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Increasingly, infectious disease studies employ tree-based approaches, e.g., classification and regression tree modeling, to iden-
tify clinical thresholds. We present tree-based-model-derived thresholds along with their measures of uncertainty. We explored
individual and pooled clinical cohorts of bacteremic patients to identify modified acute physiology and chronic health evalua-
tion (II) (m-APACHE-II) score mortality thresholds using a tree-based approach. Predictive performance measures for each can-
didate threshold were calculated. Candidate thresholds were examined according to binary logistic regression probabilities of
the primary outcome, correct classification predictive matrices, and receiver operating characteristic curves. Three individual
cohorts comprising a total of 235 patients were studied. Within the pooled cohort, the mean (� standard deviation)
m-APACHE-II score was 13.6 � 5.3, with an in-hospital mortality of 16.6%. The probability of death was greater at higher
m-APACHE II scores in only one of three cohorts (odds ratio for cohort 1 [OR1] � 1.15, 95% confidence interval [CI] � 0.99 to
1.34; OR2 � 1.04, 95% CI � 0.94 to 1.16; OR3 � 1.18, 95% CI � 1.02 to 1.38) and was greater at higher scores within the pooled
cohort (OR4 � 1.11, 95% CI � 1.04 to 1.19). In contrast, tree-based models overcame power constraints and identified
m-APACHE-II thresholds for mortality in two of three cohorts (P � 0.02, 0.1, and 0.008) and the pooled cohort (P � 0.001). Pre-
dictive performance at each threshold was highly variable among cohorts. The selection of any one predictive threshold value
resulted in fixed sensitivity and specificity. Tree-based models increased power and identified threshold values from continuous
predictor variables; however, sample size and data distributions influenced the identified thresholds. The provision of predictive
matrices or graphical displays of predicted probabilities within infectious disease studies can improve the interpretation of tree-
based model-derived thresholds.

The use of tree-based modeling in clinical investigations has
increased in recent years. Several common statistical packages

employ these tools, including Classification and Regression Trees
(CART; Salford Systems), Decision Trees add-on (SPSS), Enter-
prise Miner (SAS), Partition method (JMP/SAS), and several
packages within the R environment such as “tree,” “rpart,”
“party,” and “mvpart” (R Foundation for Statistical Computing).
Tree-based modeling strategies are designed to find optimal splits
(i.e., threshold values) between predictor and outcome variables
and provide useful alternatives to traditional statistical models.
Minimally, the predictor variable is continuous or ordinal in na-
ture, while the outcome variable can be continuous, ordinal, or
dichotomous (1). In the case of dichotomous outcomes, the
methodology is often loosely termed binary recursive partition-
ing. In brief, individual analyses are completed at each incremen-
tal change of the predictor variable (2). After each analysis is com-
pleted, comparative statistics are utilized to generate post hoc
classifications of the analyzed cohort (1–3). Optimal splits in out-
come variables are derived from this iterative classification proce-
dure wherein the fitted model minimizes misclassification within
the tree (1, 2).

One potential reason for the increased use of tree-based mod-
els relates to the many advantages offered by this approach to data
modeling. At its core, a tree-based model mimics human intuition
in that it transforms a spread of data into discrete groups, and a
fitted and pruned tree can reveal important predictors from a large
set of candidate variables. Yet, the parsimony gained from pruned
trees often results in a loss of information, as the pruning process
is, by design, reductive in nature, yielding a minimal number of
threshold values for a clinical outcome or effect and often a single

split. A reductive approach can be a means to reveal clinically
interesting interactions among complex variables (4). The ease of
interpreting final trees, the flexibility of the model, and the ability
to gain parsimony from a heterogeneous group of predictors to-
gether make the use of tree-based approaches attractive for many
types of data.

In spite of the utility of tree-based modeling techniques, these
approaches also have inherent drawbacks. Previous efforts have
demonstrated that tree-fitting algorithms are highly sensitive to
small sample sizes, and minor changes in effect size can signifi-
cantly alter “optimal” data splits (4). Additionally, while the pur-
pose of tree-based modeling is to simplify, trees can branch many
times and result in nonsensical output. Therefore, pruning is often
necessary to prevent overfitting of data. A less discussed limitation
of utilizing model-derived threshold values, and the primary focus
of our study, is the reductive nature of the analysis itself. The
variability associated with the threshold criterion is lost when only
the threshold value itself is presented. When confronted with a
single threshold value, absent any measures of uncertainty, the
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clinician or researcher is deprived of the fullness of the data and
may be led to incorrectly classify a given patient or case as positive
or negative. Thus, tree-based models provide intuitive and under-
standable decision rules; yet, use of these methods alone does not
allow clinicians and researchers to understand other candidate
thresholds within the data, which may be more informative for
decision making, depending on the actual clinical or research
question posed.

Here, we propose that the truncation of information that oc-
curs as a function of tree pruning may be remedied through con-
struction of predictive matrices (sensitivity, specificity, percent
correctly classified, and positive and negative predictive values
[PPV and NPV]) across the range of observations. Further, gen-
eration of receiver operating characteristic (ROC) curves at every
possible threshold value allows for quick visual analysis. To high-
light the value of this approach, we draw comparisons between the
tree-based modified acute physiology and chronic health evalua-
tion (II) (m-APACHE-II) score thresholds identified using tree-
based models to those thresholds identified using simple linear
models (i.e., Student’s t test) and log-linear probability fits
(i.e., binary logistic regression). As morbidity indices (e.g., m-
APACHE-II scores) are often among the most explanatory pre-
dictors of poor patient outcomes in the setting of acute sepsis
(5–7), we explore the utility of tree-based modeling approaches to
derive an m-APACHE-II threshold for in-hospital mortality
across several cohorts. To elucidate the intricacies between predic-
tor and outcome, we present the tree-based threshold values along
with the attendant measures of uncertainty.

MATERIALS AND METHODS
Patient populations. All patients were treated at Northwestern Memorial
Hospital for Gram-negative (GN) bacteremia between the years 2005 and
2012. The patients evaluated made up three separate retrospective co-
horts. To be included in the analysis, patients had to have received at least
24 h of treatment at the discretion of their primary medical team for their
GN bacteremia. In the first cohort (cohort 1), patients received active
antimicrobial treatment (n � 75) for infections due to Klebsiella pneu-
moniae (8). In the second cohort (cohort 2), patients were treated with
cefepime (n � 91) for a GN bacteremia (9). The third cohort (cohort 3)
was comprised of acutely ill (i.e., hospitalized) adult patients (n � 77)
with a GN bacteremia who received active therapy (10). Therapy was
considered to be active if the agent was rated as susceptible to the chosen
therapy according to the Clinical and Laboratory Standards Institute sus-
ceptibility criteria in place at the time of the study. A pooled cohort of
unique (i.e., nonduplicative) patients from all three cohorts was also as-
sembled.

Variables. All data elements were extracted from the electronic med-
ical record by trained reviewers. The m-APACHE-II score on the day of
the first positive blood culture was calculated for all patients (5, 6). This
severity of illness score is a validated metric, which has been used to adjust
mortality predictions among patients with bacteremia. Scoring accounted
for whether patients were immunocompromised, were admitted primar-
ily for a surgical indication, or had a primarily nonsurgical indication for
admission. Other variables extracted for this analysis were patient demo-
graphics, including age, gender, and absolute neutrophil count (ANC)
of �500 cells/mm2 during the index admission.

Outcomes. The primary outcome of the current analysis was identifi-
cation of an in-hospital mortality threshold value for each cohort accord-
ing to the m-APACHE-II score calculated on the day of infection (i.e., the
first culture-positive day during the index admission). Outcomes for each
cohort were determined individually, and patients were deduplicated as
necessary for the pooled mortality analysis. Secondary outcomes included
calculation of the sensitivity, specificity, and positive and negative predic-

tive values at the tree-based-model-derived thresholds. Pooled and indi-
vidual analyses were planned a priori to test the impact of sample size
(vis-à-vis power) on the robustness of the tree-based-model-derived
thresholds and the statistical significance observed in a sensitivity analysis.
As we had previously analyzed these cohorts separately, a pooled analysis
was considered, because mortality rates between groups were not signifi-
cantly different. Only the severity of illness score was considered as a
mortality predictor in this univariate analysis for simplicity.

Analyses. Descriptive statistics were calculated for each of the cohorts
using the “stats” package within R version 3.1.0 (11). Categorical variables
were evaluated using chi-square or Fisher’s exact tests as appropriate.
Continuous data were evaluated using the Student t test or Wilcoxon
rank-sum test as appropriate. Tree-based modeling was performed using
data from three cohorts to predict in-hospital mortality thresholds from
the morbidity indices collected. The binary recursive partitioning func-
tion within the classification and regression tree package “tree” (12) for R
was utilized to determine threshold splits in m-APACHE-II score that
predicted mortality. The minimum child node size was at least 10, with a
maximum number of child node splits equal to 2. A default deviance of
0.01 was used for all models.

After identification of tree-based threshold values for each cohort and
the pooled cohort, the impact of m-APACHE-II on mortality was calcu-
lated in several, more traditional ways, including (i) Student’s t tests and
(ii) binary logistic regressions with associated probabilities, with the latter
calculations shown in equations 1 and 2:

OddsDeath � eIntercept � Beta � m-APACHE II score (1)

PDeath �
OddsDeath

1 � OddsDeath
(2)

Additionally, predictive matrices were generated using m-APACHE-II
as a classifier of mortality. Identification of a threshold value that maxi-
mized the positive predictive value (PPV) (i.e., a threshold that minimized
false-positive predictions of death among survivors) corresponded to
maximized specificity. Likewise, identification of a threshold value that
maximized negative predictive value (NPV) (i.e., a threshold that mini-
mized false-negative predictions of survival among those who died) cor-
responded to maximized sensitivity. To test the robustness of the tree-
based threshold predictions for mortality within the pooled cohort,
bootstrap resampling was conducted to estimate the standard errors of the
bivariate logistic regression of mortality according to the pooled threshold
value using 1,000 replicates from the full sample size. Replicate size suffi-
ciency was evaluated by resampling after setting at least two separate seeds
and comparing the resulting differences in the coefficients and 95% con-
fidence intervals between runs. Predictive matrices were created for sen-
sitivity, specificity, and percent correctly classified using the “roctab”
command. PPV and NPV were calculated using the “diagt” command.
Except where otherwise specified, all statistical tests were performed using
Intercooled Stata version 14.0 (Statacorp, College Station, TX).

RESULTS

A total of 243 patients were included from the three cohorts, com-
prising 235 unique patients for the pooled cohort (8–10). Within
the pooled cohort, mean (SD) age was 59.4 (15.6) years, and males
comprised 49.8% (n � 117/235) of the population. Neutropenia
(i.e., an ANC of �500 mm2) was highly prevalent at 26.0% (n �
61/235). The mean (SD) m-APACHE-II score was 13.6 (5.3). As
ANC was correlated with m-APACHE II scores (r � 0.5, P � 0.001),
the m-APACHE-II score was evaluated as the primary predictor.

The characteristics of the three individual cohorts and the
pooled cohort are shown in Tables 1 and 2 and are stratified by the
outcome of in-hospital mortality. Overall, 16.6% (n � 39/235) of
patients died within the pooled cohort while in hospital. The mean
(SD) m-APACHE-II score was higher among those who died than
among those who survived in hospital (16.1 [5.1] versus 13.1 [5.2];
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P � 0.002). Mean age did not differ for those that survived and
those that did not (61.7 versus 59.0, P � 0.31), and in-hospital
mortality rates were not significantly different between male and
female patients (15.4 versus 17.8%; P � 0.62). In-hospital mortal-
ity was more common among patients with concurrent neutrope-
nia than among those without concurrent neutropenia (26.2%
versus 13.2%; P � 0.02).

Linear and tree-based m-APACHE-II mortality splits for co-
hort 1. A total of 75 patients with Klebsiella pneumoniae bactere-
mia were included in cohort 1, of whom 12 (16%) died (8). When
comparing m-APACHE-II scores as a linear variable, mean
(SD) values did not statistically differ between those who sur-
vived and those who died (10.6 [4.31] versus 13.2 [4.86]; P �
0.07). Binary logistic regression identified a borderline signifi-
cance for m-APACHE-II scores (odds ratio [OR], 1.15; 95%
confidence interval [CI], 0.99 to 1.34; P � 0.07). That is, for each

1 unit increase in the m-APACHE-II score, the relative odds of
in-hospital mortality increased 15%. Probabilities of in-hospital
mortality are shown in Fig. 1A and increased steadily across the
range of m-APACHE-II scores, though the log-linear trend failed
to meet statistical significance. In order for the predicted mortality
risk to double, the m-APACHE-II score would have needed to
increase from a mean score of 11 to 14.3.

A tree-based model, alternatively, identified statistically signif-
icant mortality splits between m-APACHE-II scores of �15.5
and �15.5 (11.1% [n � 7/63] deaths and 41.7% [n � 5/12] deaths,
respectively; P � 0.019) on day 0 of infection. However, the use of
a tree-based approach provided an incomplete perspective on the
role of increasing m-APACHE-II scores on mortality. The ROC
curve (Fig. 2A) and each candidate threshold (e.g., values of 14,
15, and 16) demonstrated various levels of sensitivity and spec-
ificity (Table 3). By comparing crude mortality rates at each

FIG 1 Probabilities of in-hospital mortality according to m-APACHE-II score among patients with Gram-negative bacteremia. Unadjusted probabilities of
death from a regression of predictors against the outcome of in-hospital mortality. (A) Probabilities of death according to increasing m-APACHE-II scores on
the day of infection among 75 patients in cohort 1. (B) Probabilities of death according to increasing m-APACHE-II scores on the day of infection among 91
patients in cohort 2. (C) Probabilities of death according to increasing m-APACHE-II scores on the day of infection among 77 patients in cohort 3. (D)
Probabilities of death according to increasing m-APACHE-II scores on the day of infection among 235 unique patients in the pooled cohort.

TABLE 1 Outcomes by population characteristics within three individual cohorts and the pooled cohort of patients with bacteremiaa

Parameter

Cohort 1 Cohort 2 Cohort 3 Pooled cohort

Survived Died Survived Died Survived Died Survived Died P value

No. of patients n � 63 n � 12 n � 72 n � 19 n � 69 n � 8 n � 196 n � 39
No. of male patients (% of total) 31 (49.2%) 4 (33.3%) 39 (54.2%) 11 (57.9%) 33 (47.8%) 3 (37.5%) 99 (50.5%) 18 (46.2%) 0.62
No. with ANC �500 (% of total) 2 (3.2%) 0 (0.0%) 46 (63.9%) 15 (78.9%) 0 (0.0%) 1 (12.5%) 45 (23.0%) 16 (41.0%) 0.02
Mean age (SD)b 58.8 (16.6) 64.0 (11.7) 61.0 (14.7) 62.1 (10.6) 57.1 (17.2) 57.5 (16.8) 59.0 (16.2) 61.7 (12.3) 0.31
Mean m-APACHE II score (SD) 10.6 (4.3) 13.2 (4.9) 16.6 (4.8) 17.5 (4.2) 12.3 (5.2) 17.0 (6.0) 13.1 (5.2) 16.1 (5.1) 0.002
a ANC, absolute neutrophil count (in cells/square millimeter); m-APACHE II, modified APACHE II.
b Age in years.
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m-APACHE-II score in the cohort to the threshold identified
by the tree-based model, one observes that sensitivity and speci-
ficity of the m-APACHE-II score (day 0) for death are most bal-
anced around a value of 15 (Table 3). In this cohort, the tree-
based-model threshold for an m-APACHE-II score of �15.5 for
increased mortality was supported visually by the ROC curve and
the associated predictive matrices.

Linear and tree-based m-APACHE-II mortality splits for co-
hort 2. A total of 91 cefepime-treated GN bacteremia patients

made up cohort 2, of whom 19 (20.9%) died in hospital (9). Mean
(SD) values for m-APACHE-II did not significantly differ between
those who survived and those who died in hospital (16.6 [4.79]
versus 17.5 [4.19]; P � 0.45). Here, m-APACHE-II scores were
not associated with in-hospital mortality in binary logistic regres-
sion (OR, 1.04; 95% CI, 0.94 to 1.1; P � 0.45) (Fig. 1B).

A tree-based model split mortality and lowered the P value
compared to logistic regression, but failed to achieve signifi-
cance, between m-APACHE-II scores of �16.5 and �16.5

TABLE 2 Outcomes by tree-based-model-derived morbidity threshold

m-APACHE II
score

No. (%) of patients

Cohort 1a Cohort 2b Cohort 3c Pooled cohortd

Survived
(n � 63)

Died
(n � 12)

Survived
(n � 72)

Died
(n � 19)

Survived
(n � 69)

Died
(n � 8)

Survived
(n � 196)

Died
(n � 39)

�15.5 7 (11.1) 5 (41.7)
�16.5 34 (47.2) 13 (68.4)
�14.5 25 (36.2) 7 (87.5) 77 (39.3) 27 (69.2)
a P � 0.019.
b P � 0.10.
c P � 0.008.
d P � 0.001.

FIG 2 Receiver operating characteristic (ROC) curves for the predictive capacity of m-APACHE-II score (on day 0 of infection) for in-hospital mortality. Dashed
lines, predictive capacity of the respective morbidity indices for the mortality; solid line, line of no-discrimination. m-APACHE-II score values of 14, 15, and 16
are labeled for visual interpretation. (A) ROC curve for m-APACHE-II score on the day of infection among 75 patients in cohort 1. (B) ROC curve for
m-APACHE-II score on the day of infection among 91 patients in cohort 2. (C) ROC curve for m-APACHE-II score on the day of infection among 77 patients
in cohort 3. (D) ROC curve for m-APACHE-II score on the day of infection among 235 unique patients in the pooled cohort.
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(13.6% [n � 6/44] deaths versus 27.7% [n � 13/47] deaths; P �
0.10). Associated predictive matrices for crude mortality rates
at each possible threshold m-APACHE-II (Table 4) demon-
strated a relative balance of sensitivity and specificity around a
score of 17. In this cohort, the tree-based model threshold for
an m-APACHE-II score of �16.5 for increased mortality was
supported visually by the ROC curve and the associated pre-
dictive matrices.

Linear and tree-based m-APACHE-II mortality splits for co-
hort 3. Cohort 3 was comprised of 77 patients with GN bacte-
remia, of whom 8 (10.4%) died in hospital (10). Mean (SD)
m-APACHE-II scores differed between those who survived and
those who died in hospital (12.3 [5.2] versus 17.0 [6.0]; P �
0.02). Binary logistic regression also revealed that higher m-
APACHE-II scores were significantly associated with higher
odds of in-hospital mortality (OR, 1.18; 95% CI, 1.02 to 1.38;
P � 0.029). That is, for each 1 unit increase in the
m-APACHE-II score, there was a corresponding increase in the
relative odds of in-hospital mortality of 18%, with associated
probabilities displayed in Fig. 1C. Here, the m-APACHE-II
score would have to increase from 12.8 to 15.6 before a relative
doubling of mortality risk is observed.

A tree-based model further improved the P value and identi-
fied mortality splits between m-APACHE-II scores of �14.5
and �14.5 (2.2% [n � 1/45] deaths versus 21.9% [n � 7/32]
deaths, respectively; P � 0.008). Sensitivity and specificity of m-
APACHE-II were relatively balanced around a score of 15 (Table
5). In this cohort, the tree-based model threshold for an
m-APACHE-II score of �14.5 for increased mortality was sup-
ported visually by the ROC curve and the associated predictive
matrices.

Linear and tree-based m-APACHE II mortality splits for the
pooled cohort. The pooled cohort revealed that mean (SD) m-

APACHE-II scores differed significantly between those who
died and those who survived (16.1 [5.1] versus 13.1 [5.2]; P �
0.002). Binary logistic regression revealed that higher
m-APACHE-II scores were associated with a higher odds of
in-hospital mortality (OR, 1.11; 95% CI, 1.04 to 1.19; P �
0.002). By comparing the pooled (Fig. 1D) and individual co-
horts (Fig. 1A to C), the wide probability estimates seen in each
subgroup became narrower in the pooled cohort and a lower P
value was obtained.

Within the pooled cohort, a tree-based model identified a
threshold of m-APACHE-II for death at a score of �14.5 com-
pared to a score of �14.5 (26.0% [n � 27/104] versus 9.2%
[n � 12/131]; P � 0.001). The ROC curve for the pooled m-
APACHE-II score data is shown in Fig. 2D. When contrasted
against the individual cohorts (Fig. 2A to C), the ROC curve for
the pooled cohort has a slightly lower area under the curve and is
slightly shallower than the ROC curve for the third cohort (Fig.
2C). Additionally, when the m-APACHE-II threshold score
of �14.5 was regressed against the outcome of mortality using
logistic regression, the bivariate analysis revealed 3.5-fold-higher
mortality above the threshold value (OR, 3.48; 95% CI, 1.66 to
7.27; P � 0.001). The bootstrap resampled estimate for the same
model produced similar estimates (OR, 3.48; 95% CI, 1.63 to 7.43;
P � 0.001). A tree-based model threshold for an m-APACHE-II
score of �14.5 for increased mortality was supported by the ROC
curve (Fig. 2D) and the associated predictive matrices (Table 6).

DISCUSSION

We conducted individual analyses on three cohorts and a pooled
analysis of all three in an attempt to predict mortality with mor-

TABLE 3 Predictive performance of m-APACHE-II score for in-
hospital mortality in cohort 1a

m-APACHE-II
score at day 0

Crude
mortality
rate (%)

Result for a threshold value �index
value

%
correctly
classified

Sensitivity
(%)

Specificity
(%)

PPV
(%)

NPV
(%)

2 0/3 (0.00) 100.0 0.0 100 16.0
3 0/3 (0.00) 100.0 4.8 16.7 100 20.0
4 0/3 (0.00) 100.0 9.5 17.4 100 24.0
6 1/3 (33.3) 100.0 14.3 18.2 100 28.0
7 1/3 (33.3) 91.7 17.5 17.5 91.7 29.3
8 1/4 (25.0) 83.3 20.6 16.7 86.7 30.7
9 0/4 (0.00) 75.0 25.4 16.1 84.2 33.3
10 1/11 (9.09) 75.0 31.8 17.3 87.0 38.7
11 1/7 (14.3) 66.7 47.6 19.5 88.2 50.7
12 0/6 (0.00) 58.3 57.1 20.6 87.8 57.3
13 1/7 (14.3) 58.3 66.7 25.0 89.4 65.3
14 0/3 (0.00) 50.0 76.2 28.6 88.9 72.0
15 1/6 (16.7) 50.0 81.0 33.3 89.5 76.0
16 3/5 (60.0) 41.7 88.9 41.7 88.9 81.3
17 0/3 (0.00) 16.7 92.1 28.6 85.3 80.0
18 1/2 (50.0) 16.7 96.8 50.0 85.9 84.0
21 0/1 (0.00) 8.3 98.4 50.0 84.9 84.0
22 1/1 (100.0) 8.3 100.0 100 85.1 85.3
a Crude mortality rate is the ratio of the number of patients who died to the total
number of patients. PPV, positive predictive value; NPV, negative predictive value.

TABLE 4 Predictive performance of m-APACHE-II score for in-
hospital mortality in cohort 2a

m-APACHE-II
score at day 0

Crude
mortality
rate (%)

Result for a threshold value �index
value

%
correctly
classified

Sensitivity
(%)

Specificity
(%)

PPV
(%)

NPV
(%)

4 0/1 (0.00) 100 0.0 100 20.9
8 0/1 (0.00) 100 1.4 21.1 100 22.0
9 0/1 (0.00) 100 2.8 21.3 100 23.1
10 1/3 (33.3) 100 4.2 21.6 100 24.2
11 0/1 (0.00) 94.7 6.9 21.2 83.3 25.3
12 1/6 (16.7) 94.7 9.7 21.7 87.5 27.5
13 3/10 (30.0) 89.5 16.7 22.1 85.7 31.9
14 0/1 (0.00) 73.7 26.4 20.9 79.2 36.3
15 1/8 (12.5) 73.7 36.1 23.3 83.9 44.0
16 0/1 (0.00) 68.4 45.8 25.0 84.6 50.6
17 4/12 (33.3) 68.4 52.8 27.7 86.4 56.0
18 1/6 (16.7) 47.4 63.9 25.7 82.1 60.4
19 2/6 (33.3) 42.1 70.8 27.6 82.3 64.8
20 2/4 (50.0) 31.6 76.4 26.1 80.9 67.0
21 1/4 (25.0) 21.1 79.2 21.1 79.2 67.0
22 1/4 (25.0) 15.8 83.3 20.0 78.9 69.2
23 0/1 (0.00) 10.5 87.5 18.2 78.8 71.4
24 0/1 (0.00) 10.5 90.3 22.2 79.3 73.6
25 2/4 (50.0) 10.5 93.1 28.6 79.8 75.8
27 0/1 (0.00) 0.0 95.8 0.00 78.4 75.8
28 0/1 (0.00) 0.0 97.2 0.00 78.7 76.9
29 0/1 (0.00) 0.0 98.6 0.00 78.9 78.0
a Crude mortality rate is the ratio of the number of patients who died to the total
number of patients. PPV, positive predictive value; NPV, negative predictive value.
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bidity surrogates (i.e., m-APACHE-II). Average differences in the
means of morbidity indices did not predict mortality in two of the
three individual cohorts but later became predictive of mortality
in the pooled analysis when power was increased via sample
size increase. Similarly, we evaluated the predictive value of
m-APACHE-II on the binary outcome of death and observed
identical findings; however, this methodology allowed for full vi-
sualization of the effect across m-APACHE-II. We noted that tree-
based model fits resulted in increased statistical significance (i.e.,
improved P values) compared to that obtained with more tradi-
tional models (i.e., Student’s t test and logistic regression) at the
cost of a decrease in information as seen in the associated predic-
tive matrices for each analysis (Tables 1 to 5).

The choice of whether or not to employ a tree-based model
threshold depends on the intention of the end user. For example,
the tree-based-model-derived threshold for the m-APACHE-II
score in our pooled cohort was 14.5. Yet, if a clinician’s intention
is to triage care toward patients most likely to survive, a better
approach would be to select an m-APACHE II threshold that min-
imizes false-negative classifications of death and thus raise the
sensitivity (e.g., 90% sensitivity) threshold of the m-APACHE-II
score for death. In other words, the negative predictive value (i.e.,
for no death) of m-APACHE II is greater when sensitivity is
higher. Applying a 90% sensitivity threshold for mortality to our
pooled cohort resulted in an m-APACHE II threshold score of �8
(i.e., those with an m-APACHE-II score of less than 8 have mini-
mized false predictions of survival). Likewise, if a clinician wishes
to predict patients most likely to die, a good approach would be to

select an m-APACHE II threshold that minimizes false-positive
classifications of death and thus raise the specificity (e.g., 90%
specificity) of the m-APACHE-II threshold for death. In other
words, the positive predictive value (i.e., for death) of m-APACHE
II is greater when specificity is higher. Applying a 90% specificity
threshold for mortality to our pooled cohort resulted in an m-
APACHE II threshold score of �19. Thus, clinicians who rou-
tinely act on threshold values (e.g., critical electrolyte values, toxic
drug levels, or pharmacokinetic/pharmacodynamic [PK/PD]
safety and efficacy indices) would benefit from knowing the pre-
dictive matrices of individual thresholds in order to make the
most informed decisions and avoid misclassifications.

Our examples utilizing 3 separate cohorts of GN bacteremia pa-
tients and a larger pooled analysis demonstrate that drawing infer-
ences from tree-based modeling alone may overstate significance and
be misleading when not paired with attendant measures of uncer-
tainty (i.e., predictive matrices). Additionally, these three co-
horts had patients with similar variance in their severity of
illness (as measured by m-APACHE). The tree-based-model-
derived threshold for in-hospital mortality according to m-
APACHE-II score varied from 14.5 to 16.5 in the smaller co-
horts and ultimately converged on 14.5 in the pooled analysis.
Thus, both sample size and the underlying parameter distribution

TABLE 5 Predictive performance of m-APACHE-II score for in-
hospital mortality in cohort 3a

m-APACHE-II
score at day 0

Crude
mortality
rate (%)

Result (%) for a threshold value
�index value

%
correctly
classified

Sensitivity
(%)

Specificity
(%)

PPV
(%)

NPV
(%)

1 0/1 (0.00) 100.0 0.0 100 10.4
3 0/3 (0.00) 100.0 1.5 10.5 100.0 11.7
4 0/1 (0.00) 100.0 5.8 11.0 100.0 15.6
5 1/6 (16.7) 100.0 7.3 11.1 100.0 16.9
6 0/1 (0.00) 87.5 14.5 10.6 90.9 22.1
7 0/1 (0.00) 87.5 15.9 10.8 91.7 23.4
8 0/2 (0.00) 87.5 17.4 10.9 92.3 24.7
9 0/3 (0.00) 87.5 20.3 11.3 93.3 27.3
10 0/7 (0.00) 87.5 24.6 11.9 94.4 31.2
11 0/6 (0.00) 87.5 34.8 13.5 96.0 40.3
12 0/9 (0.00) 87.5 43.5 15.2 96.8 48.1
13 0/3 (0.00) 87.5 56.5 18.9 97.5 59.7
14 0/2 (0.00) 87.5 60.9 20.6 97.7 63.6
15 2/8 (25.0) 87.5 63.8 21.9 97.8 66.2
16 1/5 (20.0) 62.5 72.5 20.8 94.3 71.4
17 1/5 (20.0) 50.0 78.3 21.1 93.1 75.3
18 0/5 (0.00) 37.5 84.1 21.4 92.1 79.2
19 0/1 (0.00) 37.5 91.3 33.3 92.6 85.7
20 0/1 (0.00) 37.5 92.8 37.5 92.8 87.0
21 1/3 (33.3) 37.5 94.2 42.9 92.9 88.3
23 1/1 (100.0) 25.0 97.1 50.0 91.8 89.6
24 1/2 (50.0) 12.5 97.1 33.3 90.5 88.3
27 0/1 (0.00) 0.0 98.6 0.00 89.5 88.3
a Crude mortality rate is the ratio of the number of patients who died to the total
number of patients. PPV, positive predictive value; NPV, negative predictive value.

TABLE 6 Predictive performance of m-APACHE-II score for in-
hospital mortality for pooled cohort of patients with Gram-negative
bacteremiaa

m-APACHE-II
score at day 0

Crude
mortality
rate (%)

Result for a threshold value �index
value

%
correctly
classified

Sensitivity
(%)

Specificity
(%)

PPV
(%)

NPV
(%)

1 0/1 (0.00) 100.0 0.0 100 16.6
2 0/2 (0.00) 100.0 0.5 16.7 100 17.0
3 0/6 (0.00) 100.0 1.5 16.8 100 17.9
4 0/5 (0.00) 100.0 4.6 17.3 100 20.4
5 1/6 (16.7) 100.0 7.1 17.6 100 22.6
6 1/4 (25.0) 97.4 9.7 17.7 95.0 24.3
7 1/4 (25.0) 94.9 11.2 17.5 91.7 25.1
8 1/7 (14.3) 92.3 12.8 17.4 89.3 26.0
9 0/7 (0.00) 89.7 15.8 17.5 88.6 28.1
10 2/21 (9.53) 89.7 19.4 18.1 90.5 31.1
11 1/15 (6.67) 84.6 29.1 19.2 90.5 38.3
12 1/21 (4.76) 82.1 36.2 20.4 91.0 43.8
13 4/20 (20.0) 79.5 46.4 22.8 91.9 51.9
14 0/12 (0.00) 69.2 54.6 23.3 89.9 57.0
15 4/20 (20.0) 69.2 60.7 26.0 90.8 62.1
16 4/15 (26.7) 59.0 68.9 27.4 89.4 67.2
17 5/20 (25.0) 48.7 74.5 27.5 88.0 70.2
18 2/13 (15.4) 35.9 82.1 28.6 86.6 74.5
19 2/7 (28.6) 30.8 87.8 33.3 86.4 78.3
20 2/5 (40.0) 25.6 90.3 34.5 85.9 79.6
21 2/7 (28.6) 20.5 91.8 33.3 85.3 80.0
22 2/5 (40.0) 15.4 94.4 35.3 84.9 81.3
23 1/2 (50.0) 10.3 95.9 33.3 84.3 81.7
24 1/4 (25.0) 7.7 96.4 30.0 84.0 81.7
25 2/3 (66.7) 5.1 98.0 33.3 83.8 82.6
27 0/1 (0.00) 0.0 98.5 0.00 83.2 82.1
28 0/1 (0.00) 0.0 99.0 0.00 83.3 82.6
29 0/1 (0.00) 0.0 99.5 0.00 83.3 83.0
a Crude mortality rate is the ratio of the number of patients who died to the total
number of patients. PPV, positive predictive value; NPV, negative predictive value.
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within a given cohort are critically important in identification of a
threshold value in the larger population. Our examples utilized
the m-APACHE-II score, yet the results are highly translatable and
applicable to many infectious diseases applications. Thresholds
derived from a single, less representative population may be less
accurate than those from a larger, more representative popula-
tion.

Our analysis has several limitations. First, we relied on data
from three retrospective cohorts and a pooled analysis of all three.
The retrospective nature of the data collection is subject to inher-
ent biases and misclassification. However, trained reviewers col-
lected data using standardized data collection instruments as pre-
viously described. Additionally, our retrospective measurement of
outcomes was limited to in-hospital mortality, yet in-hospital
mortality is also a clinically meaningful endpoint. Likewise, a uni-
variate assessment of mortality differences is an oversimplification
of reality, and our threshold values for m-APACHE II scores are
inherently limited by the data from which they were derived.
However, m-APACHE-II is explanatory as a mortality index, es-
pecially when analyzed early in the bacteremia course. In general,
tree-based-model-derived thresholds are also subject to certain
limitations. Multiple thresholds are possible depending on the
partitioning goal. Selecting a single value is possible only if the
intention is to (i) maximize either sensitivity or specificity or (ii)
find the balance between the two (e.g., use tree-based modeling).
Given the loss of information (i.e., the selection of a single value)
when using the tree-based modeling approach, a fuller presenta-
tion of the proposed thresholds is necessary to adequately relay the
variability of a proposed threshold value.

We have shown that multiple threshold values (e.g., thresholds
observed from the data using ROC curves or predictive matrices)
may exist for a given predictive variable in spite of observing a
single “optimal” split using tree-based methodologies. Addition-
ally, all tree-based models will ultimately fail to fully describe the
observed data. Truncation of a model to a single number with
heavily pruned trees can be potentially misleading. We suggest
that future studies employing tree-based modeling approaches
also report the above measures of uncertainty or provide graphical
displays of adjusted probabilities from binary logistic regression to
aid the reader in the best interpretation of data for their own
specified purpose.
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