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Summary

In this work, we aimed to evaluate the levels of ferritin enriched in H

subunits (H-ferritin) and ferritin enriched in L subunits (L-ferritin) and the

cells expressing these two molecules in the lymph node (LN) biopsies

obtained from adult-onset Still’s disease (AOSD) patients, and the possible

correlation among these data and the severity of the disease. Ten patients

with AOSD underwent LN biopsy. All the samples were stained by

immunofluorescence. A statistical analysis was performed to estimate the

possible correlation among both H-ferritin and L-ferritin tissue expression

and the clinical picture of the disease. Furthermore, the same analysis was

performed to evaluate the possible correlation among the number of

CD681/H-ferritin1 or CD681/L-ferritin1 cells and the clinical picture.

Immunofluorescence analysis demonstrated an increased tissue H-ferritin

expression in the LNs of AOSD patients. This increased expression

correlated with the severity of the disease. An increased number of CD68

macrophages expressing H-ferritin was observed in the LN samples of our

patients. Furthermore, we observed that the number of CD681/H-ferritin1

cells correlated significantly with the severity of the clinical picture. Our

data showed an imbalance between the levels of H- and L-ferritin in LNs of

AOSD patients and the evidence of an increased number of CD681/

H-ferritin1 cells in the same organs. Furthermore, a correlation among both

the tissue H-ferritin levels and the CD681/H-ferritin1 cells and the clinical

picture was observed.

Keywords: adult-onset Still’s disease, H-ferritin, hyperferritinaemic syn-
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Introduction

Adult-onset Still’s disease (AOSD) is a rare systemic inflam-

matory disorder of unknown aetiology, characterized by

quotidian high spiking fevers, arthritis and multi-organ

involvement, requiring immunosuppressive therapies [1–3].

A large percentage of AOSD patients showed an evanescent

salmon-pink or erythematous maculopapular eruption

which appears frequently during febrile attacks, and is found

predominantly on the proximal limbs and trunk [3,4]. Fur-

thermore, both splenomegaly and mild–severe enlargement

of cervical lymph nodes (LNs) are observed frequently in

AOSD patients and lymphoma should be always considered

in the differential diagnosis of this clinical picture [1–4].

Recently, it has been suggested that AOSD and other

uncommon medical conditions such as macrophage activa-

tion syndrome (MAS), catastrophic anti-phospholipid syn-

drome and septic shock, which share similar clinical and

laboratory features, may be considered an intermediate

phenotype of the same inflammatory process, affecting tar-

get cells killed by cytotoxic T cells and natural killer (NK)

cells [5]. In this context the cytokine storm observed in

these conditions, associated with hyperferritinaemia, may

further activate both NK and cytotoxic T cells with conse-

quent release of uncontrolled granzyme system and per-

forin release, thus amplifying the cytokine storm and the

production of proinflammatory cytokines [6,7].

Ferritin is an intracellular iron storage protein including

24 subunits: heavy (H) subunits and light (L) subunits on

the bases of their molecular weight [8,9]. The H-/L-subunits

ratio may change, depending on the specific tissue and the
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physiological status of the cell. In normal conditions, ferri-

tin enriched in L subunits (L-ferritin) has been found in the

liver and in the spleen; on the contrary, the ferritin enriched

in H subunits (H-ferritin), may be observed mainly in the

heart and kidneys [8,9]. Although the secretory pathway of

serum ferritin has not been clarified fully, hepatocytes, mac-

rophages and K€upffer cells may be involved in its secretion

[8–11].

For many years, ferritin has been considered as a potential

immunosuppressant, inducing suppression of delayed-type

hypersensitivity [12], suppression of antibody production by

B lymphocytes [13], decreasing the phagocytosis by granulo-

cytes [14] and regulating granulo-mono-cytopoiesis. More

recently, it has been suggested that H-ferritin induces pro-

duction of the anti-inflammatory cytokine in lymphocytes

[15] and may act as a negative regulator of the CXC chemo-

kine receptor 4 (CXCR4), impairing the signalling leading to

the activation of mitogen-activated protein kinase (MAPK),

a kinase that is known to play an important role in cell

proliferation, differentiation and migration [16].

Intriguingly, in recent years, a proinflammatory role of

extracellular ferritin has been suggested for some specific

cells, such as hepatic stellate cells [17]. Cells treated with fer-

ritin activate PI3 kinase phosphorylation, protein kinase C

zeta activation and MAPK activation, culminating in

nuclear factor-kappa B (NF-jB) activation. This activation

leads to the production of proinflammatory molecules,

inducible nitric oxide synthase and others. Of note, this

function is independent of the iron content of ferritin, sug-

gesting that exogenous ferritin may play active roles inde-

pendently of its main function [17]. In fact, ferritin

synthesis may be regulated not only in response to iron

availability, but also by different inflammatory cytokines

such as interleukin (IL)-1b and IL-6, and by different bio-

logical stimuli such as oxidative stress, hypoxia–ischaemia,

hyperoxia and lipopolysaccharide (LPS) toxicity [7,9–11].

H-ferritin specifically binds a member of the T cell immu-

noglobulin and mucin-domain (TIM) gene family, TIM-2

[7], which is considered a defined marker of T helper type 2

(Th2) cells [17–19]. During the inflammatory response

other cells, including macrophages, may express TIM-2 on

their surface [18–23]. In this setting, instead of modulating

down-regulation of the immune response, as observed in

normal conditions, the H-ferritin/TIM-2 binding up-

regulates strongly the expression of inflammatory cytokines,

playing a pivotal role in the development of an extremely

severe condition known as a ‘cytokine storm’ [7–11].

Although a growing body of evidence suggests that mac-

rophages are associated with the immunopathogenic mech-

anism of this rare condition, at present their exact role is

not fully understood [1,7]. It is well known that, together

with other myeloid and lymphoid cells, macrophages in the

subcapsular sinus and medulla of secondary LNs contrib-

ute to the innate and adaptive responses of the host, shap-

ing the nature and quality of inflammation [24].

In this paper, we show both an increased tissue expres-

sion of H-ferritin and an increased number of CD681/

H-ferritin1 macrophages in the LNs of AOSD patients, and

these results correlate with the disease activity and the

serum ferritin levels of the same patients, suggesting a

pathogenic role of these macrophages in this inflammatory

disease.

Patients and methods

In the last 10 years, 10 consecutive patients with AOSD

referred to the Rheumatology Clinic of L’Aquila University

and to the Rheumatology Clinic of Palermo University

were enrolled into this study. All patients fulfilled the crite-

ria proposed by Yamaguchi et al. [25] for AOSD and

showed a flare of the disease in the context of a polycyclic

or a chronic form of the disease, according with the criteria

proposed by Cush et al. [26]. Serum levels of ferritin, eryth-

rocyte sedimentation rate (ESR) and C-reactive protein

(CRP) were obtained from the patients. Pouchot’s score

was used to evaluate the disease activity [27]. This score

ranges from 0 to 12 and is calculated by assigning and add-

ing 1 point for each of the following manifestations occur-

ring during a disease flare: fever, evanescent rash, pleuritis,

pneumonia, pericarditis, hepatomegaly or abnormal liver

function tests, splenomegaly, lymphadenopathy, white

blood cells> 15 000/mm3, sore throat, myalgias and

abdominal pain. The demographic data of our patients are

reported in Table 1.

Ten LN samples were collected from patients who had

undergone biopsies for differential diagnosis with a lym-

phoproliferative disease. These samples were matched with

LN samples obtained from subjects without any symptoms

or history for autoimmune or autoinflammatory diseases

who had undergone biopsies to exclude lymphoprolifera-

tive or granulomatous diseases.

The San Salvatore University Hospital ethics committee

approved this study. It was performed according to Good

Clinical Practice guidelines, and written informed consent

Table 1. Demographic data of adult-onset Still’s disease (AOSD)

patients.

Women (men) 5 (5)

Disease duration, median (range) months 19 (15, 30)

Polycyclic form (chronic form) 5 (5)

Serum ferritin, median (range) ng/ml 1476�5 (734, 3021)

Erythrocyte sedimentation rate mm/h 82 (54, 120)

C-reactive protein mg/dl 31 (12, 150)

White blood count 10/ml 15�5 (10�1, 18�9)

AST U/l 82 (10, 101)

ALT U/l 110 (41, 154)

Pouchot’s score 6 (4, 10)

ALT 5alanine transaminase; AST 5aspartate transaminase.
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was obtained from all patients according to the Declaration

of Helsinki.

Histological analysis of biopsies

Sequential sections (thickness 3 mm) were obtained from

LN biopsies, fixed by formaldehyde and paraffin-

embedded. For conventional smear preparations, glass

smear slides were fixed with 95% ethanol for at least 15

min, and then treated with water for 1 min, haematoxylin

for 1 min, running water for 15 min, eosin for 30 s, 95%

ethanol for 10 min and 100% ethanol for 10 min. Stained

slides were coverslipped with Permount. Haematoxylin and

eosin images were acquired using an Olympus BX53 fluo-

rescence microscope with CellSens software (Olympus

America Inc., Center Valley, PA, USA).

For immunofluorescence, antigen retrieval was carried

out using target retrieval solution (Dako, Glostrup, Den-

mark). Sections were treated with Dako protein block

to block non-specific binding and successively with

H-ferritin, L-ferritin and CD68 antibodies. Ferritin L chain

(H-45, sc-25616; Santa Cruz Biotechnology Inc., Santa

Cruz, CA, USA) is a rabbit polyclonal antibody [immuno-

globulin (Ig)G] raised against amino acids 131–175 of the

human-origin ferritin L chain. The ferritin H chain (B-12,

sc-376594; Santa Cruz Biotechnology Inc.) is a mouse

monoclonal antibody (IgG2a) raised against amino acids

131–183 of the human-origin ferritin H chain. The immu-

noreaction was revealed by using a fluorescence secondary

antibody (Alexa Fluor 488-conjugated and Alexa Fluor

555-conjugated; Invitrogen, Carlsbad, CA, USA) and

negative controls were obtained by omitting the primary

antibody. Cell nuclei were visualized using 40,6-diamidino-

2-phenylindole (DAPI). Sections were examined and pho-

tographed under a light microscope (Olympus BX53).

Immunofluorescence images were acquired using an Olym-

pus BX53 fluorescence microscope with CellSens software

(Olympus America Inc.).

Fluorescence was analysed using an Olympus BX53 fluores-

cence microscope and the immunofluorescence optical den-

sity was performed using ImageJ software (NIH, Bethesda,

MD, USA). The number of CD681/H-ferritin1 and CD681/

L-ferritin1 cells was determined as follows: 10 random high-

power microscopic fields for each area (10 000 lm2) were

selected and the numbers of CD681/H-ferritin1 and CD681/

L-ferritin1 cells were counted using NIH ImageJ version 1�43

(http://rsbweb.nih.gov/ij/) freeware.

Statistical analysis

GraphPad Prism version 5�0 software was used for statisti-

cal analyses. Results are expressed as median (range).

Due to the non-parametric distribution of our data, the

Mann–Whitney U-test was used as appropriate for analy-

ses. Spearman’s correlation analysis and linear regression

were performed to evaluate possible correlations between

the tissue expression of H- and L-ferritin and the number

of CD681/H-ferritin1 cells or CD681/L-ferritin1 cells and

clinical and laboratory data. Statistical significance was

expressed by a P-value< 0�05.

Results

Increased expression of H-ferritin

Immunofluorescence analysis shown in Fig. 1a shows an

increased extracellular H-ferritin expression in the LN

samples of AOSD patients when compared with healthy

controls (HC). Conversely, the results in Fig. 1b concerning

L-ferritin do not show increased immunofluorescence

expression in AOSD patients when compared to HC. The

quantitative analyses of the optical density for both H- and

Fig. 1. Increased expression of H-ferritin in lymph node (LN) samples of adult-onset Still’s disease (AOSD) patients. Immunofluorescence analyses in LN

sample of subcapsular sinus shows: (a) increased H-ferritin expression in AOSD patients when compared with healthy controls (HC) (d). No increase of L-

ferritin (b) has been detected in patients when compared with HC (e). (g) H-ferritin expression levels are significantly higher when compared with the

levels of L-ferritin (***P< 0�001) (c) (f) no co-localization between H- and L-ferritin has been shown in both AOSD patients and HC.

H-ferritin expression in the LNs of AOSD patients
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L-ferritin expression showed a significant increase of H-

ferritin when compared with both L-ferritin in AOSD

patients and with HC (P< 0�001; P< 0�001, respectively)

(Fig. 1g).

Correlation of H-ferritin with clinical features

Our analyses showed a positive correlation between the

increased levels of extracellular H-ferritin in the LN tissues

and disease activity. H-ferritin tissue levels, showing the

classical granular deposition in the tissue, correlated

strongly with both Pouchot’s score and serum ferritin

(P< 0�0001; P< 0�0001, respectively). Furthermore, there

was a positive correlation between these levels of H-ferritin

and ESR (P< 0�05; P< 0�05, respectively). No correlation

was found between CRP and H-ferritin. Figure 2 shows the

linear regression performed among these parameters. Of

note, correlation analyses concerning L-ferritin tissues and

the same parameters did not show significant results.

CD681/H-ferritin1 cells in LNs from AOSD patients

In the histological analyses of LN samples, performed

according to Jeon et al. [28], two patterns were observed.

The atypical paracortical hyperplasia pattern was character-

ized by paracortical hyperplasia with vascular proliferation

and mixed cell infiltration in five patients (Fig. 3a), and the

burnt-out histiocytic pattern was characterized by exuber-

ant paracortical hyperplasia with vascular proliferation and

extensive sinus macrophage infiltration in the other five

patients (Fig. 3b). The immunofluorescence analysis

showed that CD681/H-ferritin1 cells, with enlarged cyto-

plasm, were distributed widely in the LN tissue of AOSD

patients (Fig. 4b), without specific localization in both the

subcapsular and medullary sini, which represent the areas

colonized normally by resident macrophages in the LNs.

With regard to L-ferritin, no co-localization with CD68

molecule was observed in our patients.

Correlation of number of CD681/H-ferritin1 cells
in LN with disease activity

A significantly increased number of CD681/H-ferritin1

cells was observed in LNs of AOSD patients when com-

pared with HC [AOSD: 4.5 (3�5, 5�8) versus HC: 0�6 (0�2,

1�2); P< 0�0001]. In addition, a significant correlation

between the number of H-ferritin1/CD681cells and Pou-

chot’s score was observed (P< 0�01). Furthermore, we

demonstrated a strong positive correlation between the

number of CD681/H-ferritin1 cells and serum ferritin

(P< 0�0001). Conversely, as shown in Fig. 5, no significant

correlations were observed among the number of CD681/

H-ferritin1 cells and ESR and CRP.

Fig. 2. Correlation of H-ferritin in lymph nodes (LNs) and different markers of severity of adult-onset Still’s disease (AOSD) patients. The non-

parametric Spearman’s r correlation coefficient is calculated.

Fig. 3. The histological analyses

of lymph node (LN) samples.

The haematoxylin and eosin

analysis of LN samples shows:

(a) the atypical paracortical

hyperplasia pattern and (b) the

burnt-out histiocytic pattern.
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Discussion

In this work, we have shown that both the H-ferritin tissue

expression and the number of CD681/H-ferritin1 cells

were increased in the LNs of AOSD patients, and these

results correlated significantly with disease severity. To our

knowledge, this is the first work that has aimed to investi-

gate the evidence of these cells in secondary lymphoid

organs during AOSD.

It has been proposed recently that AOSD, MAS, cata-

strophic anti-phospholipid syndrome and septic shock

should be included in ‘hyperferritinaemic syndrome’, in

which the higher levels of ferritin may be considered to be

not only a consequence of the inflammation, but are prob-

ably involved in a vicious loop leading to the cytokine

storm [5]. The release during erythrophagocytosis, the

impaired tissue clearance by macrophages and the secretion

of ferritin by these cells have been considered as possible

causes of hyperferritinaemia in these patients [29,30].

As mentioned previously, we reported an increased

number of CD681/H-ferritin1. In this context, it is well

known that macrophages are distributed widely through-

out the body, performing vital homeostatic and defence

functions after local and systemic perturbation within tis-

sues. Macrophages are central players in innate and adapt-

ive defence reactions, directly neutralizing pathogens by

phagocytosis and orchestrating the responses of other

immune cells [31]. In response to local adaptation, tissue

macrophages display different functional specializations

which is reflected in their phenotype, as well as gene

expression profiles [31]. Basically, subcapsular sinus

Fig. 4. CD68 macrophages

expressing H-ferritin in lymph

node (LN) samples of adult-onset

Still’s disease (AOSD) patients.

The hematoxylin eosin analysis of

LNs samples of medullary sinus

in AOSD patients (a) and HC

(c). The immunofluorescence

analysis in LN sample of

medullary sinus shows: (b) CD68

macrophages expressing H-

ferritin.

Fig. 5. Increased number of CD681/H-ferritin1 cells and correlation with severity of adult-onset Still’s disease (AOSD). (a) An increased number

of CD681/H-ferritin1 cells in lymph node (LN) samples of AOSD patients when compared to healthy controls (HC) (***P< 0�001). (b,c) The

non-parametric Spearman’s r correlation coefficient is calculated.

H-ferritin expression in the LNs of AOSD patients
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macrophages (SSMs) and medullary sinus macrophages

(MSMs) in the LNs have been recognized [24,31]. The role

of SSMs and MSMs in immune response has been studied

extensively [32,33]. SSMs may capture lymph-borne

substances, including virus particles, through different

mechanisms, including lectins, scavenger receptors and

CR3, but are poorly endocytic. Antigens and immunocom-

plexes bind to SSM heads, are translocated without inter-

nalization to their tails, and are finally presented to

follicular B cells, migrating randomly through the dense

net of tails. Cognate B cells are activated directly from

SSMs via the B cell receptor [24,31]. In contrast, MSMs

recognize and transfer antigens into conspicuous phagoly-

sosomes. Furthermore, MSMs play an important role in

determining survival and clearance of short-lived early

immune cells [24,31–33].

In our study, we observed that the CD681/H-ferritin1

cells were distributed widely in the tissue, without specific

colonization of the subcapsular and/or medullary sini,

which are the specific resident macrophage areas in the

LNs [24]. The majority of these resident macrophages are

established prenatally, and these cellular compartments

self-maintain locally independently from each other within

their tissue of residence and are self-sufficient and inde-

pendent of further haematopoietic input [31–33]. In con-

trast, our data suggest that the CD681/H-ferritin1 cells are

part of the additional CD681 macrophage pool of LN mac-

rophages, including interfollicular cells, which migrate into

the LNs after immune activation, under the influence of

inflammatory stimuli, and interact with various innate and

adaptive cells [24,31–33]. Although our study does not

address the origin of H-ferritin in LN tissue, our results

might allow us to speculate that during AOSD, migratory

macrophages colonizing the LNs may produce and secrete

ferritin, thus leading to the release of inflammatory media-

tors [7]. In fact, it has been shown that macrophages may

produce ferritin in an animal model, and after inflamma-

tory stimuli macrophages may release H-ferritin [34–37].

Furthermore, it must be pointed out that IL-1, IL-6, inter-

feron (IFN)-g and tumour necrosis factor (TNF)-a, largely

over-expressed in AOSD patients [1,5,38], may induce the

expression of H-ferritin [34,35] via Fer2 activation, which

is able to stimulate the synthesis of H-ferritin and further

production of many proinflammatory cytokines, thus

perpetuating the inflammatory state [11,36,37,39,40]. The

experimental evidence reported in previous studies

strongly supports our data of increased production of

H-ferritin during AOSD, which is characterized by elevated

levels of proinflammatory cytokines [1,5,34–40].

Recently, ferritin distribution was shown in the B area of

germinal centres in LN samples from one patient with

AOSD [41], and the authors suggested that ferritin may act

as an antigen in AOSD enhancing the inflammatory

response via the activation of B cells and ferritin autoanti-

body production [41], although their presence in AOSD

has still not been confirmed as observed in other diseases

[42,43].

In our work, both the increased H-ferritin levels in LNs

and the number of CD681/H-ferritin1 cells colonizing the

lymphatic tissue correlated significantly with disease activ-

ity and serum ferritin, and these data mirror what has been

observed with other biomarkers of macrophage activation,

such as macrophage–colony-stimulating factor, IFN-g,

sCD163 and macrophage inhibitory factor, which corre-

lates significantly with the AOSD activity [41,44–46]. It

should be pointed out that LNs are highly dynamic struc-

tures: during immune response there is a continuous quick

entry of lymphocytes and macrophages from the blood-

stream via the afferent lymphatics and a slow egress of

recirculating lymphocytes and effector cells via the efferent

lymphatics, determining LN enlargement [47,48], as

reported frequently during AOSD [5,6,49]. In this context,

the finding of increased CD681/H-ferritin1 cells in the

affected LNs and the strong correlation between the num-

ber of cells and the severity of disease may allow us to sup-

pose that these cells may be involved in the pathogenic

mechanism of AOSD and confirm our previous results, in

which CD681/H-ferritin1 cells, infiltrating the bone mar-

row, correlated strongly with the mortality of MAS-

associated AOSD patients [50].

It has been suggested recently that AOSD may be catego-

rized as a multi-genic inflammatory disorder at the cross-

roads of autoinflammatory and autoimmune diseases [51].

In fact, it has been suggested that IL-18 and IL-1b, which

are processed through the inflammasome machinery, may

play an important role in AOSD pathogenesis, modulating

both IL-6 and Th1 cytokine secretion as well as NK cell

dysregulation and macrophage activation [51]. According

to our results we might speculate that the activated

CD681/H-ferritin1 cells, via the production and secretion

of large amount of H-ferritin, which display a proinflam-

matory function, may amplify the up-regulation and pro-

duction of inflammatory mediators.

In conclusion, our observational study shows an

increased level of extracellular H-ferritin in the lymphatic

tissue of AOSD patients, associated with a CD681/

H-ferritin1 macrophage colonization of the same tissue.

Although our study does not address the origin of

H-ferritin in these affected tissues, the strong correlation of

these data with the severity of disease suggests a pathogenic

role of H-ferritin and H-ferritin-expressing macrophages

during this disease. Further studies are ongoing in our lab-

oratory in order to elucidate more thoroughly the role of

these cells and H-ferritin in AOSD.
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