIV Infection

T cell activation and dysfunction

T cell activation –characterized as either the co-expression of CD38 and HLA-DR or the 

intensity of CD38 expression on CD8+ T cells - has long been established as an important 

predictor of the rate of disease progression in untreated HIV infection, independent of 

plasma HIV RNA levels, and more strongly than soluble markers of innate immune 

activation [2, 3, 30, 31]. After more than two decades of research, it remains unclear 

whether CD38 and HLA-DR expression on CD4+ and CD8+ T cells are in and of 

themselves causally associated with disease or instead markers of exhaustion and/or 

dysfunction [32] in response to HIV, co-infection, or homeostasis- or activation-induced 

proliferation [33]. These markers continue to predict disease during ART-mediated viral 

suppression, but not as strongly as in the pre-ART era (when AIDS complications 

dominated) [19, 20, 22], and primarily in resource-limited settings [23].

Interestingly, phenotypic markers of CD8+ T cell differentiation and/or proliferative history 

appear to be more important predictors of mortality in treated HIV infection than CD38 and 

HLA-DR expression (or PD-1 expression, for that matter [19, 20]). For example, effector 

CD28−CD8+ T cells – while expanded – express the terminal differentiation and 

proliferative history marker CD57 at abnormally low frequencies in both untreated and 

treated HIV infection [34]. This is the exact opposite effect of aging and CMV infection on 

effector CD8+ T cells, and appears to predict subsequent mortality during ART-mediated 

viral suppression to a much greater degree than T cell activation [15]. The determinants of 

these maturational and and/or proliferative effector CD8+ T cell defects in HIV infection 

remain unclear, but may provide insights into novel interventions to reverse adaptive 

immune defects that persist even in individuals who start ART during very early HIV 
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infection. Indeed, approximately 1% of the immediate ART arm in START experienced an 

AIDS complication within 5 years of treatment initiation, despite maintaining normal CD4+ 

T cell counts. Similarly, while early ART diminished the risk of TB in TEMPRANO 

subjects with high CD4+ T cell counts, there was a clear additive benefit of INH prophylaxis 

and a substantial ongoing risk of TB even in this subgroup.

Indoleamine 2,3-dioxygenase-1 (IDO) Activity

The IDO pathway is a potentially important link between innate and adaptive immune 

defects in HIV infection. In both untreated and treated HIV, type I and II interferons and 

other inflammatory stimuli induce IDO expression in activated myeloid cells, which results 

in the catabolism of tryptophan into several downstream catabolites that have important 

immunologic and neurologic effects. For example, the tryptophan catabolites kynurenine 

and picolinic acid suppress T and NK cell proliferation in vitro [35, 36], potentially directly 

impairing both innate and adaptive immune function. The tryptophan catabolite 3-

hydroxyanthralinic acid (3-HAA) also promotes regulatory T cell expansion (further 

impairing T cell function) while suppressing Th17 and Th22 cells, resulting in impaired gut 

epithelial barrier integrity and potentially contributing to microbial translocation and further 

innate immune activation [37]. Recently, three cohort studies have now linked systemic IDO 

activity (typically assessed as the plasma kynurenine/tryptophan ratio) to increased mortality 

during suppressive ART, suggesting that this pathway may well be clinically relevant [19–

21]. This pathway might also contribute to neurologic morbidity. IDO activity may deplete 

tryptophan stores in the brain, which are essential for serotonin synthesis, thereby promoting 

depression as suggested in a recent observational study [38]. The tryptophan catabolite 

quinolinic acid is also an established neurotoxin and had been linked to AIDS dementia 

complex in the pre-ART era [39]. Given its multiple potential deleterious effects on immune 

and neurologic function, and that it may promote a positive feedback loop of microbial 

translocation and immune activation via 3-HAA, the IDO pathway remains an important 

interventional target. Fortunately, several IDO inhibitors are in various stages of 

development for cancer (one of many immune checkpoint inhibitor strategies being 

pursued), so new tools may be available to attenuate this pathway in the near future.

Monocyte activation

Monocyte and tissue macrophage activation has become increasingly recognized as a 

potential mediator of non-AIDS morbidity and mortality in the modern treatment era. HIV 

results in a shift from “classical” CD14++CD16− to “non-classical” CD14+CD16+ and 

“intermediate” CD14++CD16+ monocytes, which are associated with an inflammatory 

phenotype [40–42] and greater viremia and/or CD4+ T cell depletion [42, 43]. High 

expression of the PD1 homologue (PD-1H), which is associated with increased production 

of TNF, IL-1β, and IL-6, may also contribute to the pro-inflammatory state of these 

monocytes [44]. CD16+ non-classical and intermediate monocytes have a high migratory 

capacity, which has been attributed to expression of the chemokine receptors CCR2, CCR5, 

[45, 46] and CX3CR1 [47]. Indeed, higher expression of the monocyte adhesion molecule 

CXCL8 was associated with death in SMART [48]. These migratory monocytes have been 

postulated to facilitate HIV dissemination into tissues such as the intestine and liver and 

contribute to reservoir establishment [49]. While ART reduces these pro-inflammatory 
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monocytes [40, 41], it is less clear whether ART suppresses inflammatory tissue 

macrophages that were established prior to ART. Persistence of the HIV reservoir, microbial 

translocation, and co-infections despite ART may continue to stimulate inflammation in 

tissue macrophages..

Monocyte recovery, viability, and protein expression can be compromised during cell 

processing, cryopreservation, and thawing. Thus, circulating biomarkers released by 

activated monocytes such as soluble CD14 (sCD14), soluble CD163 (sCD163), IL-6, 

neopterin, and interferon gamma-induced protein 10 (IP-10) are often used to identify 

monocyte activation. CD14 is the LPS receptor, and sCD14 is shed or secreted by 

monocytes in response to LPS stimulation, but also potentially by neutrophils and 

hepatocytes. Whether sCD14 is specific or quantitative for microbial translocation remains 

controversial [50, 51], but the rapid decrease in sCD14 levels without changes in LPS after 

initiating ART suggests other inflammatory cytokines may contribute to its shedding [52]. 

CD163, the haptoglobin receptor, is expressed exclusively by macrophages and monocytes 

and its shedding is at least in part mediated by TNF [53]. Tissue macrophages express 

higher levels of CD163 than circulating monocytes, suggesting high sCD163 may reflect 

underlying tissue inflammation. Other markers of inflammation, including IL-6, IP-10 and 

neopterin [54] [55] [56], are less specific for monocyte activation Given the differing 

sources and drivers of these biomarkers, it is not surprising that they do not consistently 

correlate with each other [13, 40, 57]. Nonetheless, high IP-10, neopterin, and sCD163 

levels - but not sCD14 - were associated with an increased frequency of increased 

intermediate CD14++CD16+ monocytes in HIV-infected individuals [40], whereas only 

high IP-10 levels have been associated with decreased frequencies of classical CD14+

+CD16−.monocytes [40]. Notably, sCD163 correlated with tissue factor (TF) on both 

classical and intermediate monocytes, consistent with its association with some (though not 

all [24]) surrogate markers of cardiovascular disease [40, 58, 59].

High levels of biomarkers of monocyte activation may reflect or even predict HIV disease 

progression. High plasma IP-10, IL-6 and sCD14 all consistently predict increased 

subsequent morbidity and mortality during ART [42, 43, 60], and high sCD163 levels have 

been associated with surrogate markers of neurologic and cardiovascular disease (though 

perhaps not cardiovascular events [61]), as well as all-cause mortality in a recent report [26, 

57–59, 62, 63]. As many of these biomarkers of monocyte activation may be increased by 

smoking and/or alcohol use, many of these associations with morbidity and mortality may 

be at least in part driven by behavioral risk factors and not HIV itself, though a recent report 

suggests that these associations persist despite adjustment for behavioral risk factors [64]. 

However, similar to T cell activation, whether the association of monocyte activation with 

morbidity and mortality is causative or correlative remains unclear.

Type I interferons

Type I IFNs may contribute to monocyte activation and thereby facilitate HIV dissemination 

and disease progression. Data from the CAPRISA 004 study suggest that IFN signaling may 

render women more susceptible to infection. Women with detectable MIP-1a and MIP-1b 

and higher levels of IP-10, all of which are upregulated by interferons, in cervicovaginal 
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lavage were at increased risk of HIV acquisition [65]. The increased risk is likely attributed 

to increased HIV target cell recruitment to the vaginal mucosa by these three chemokines 

[65]. However, IFNα administration prior to high-dose SIV rectal challenge delayed 

acquisition of systemic infection [66]. Thus, increased IFN signaling may facilitate HIV 

acquisition in target-limited tissues and protect against acquisition in target-rich tissues.

However, blocking type I IFNs during acute SIV infection accelerates progression to AIDS 

and death [66], indicating their role in inducing antiviral responses supercedes the 

detrimental consequences of activating monocytes and creating and recruiting target cells. 

Indeed, in cervical explants, poly IC initiates an IFN signaling cascade through the master 

IFN signaling regulator, IRF7, and decreases HIV replication. IFN signaling may even be 

synergistic with antiretroviral drugs such as tenofovir to suppress HIV replication [67]. 

Moreover, genetic polymorphisms that interfere with IFN signaling are associated with rapid 

disease progression [68]. However, the balance of the benefits of HIV control with the 

potentially detrimental pro-inflammatory effects of type I IFNs warrant consideration. IFNα 

upregulates Siglec-1 on monocytes and dendritic cells (DCs) [69] and therefore facilitates 

myeloid cell capture of HIV. These myeloid cells can then transfer HIV to CD4+ T cells via 

cell-to-cell contact. As Siglec-1+ cells have been identified in the perifollicular CD4+ T 

cell-rich region of the lymph node, it is not surprising that high Siglec-1 expression 

correlates with high plasma viral load and low CD4+ T cell counts [69]. In addition to 

upregulating Siglec-1, in vitro data suggest IFNα interferes with IL-7- and IL-2-mediated 

CD4+ T cell proliferation and thereby further increases CD4+ T cell death [70]. Several 

studies are queued to evaluate the effects of IFNα administration or blockade using an 

experimental drug in the setting of suppressive ART [71]. These interventions will likely 

have opposite effects on immune activation and possibly on CD4+ T cell counts and further 

illuminate causal factors in CD4+ T cell depletion. However, these studies are not designed 

to assess long-term clinical consequences including non-infectious complications and 

mortality.

Lymphoid tissue fibrosis

Lymphoid tissue fibrosis begins in acute retroviral infection [72]. Studies of pathogenic non-

human primate models demonstrated that collagen deposition in lymphoid tissue [72] begins 

as early as 7 days post-infection and in response to stimuli such as LPS and HIV itself. 

These stimuli induce an inflammatory response reflected by increased expression of the 

interferon-stimulated gene Mx1 and of the cell proliferation marker Ki67. Regulatory T cells 

are then activated to express TGFβ, the canonical driver of fibrosis. Resident fibroblasts 

deposit collagen I, III, fibronectin, and other components of the extracellular matrix [72], 

destroying the lymph node structure. This destruction of the discrete pathway of fibroblast 

reticular cells that guides T cells, especially naive T cells, to the paracortical T-cell zone, 

prevents their interaction with antigen-presenting cells and survival and proliferation signals 

such as IL-7. Similarly, the pathway guiding B cells to the primary follicles where they 

encounter follicular dendritic cells and their cognate antigens is destroyed. In contrast to 

pathogenic hosts, natural hosts of SIV infection do not upregulate TGFβ in lymphoid tissue 

or develop lymphoid tissue fibrosis [73]. SIVcpz confers an intermediate phenotype in the 
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chimpanzee, with substantial variability noted among animals and fibrosis primarily 

occurring in non-captive animals [74, 75].

Thus, fibrosis compromises clonal expansion of T cells and germinal center formation [73]. 

This fibrosis also involves the gut-associated lymphoid tissue (GALT), which may further 

perpetuate microbial translocation and fibrosis. As the vast majority of T cells are found in 

lymphatic tissue, greater lymphoid tissue fibrosis and duodenal TGFβ expression correlate 

with lower CD4+ T cell counts. In the GALT, this TGFβ appears to be produced by 

intestinal myofibroblasts in response to LPS stimulation [76]. Captive chimpanzees virtually 

normalize their T cell and monocyte activation, perhaps due to the lack of additional pro-

inflammatory environment stimuli. However, increased collagen deposition in the T cell 

zone of lymphoid tissue was maintained and CD4+ T cell counts remained decreased 

compared to healthy animals [75]. Thus, the transient inflammation that resulted in collagen 

deposition in the lymphoid tissue is sufficient to suppress CD4+ T cell counts. In contrast, 

non-pathogenic SIV models without lymphoid fibrosis or microbial translocation do not 

progress to AIDS [73]. Ultimately, interventions to improve or prevent impaired gut 

integrity and increased intestinal LPS levels may reduce lymphoid fibrosis. As fibrosis limits 

CD4+ T cell recovery on ART and may impair antigen-specific responses [77], interventions 

that attenuate lymphoid tissue may have pleiotropic benefits.

Conclusion

HIV activates several arms of the immune system, which likely gives rise to several 

different infectious and non-infectious disease manifestations, even during ART-mediated 

viral suppression. These discreet immunologic pathways, while overlapping, likely have 

distinct roles in mediating different disease manifestations and may even have distinct root 

causes. A better understanding of which pathways drive specific disease manifestations, the 

root causes of those pathways, and the degree to which they can be reversed by early ART 

initiation will help prioritize interventional targets to study and identify the populations at 

highest risk. This systematic approach is likely to help accelerate the development of novel 

interventions to further improve the health of HIV-infected individuals in the modern 

treatment era.
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Key Bullet points

• Early ART appears to be most effective at decreasing infectious complications.

• The degree to which early ART reverses discreet pathways of immune 

activation and their drivers may differ.

• The extent to which discreet pathways of immune activation drive morbidity 

and mortality may differ according to the end-organ disease of interest and 

environment.

• Understanding the immune activation pathways and their root drivers that are 

most strongly predictive of disease may help prioritize targets for interventions 

to pursue in clinical trials and identify individuals at highest risk.
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