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Pseudomonas aeruginosa is an opportunistic pathogen often associated with severe and life-threatening infections that are
highly impervious to treatment. This microbe readily exhibits intrinsic and acquired resistance to varied antimicrobial drugs.
Resistance to penicillin-like compounds is commonplace and provided by the chromosomal AmpC �-lactamase. A second, chro-
mosomally encoded �-lactamase, PoxB, has previously been reported in P. aeruginosa. In the present work, the contribution of
this class D enzyme was investigated using a series of clean in-frame ampC, poxB, and oprD deletions, as well as complementa-
tion by expression under the control of an inducible promoter. While poxB deletions failed to alter �-lactam sensitivities, ex-
pression of poxB in ampC-deficient backgrounds decreased susceptibility to both meropenem and doripenem but had no effect
on imipenem, penicillin, and cephalosporin MICs. However, when expressed in an ampCpoxB-deficient background, that addi-
tionally lacked the outer membrane porin-encoding gene oprD, PoxB significantly increased the imipenem as well as the mero-
penem and doripenem MICs. Like other class D carbapenem-hydrolyzing �-lactamases, PoxB was only poorly inhibited by class
A enzyme inhibitors, but a novel non-�-lactam compound, avibactam, was a slightly better inhibitor of PoxB activity. In vitro
susceptibility testing with a clinical concentration of avibactam, however, failed to reduce PoxB activity against the carbapen-
ems. In addition, poxB was found to be cotranscribed with an upstream open reading frame, poxA, which itself was shown to
encode a 32-kDa protein of yet unknown function.

Pseudomonas aeruginosa is a ubiquitous and versatile opportu-
nistic pathogen commonly affecting immunocompromised

individuals, such as those with severe burns, AIDS, and cancer
(1–6). In addition, it is a significant source of nosocomial infec-
tions and the second most common cause of ventilator-associated
pneumonia in the hospital setting (7, 8). Most notably, P. aerugi-
nosa is the primary pathogen associated with lung deterioration
and mortality in patients with cystic fibrosis (CF), a deadly, auto-
somal recessive genetic disorder affecting about 70,000 individu-
als worldwide (9, 10). Treatment often proves challenging and
ineffective, as the bacterium exhibits innate and acquired resis-
tance to a broad range of antibiotics (11–13). In particular, resis-
tance to the frequently used �-lactam-type antibiotics is common
and mediated by the expression and derepression of the chromo-
somally encoded AmpC �-lactamase (14–17).

The Ambler classification scheme distinguishes four different
classes of �-lactamases (classes A, B, C, and D) on the basis of their
amino acid sequences (18). All four classes have been reported in
P. aeruginosa and are often transposon or plasmid borne (19–23).
In addition to the acquired �-lactamases, P. aeruginosa strains
frequently carry the chromosomal and clinically relevant class C
AmpC �-lactamase mentioned above (24, 25). Recently, Fajardo
et al. identified another naturally occurring �-lactamase, termed
PIB-1 (PA5542), conferring intrinsic carbapenem resistance to
the clinical isolate 59.20 (26). PIB-1 is ubiquitous in all sequenced
P. aeruginosa strains but does not appear to be highly expressed in
the lab strain PAO1. A third chromosomally encoded �-lacta-
mase, termed PoxB (OXA-50), has been reported in P. aeruginosa
PAO1 and is the focus of the present study (27, 28).

PoxB belongs to the class D �-lactamases, also termed oxacil-
linases because of the ability of some members of this class, par-
ticularly the earlier reported ones, to degrade isoxazolyl penicil-
lins, such as oxacillin, methicillin, and cloxacillin (29–34). The

DBL numbering system is used to correlate homologous residues
and signature sequences across class D �-lactamases that may oth-
erwise be located at different amino acid positions (35). Differ-
ences in these amino acid signature sequences place PoxB in a new
branch of the oxacillinase phylogenetic tree, suggesting that it is
only weakly related to other oxacillinases (27, 28). For instance,
class A and D enzymes commonly have a serine-threonine-phe-
nylalanine-lysine (STFK) motif at position 70 in the DBL num-
bering system, where serine, the active-site residue, and lysine are
conserved in serine �-lactamases and in penicillin-binding pro-
teins (35, 36). To our knowledge, however, PoxB is only one of two
oxacillinases where the traditional STFK motif of class D �-lacta-
mases is replaced by serine-threonine-tyrosine-lysine (STYK) (27,
28), with the other being OXA-62 from Pandoraea pnomenusa
(37–39). Thus, PoxB appears to be a new kind of oxacillinase,
markedly different from other known OXA enzymes. In addition,
a previous in silico analysis suggested that poxB may form a two-
gene operon with the upstream open reading frame (ORF)
PA5513, termed poxA (27), which is predicted to encode a putative
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hydrolase or acyltransferase of yet unknown function. The role of
poxA and its relation to poxB have yet to be determined.

In the present work, we examined the role of PoxB and its
contribution to �-lactam resistance by generating single and mul-
tiple in-frame deletions of the chromosomal �-lactamase-encod-
ing genes ampC and poxB and of the outer membrane-encoding
porin oprD. In addition, we studied the activity of avibactam, a
novel non-�-lactam �-lactamase inhibitor, and investigated the
hypothesis that poxA and poxB may form an operon.

MATERIALS AND METHODS
Bacterial strains, plasmids, and media. The bacterial strains, plasmids,
and primers used in this study are shown in Table S1 in the supplemental
material. Escherichia coli and P. aeruginosa were cultured routinely in
lysogenic broth (LB; 10 g tryptone, 5 g yeast extract, 5 g NaCl per liter).
Cation-adjusted Mueller-Hinton (CAMH) broth and agar (BBL, BD)
were used for susceptibility testing using the broth microdilution method
and Etest, respectively. The following antibiotics were used at the indi-
cated concentrations: ampicillin (Ap) at 100 �g/ml and gentamicin (Gm)
at 15 �g/ml for E. coli and Gm at 75 �g/ml for P. aeruginosa.

Construction of poxA, poxB, and oprD deletion mutants. A single
in-frame deletion of poxA (PA5513) was constructed using overlap exten-
sion PCR and homologous recombination as previously described (40).
Briefly, sequences upstream (816 bp) and downstream (773 bp) of the
target deletion were amplified using primer pairs CApoxAUF1-CApox-
AUR1 and CApoxADF2-CApoxADR2, respectively (see Table S1 in the
supplemental material). The PCR products were then ligated through
another round of PCR, cloned into the suicide vector pEXG2 (41), and
moved into P. aeruginosa PAO1 for homologous recombination with the
genome. Double-crossover recombinants were selected for by screening
for Gm sensitivity and sucrose resistance. The deletion was confirmed by
PCR amplification of the deletion product from the genome and sequenc-
ing. The strain is henceforth referred to as PAO�poxA. In-frame deletions
of poxB (PA5514) and oprD (PAO958) were generated in a similar manner
using primer pairs DBpoxBUF1-DBpoxBUR1 and DBpoxBDF2-DBpox-
BDR2 and primer pairs DZoprDUF1-DZoprDUR1 and DZoprDDF2-
DZoprDDR2, respectively (see Table S1 in the supplemental material).
The poxB and oprD deletions were also introduced into a previously gen-
erated ampC deletion strain (PAO�ampC) (42) to create strains
PAO�ampC�poxB, PAO�ampC�oprD, and PAO�ampC�poxB�oprD.

PCR amplification and cloning of poxA, poxB, and ampC. The P.
aeruginosa PAO1 genome was used as the template for PCR amplification
of the poxA (PA5513), poxB (PA5514), and ampC (PA4110) ORFs with
primer pairs DZpoxAF-DZpoxAR, DZpoxBF-DZpoxBR, and DZampCF-
DZampCR, respectively (see Table S1 in the supplemental material). The
amplicons were independently cloned into the pCR2.1-TOPO vector
and sequenced. Each insert was then moved into the EcoRI-BamHI
sites of the broad-host-range expression vector pMMB67EH-Gm (43)
and propagated in E. coli TOP10 or DH5� cells. The plasmid carrying
ampC, pAmpC, was subsequently introduced by electroporation into
PAO�ampC�poxB, while the plasmid carrying poxB, pPoxB, was intro-
duced into PAO�poxB, PAO�ampC, PAO�ampC�poxB, and
PAO�ampC�poxB�oprD. The pPoxA plasmid was introduced into
PAO1::Ppox-lacZ.

For protein expression in E. coli BL21(DE3), the poxA ORF was am-
plified using primers DZpoxAFord4 and DZpoxARev4, cloned into
the pGEM-T Easy vector (Promega, Madison, WI), and sequenced. The
891-bp fragment was then subcloned into the XhoI and BamHI sites of the
broad-host-range shuttle vector pET15bVP (38) and propagated in E. coli
TOP10 cells (Life Technologies, Grand Island, NY). The resultant plas-
mid was then introduced into E. coli BL21(DE3) cells (44) for expression
studies.

Protein expression and one-dimensional gel electrophoresis. To de-
termine if poxA was translated, the ORF was cloned into the expression
vector pET15bVP and introduced into E. coli BL21(DE3) cells as de-

scribed above. Stationary-phase cultures were diluted to an optical density
at 600 nm (OD600) of 0.02 in 25 ml of LB and incubated with shaking at
37°C until the culture density reached an OD600 of 0.5. The cells were then
induced with 1 mM isopropyl-�-D-1-thiogalactopyranoside (IPTG) and
reincubated at 37°C. One-milliliter samples were taken at the time of
induction and every hour for a total of 4 h for both IPTG-induced and
noninduced samples. The cells were recovered by centrifugation, resus-
pended in 100 �l of 4� SDS protein sample buffer, and boiled for 10 min.
Proteins were separated on a 12% SDS-polyacrylamide gel and stained
with Coomassie brilliant blue.

Analysis of PAO1 mRNA. To determine if poxA and poxB are cotran-
scribed, RNA was extracted from the wild-type P. aeruginosa PAO1 strain
using an RNeasy minikit (Qiagen). cDNA was synthesized with Super-
Script III reverse transcriptase (Invitrogen) and an (NS)5 random primer
using standard methods (45). Two sets of primers were used to amplify
the intergenic region between poxA and poxB plus 24 bp corresponding to
the 3= end of poxA and 53 or 486 bp from the 5= end of poxB. Primers
RTpoxAFord2 and RTpoxARev1 were designed to amplify a 126-bp prod-
uct, while amplification with primers RTpoxAFord2 and RTpoxARev2
yielded a 559-bp product. RNA samples not treated with SuperScript III
were also tested to ensure that no carryover DNA contamination resulted
from the RNA isolation procedure.

qPCR analysis of ampC and poxB mRNAs. Total RNA was extracted
from strain PAO1 in the presence and absence of the �-lactam inducer
(0.15 �g/ml of imipenem) with the RNeasy minikit (Qiagen). cDNA was
synthesized using SuperScript III (Invitrogen) and the (NS)5 random
primer as previously described (45). Quantitative PCR (qPCR) was per-
formed with an ABI 7500 cycler (Applied Biosystems) using Power SYBR
green PCR master mix with carboxy-X-rhodamine (Applied Biosystems).
Primer pairs qRT_ampCF-qRT_ampCR and RTpoxBFord1-RTpoxBRev1
were used for the real-time amplification of ampC and poxB, respectively.
The readings were normalized to the expression of the housekeeping gene
clpX (PA1802).

�-Lactamase assay. The �-lactamase assay was modified from a pre-
viously published protocol (46). Briefly, stationary-phase cultures were
diluted in 25 ml of LB to an OD600 of 0.02 and incubated with shaking at
37°C. At an OD600 of 0.6, cells were induced with 50 �g/ml of benzylpen-
icillin, while cells containing the expression plasmid (pPoxB) were in-
duced with 1 mM IPTG. In both cases, induction was carried out for an
hour. Ten milliliters of cells was harvested by centrifugation and resus-
pended in 1,000 �l of 1� BugBuster solution (Novagen, EMD Millipore,
Billerica, MA) containing 1 �l of Benzonase (Novagen) and 1 kU of rLy-
sozyme (Novagen). The lysate was rotated for 20 min at room tempera-
ture before centrifugation at 4°C for 15 min to collect the �-lactamase-
containing supernatant. A 2-�l aliquot of cell lysate was added to
nitrocefin (final concentration, 100 �M) in 250 �l of assay buffer. The
reaction mixture was incubated at 37°C for 20 min, and the hydrolysis of
nitrocefin was measured spectrophotometrically at 482 nm. The total pro-
tein concentration in the same supernatant was determined by the Brad-
ford method. The activity was expressed as the number of nanomoles of
nitrocefin degraded per minute per microgram of total protein.

MIC. MICs were determined by use of the Etest system according to
the manufacturer’s instructions (bioMérieux, Marcy l’Etoile, France) or
by the broth microdilution method according to standard protocols (47,
48). Etest values are often reported as a range or as two independent values
to illustrate the variation seen in biological and technical replicates.

RESULTS AND DISCUSSION

P. aeruginosa infections are commonly treated with a combination
of �-lactams and aminoglycosides. Resistance to the �-lactam an-
tibiotics is frequently observed in the clinical setting and is com-
monly due to the expression of enzymes that can hydrolyze these
compounds, namely, �-lactamases (13, 49–52). P. aeruginosa clin-
ical isolates often harbor acquired �-lactamases, particularly those
of the oxacillinase type (class D) and the metallo-�-lactamase IMP

Carbapenem-Hydrolyzing Enzyme of P. aeruginosa

February 2016 Volume 60 Number 2 aac.asm.org 937Antimicrobial Agents and Chemotherapy

http://aac.asm.org


and VIM types (class B) (23, 25, 53–58). Chromosomally, P.
aeruginosa carries a cephalosporinase, AmpC, that provides in-
trinsic resistance and that can be expressed at high levels in the
presence of �-lactams (24, 59, 60) and a carbapenemase, PIB-1,
that is reported to be ubiquitous but expressed at low levels in
strain PAO1 (26). The aim of this study was to examine the role of
a third chromosomally encoded class D �-lactamase, PoxB (OXA-
50), in P. aeruginosa PAO1.

poxA and poxB form an operon. A previous in silico analysis
revealed that the oxacillinase-encoding gene (PA5514) is located
49 bp downstream of a putative ORF annotated PA5513 (Fig. 1).
Given the close proximity between PA5513 and PA5514, the ab-
sence of promoter-like sequences in the intergenic region, and the
presence of a potential �-independent terminator downstream of
PA5514, we previously hypothesized that PA5513, termed poxA,
and poxB form a two-gene operon (27). To determine if, in fact,
these two genes are cotranscribed, RNA was extracted from the
prototypic P. aeruginosa strain PAO1, cDNA was synthesized, and
two sets of primers (RTpoxAFord2-RTpoxARev1 and
RTpoxAFord2-RTpoxARev2) were used to amplify the intergenic
region plus small portions of the 3= end of poxA and the 5= end of
poxB (Fig. 1). As expected, the first set of primers yielded a 126-bp
amplicon with both genomic DNA and cDNA templates (see Fig.
S1, lanes 1 and 2, in the supplemental material), with the second
set yielding a 559-bp product with the same templates (see Fig. S1,
lanes 5 and 6, in the supplemental material). In the absence of
template DNA or reverse transcriptase, no amplification was de-
tected with either primer set (see Fig. S1, lanes 3, 4, 7, and 8, in the
supplemental material). This work confirms that these two genes
are cotranscribed and that they form an operon.

poxA is translated into a 32.4-kDa protein. Since our present
work indicates that poxA and poxB are cotranscribed, it is also
expected that poxA mRNA is translated into a protein with a func-
tion potentially related to that of PoxB. To confirm our predic-
tion, the poxA ORF was amplified and cloned into the expression
vector pET15bVP (38) and expressed in E. coli BL21(DE3) cells
(44). Whole-cell extracts were obtained from cells carrying the
poxA-overexpressing plasmid in the presence and absence of
IPTG. Proteins were visualized in an SDS-polyacrylamide gel. A
protein band corresponding to PoxA was detected at about 32 kDa
an hour after induction with IPTG and thereafter (see Fig. S2,
lanes 3 to 6, in the supplemental material). The same band was
also present, but its amount was reduced in whole-cell extracts
from uninduced cells that had been grown for 4 h after induction
(see Fig. S2, lane 7, in the supplemental material). PoxA was ab-

sent under the uninduced and induced conditions at the zero time
point (see Fig. S2, lanes 1 and 2, in the supplemental material), as
well as from cells containing only the empty vector (see Fig. S2,
lanes 8 and 9, in the supplemental material). Thus, the poxA ORF
codes for a protein.

Since both poxA and poxB are part of a single operon, they
could potentially have related functions. In silico analysis revealed
that the nucleotide sequences composing this operon are not
found anywhere else except in P. aeruginosa. Sequences showing a
high degree of similarity to the poxA ORF (73 to 82%) and the
PoxA protein (66 to 78%) were also identified in other Pseudomo-
nas species, such as Pseudomonas denitrificans, Pseudomonas ento-
mophila, Pseudomonas monteilii, and Pseudomonas putida, but
were unlinked to any �-lactamase-encoding gene. Like PoxA,
these hypothetical proteins are classified as putative hydrolases or
acyltransferases of the �/� hydrolase superfamily. The �/� hydro-
lase fold is present in a varied number of proteins that share little
in terms of function or sequence homology but show structural
similarity (61, 62). Proteins carrying the canonical �/� fold in-
clude lipases, esterases, proteases, peroxidases, as well as trans-
porters and hormone precursors. Bioinformatics analysis thus
failed to pinpoint a clear role for PoxA and its relation to PoxB.
From expression studies, however, we do know that poxA does not
encode a �-lactamase.

Since the role of PoxA was unclear, we investigated whether
PoxA could autoregulate the pox operon. Autogenous regulation
is a common regulatory mechanism in which a gene product reg-
ulates expression of the very gene that encodes it (63). Autoregu-
lation, especially negative autoregulation, is a common theme
among transcriptional factors and regulators, with over 40% of E.
coli transcriptional factors regulating their own synthesis (63–65).
Autoregulation, however, also occurs in nonregulatory structural
genes, including those coding for enzymes involved in a myriad of
metabolic processes, often with the first gene regulating the ex-
pression of the rest of the genes in that operon (63, 66).

In order to determine if PoxA could autoregulate its own pro-
moter, poxA was expressed in a low-copy plasmid under the con-
trol of an IPTG-inducible promoter and introduced into strain
PAO1 carrying a chromosomal Ppox-lacZ fusion. In the absence of
induction, the pox promoter exhibited high basal, constitutive lev-
els of expression in both the presence and absence of poxA in trans
(see Fig. S3 in the supplemental material). After 1 h of induction
with IPTG, a small but significant decrease in Ppox activity was
observed in the presence of poxA, suggesting that at high levels
PoxA can negatively regulate its own transcription. Although the
trend was no longer statistically significant, it was also observed 2
h after IPTG induction. PoxA may thus contribute to maintaining
low levels of PoxB. Indeed, poxB mRNA levels were relatively low
and for the most part appeared to be uninducible in the wild-type
strain (Fig. 2). In conclusion, these results suggest that PoxA, a
putative hydrolase of yet uncharacterized function, may auto-
regulate its own promoter.

poxA and poxB deletions do not alter �-lactamase activity or
�-lactam susceptibility. To investigate the role of pox genes in P.
aeruginosa, single in-frame deletions of poxA and poxB were gen-
erated in the parent strain PAO1, and the �-lactamase and �-lac-
tam susceptibility profiles of the strains were examined. A single
deletion of poxA or poxB did not alter the �-lactamase or suscep-
tibility profiles of the strains compared to those of parent strain
PAO1 (Table 1 and Fig. 3). Since the AmpC �-lactamase was pres-

FIG 1 The poxAB operon. The pox genes and the approximate locations of
primers used to show that PA5513 and PA5514 form an operon are shown.
Two sets of primers were used to amplify the intergenic region as well as the 3=
end of poxA and the 5= end of poxB from wild-type cDNA. Primer pair RT-
poxAFord2 and RTpoxARev1, denoted F2 and R1, respectively, was used for
amplification of a 126-bp product, while primer pair RTpoxAFord2 and RT-
poxARev2, denoted F2 and R2, respectively, was used to amplify a 559-bp
region. A red hairpin structure downstream of poxB denotes the location of a
potential Rho-independent terminator.
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ent in these backgrounds and potentially obscured the role of
PoxB, susceptibility and �-lactamase activity were also examined
in strains lacking ampC (PAO�ampC) and both ampC and poxB
(PAO�ampC�poxB).

Little to no �-lactamase was detected in PAO�ampC or
PAO�ampC�poxB, suggesting that AmpC is responsible for the
activity observed in the wild type and in the poxA and poxB dele-
tion strains (Fig. 3). The lack of �-lactamase production seen in
PAO�ampC under the induced condition also shows that PoxB
does not respond to induction by �-lactams, in this case, ben-
zylpenicillin. Indeed, further induction studies carried out in
PAO�ampC failed to show induction of PoxB by various other
�-lactams, including amoxicillin, carbenicillin, ampicillin, cefoxi-
tin, imipenem, and meropenem (data not shown).

In terms of susceptibility, a single ampC deletion significantly in-
creased sensitivity to the aminopenicillins (ampicillin and amoxicil-
lin) and to imipenem but led to only negligible MIC changes for the
cephalosporins and for the rest of the penicillins and carbapenems
tested (Table 1). When overexpressed, however, AmpC fully restored
the phenotype against the aminopenicillins and significantly in-
creased the MICs of the other penicillins and cephalosporins (Table
2), in most cases past clinical breakpoints, while having little to no
effect on carbapenem susceptibility. These results are in agreement
with the known hydrolysis spectrum of AmpC, which includes pen-
icillins and cephalosporins but rarely carbapenems (67–70).

FIG 2 Expression of poxB and ampC in Pseudomonas aeruginosa PAO1. RNA
was isolated from PAO1 in the presence (gray bars) and absence (white bars) of
�-lactams, reversed transcribed to cDNA, and tested by qPCR with poxB- and
ampC-specific primers, as described in Materials and Methods. Values were
normalized to the level of expression of the housekeeping gene clpX (PA1802)
and represent the means � SDs from two experiments conducted in triplicate.
*, P 	 0.0191 for ampC transcript levels under the induced versus the unin-
duced condition, as determined by Student’s t test.

TABLE 1 Susceptibility profiles of poxA, poxB, and ampC deletion mutants

�-Lactam

MICa (�g/ml)

PAO1 PAO�poxA PAO�poxB PAO�ampC PAO�ampC�poxB

Ampicillin 
256 
256 
256 16–24 24
Ampicillin-sulbactam 
256 
256 
256 16–32 16–32
Amoxicillin 
256 
256 
256 8–12 16–24
Amoxicillin-clavulanate 
256 
256 
256 8 8
Ticarcillin-clavulanate 8–12 12 8–12 8 12
Piperacillin-tazobactam 3–4 3 3 3 3–4
Piperacillin 4–6 4 4 4 4–6
Aztreonam 1.5–3 2 2 1.5–3 2–3
Cefepime 1–1.5 1–1.5 1 0.75–2 1
Cefotaxime 4–6 6 6 4–6 4
Ceftazidime 1–1.5 1.5 1.5 1.5 1
Imipenem 1–1.5 1.5 1.5 0.25–0.5 0.38–0.5
Meropenem 0.25–0.5 0.38–0.50 0.38 0.25–0.75 0.25–0.38
Doripenem 0.125–0.38 0.38 0.38 0.094 0.094–0.125
a MICs were determined by Etest.

FIG 3 �-Lactamase activity of pox and ampC deletion mutants. The �-
lactamase activities of the PAO�poxA, PAO�poxB, PAO�ampC, and
PAO�ampC�poxB strains were quantified in the presence (gray bars) and
absence (white bars) of �-lactams. Assays were carried out on cell lysates with
100 �M nitrocefin as the chromogenic substrate. One milliunit of �-lactamase
activity was defined as 1 nanomole of nitrocefin hydrolyzed per minute per
microgram of protein. *, P � 0.005 for the �-lactamase activity of induced
PAO1 cells versus the activity of uninduced PAO1 cells, as determined by
Student’s t test.
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Lastly, deletion of poxB from an already ampC-deficient back-
ground did not further alter susceptibility, suggesting either that
PoxB plays no role in �-lactam resistance or that it is not signifi-
cantly expressed under the tested experimental conditions (Table
1). Indeed, the levels of poxB transcript appeared to be low com-
pared with those of ampC in the presence of induction (Fig. 2),
suggesting that expression of PoxB in the wild-type strain is not
sufficient to produce significant and detectable hydrolysis of
�-lactams.

PoxB is a carbapenemase. To determine the hydrolysis spec-
trum of PoxB in P. aeruginosa, we overexpressed the ORF in a
low-copy plasmid under the control of an IPTG-inducible pro-
moter in both PAO�ampC and PAO�ampC�poxB. Overexpres-
sion produced a 20-fold induction of �-lactamase activity in the
presence of IPTG (Fig. 4) but provided little to no resistance to the

penicillins and the cephalosporins (Table 2), suggesting that these
�-lactams are not good substrates of PoxB. A significant decrease
in susceptibility (an increase in MIC) to the carbapenems mero-
penem and doripenem was observed, however, as determined by
the Etest (Table 2). A 4-fold increase in the MIC of meropenem
(not determined for doripenem) was also observed using the
broth microdilution method (Fig. 5). PoxB, however, did not ap-
pear to alter susceptibility to imipenem in an ampC or ampCpoxB-
deficient background, suggesting that PoxB might not be able to
hydrolyze this carbapenem.

In carbapenems, the signature �-lactam ring, composed of one
nitrogen and three carbons, is fused to an unsaturated five-atom
ring with a sulfur substituent at position C-2. The basic structural
differences between the carbapenems (imipenem, doripenem,
and meropenem) are imparted by the various side chains extend-
ing from the sulfur at C-2. Meropenem and doripenem have bulk-

TABLE 2 MICs for AmpC- and PoxB-overexpressing strains

�-Lactam

MICa (�g/ml)

PAO1(vector)
PAO�ampC
(vector)

PAO�ampC
(pPoxB)

PAO�ampC�poxB
(vector) PAO�ampC�poxB(pPoxB) PAO�ampC�poxB(pAmpC)

Ampicillin 
256 24 24 32 64 
256
Ampicillin-sulbactam 
256 12 16 12–16 16 
256
Amoxicillin 
256 8–16 16 8–16 24 
256
Amoxicillin-clavulanic acid 
256 8–12 12 8–12 16 
256
Ticarcillin-clavulanic acid 12 6–12 8 8 12 64
Piperacillin-tazobactam 3 2–3 1.5– 2 3 3 64
Piperacillin 3 3–4 4 4 3 
256
Cefepime 1–1.5 1.5 1–1.5 1–1.5 1.5 4
Cefotaxime 6 6 6 8 8 
256
Ceftazidime 1.5 1 1 1 1–1.5 12–16
Imipenem 1.5 0.5 0.5– 0.75 0.5–0.75 0.5– 0.75 0.5
Meropenem 0.38 0.25–0.38 1.0– 1.5 0.25–0.38 1.5–2 0.5
Doripenem 0.38 0.094 1.5 0.094–0.125 1.5–2 0.75
a MICs were determined by Etest. The vector used to construct pPoxB and pAmpC was pMMB67EH-Gm.

FIG 4 �-Lactamase activity of a PoxB-overexpressing clone. The poxB ORF
was cloned into the low-copy plasmid pMMB67EH-Gm and introduced into
the ampC-deficient strain PAO�ampC. The �-lactamase activity was quanti-
fied in the presence and absence of 1 mM IPTG. *, P � 0.0001 for the activity
in induced PAO�ampC(pPox) cells versus the activity in uninduced
PAO�ampC(pPox) cells, as determined by Student’s t test.

FIG 5 Meropenem MIC in a PoxB-overexpressing background. The mero-
penem MICs of PAO�ampC�poxB(pPoxB), PAO�ampC�poxB(vector), and
PAO1(vector) were determined by the broth microdilution method. Cells
were grown overnight in the presence of 1 mM IPTG with increasing concen-
trations of meropenem (0 to 3 �g/ml). The final cell density measured at an
OD600 after 18 h of growth is reported. *, P � 0.0001 for the OD600

of PAO�ampC�poxB(pPoxB) versus the optical density of
PAO�ampC�poxB(vector) with 0.25 �g/ml meropenem; **, P 	 0.0005
for the OD600 of PAO�ampC�poxB(pPoxB) versus the optical density of
PAO�ampC�poxB(vector) with 0.5 �g/ml meropenem, as determined by un-
paired t test.
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ier side chains than imipenem. Additionally, meropenem and
doripenem have a methyl group at C-1 that is absent from imi-
penem and which could be the basis for the lack of activity of PoxB
against imipenem. However, beyond structural differences, resis-
tance/susceptibility to carbapenems in P. aeruginosa must also
take into account the role of the outer membrane porin OprD, as
well as that of efflux pumps.

OprD is a substrate-specific porin that mediates the diffusion
of basic amino acids and most carbapenems into the cell (39, 71,
72). Imipenem remains a viable and powerful treatment option
against P. aeruginosa; however, mutations in or loss of oprD and
subsequent resistance to this �-lactam are often selected for with
imipenem treatment (73–75). The loss of OprD increases the
MICs of doripenem and meropenem to some extent. However, in
the absence of OprD, the MIC of imipenem reaches resistance
levels of �8 to 16 �g/ml, as the antibiotic cannot penetrate the cell
as fast as it can in the wild type (74, 76, 77). Imipenem still enters
the cell, most likely through other pores and porins, albeit at a
much lower rate. This lower rate of diffusion makes imipenem a
better substrate for the AmpC �-lactamase, which is active in
the periplasm of the cell. Thus, in an OprD-deficient back-
ground, the activity of imipenem is determined by the expres-
sion of AmpC and potentially that of PoxB but not by the Mex
efflux system, as imipenem, unlike meropenem and dorip-
enem, is not subject to efflux (78–80). We surmised that if
AmpC is also removed from the equation, the activity of imi-
penem should be determined by PoxB. Previous studies have
shown that PoxB has some affinity for imipenem (28); how-
ever, PoxB activity on imipenem has not been examined in an
OprD-deficient background. We thus set out to test the ability
of PoxB to provide resistance to imipenem in the absence of
OprD.

Our work corroborates the established literature on OprD-
based imipenem resistance. Specifically, in our study, deletion of
oprD alone significantly decreased susceptibility to the carbapen-
ems, with the greatest increase in MIC being observed for mero-
penem, followed by that for imipenem (Table 3). AmpC clearly
provided resistance to imipenem in this background, since in its
absence the strain became very susceptible to this carbapenem.
Thus, as observed in previous studies, AmpC afforded greater pro-
tection against imipenem in a less permeable background, i.e.,
with the loss of OprD (Table 3). In our study, resistance to mero-
penem and doripenem was found to be affected less by AmpC
than by the loss of OprD, suggesting that these two carbapenems
are not good substrates for AmpC and/or they are efficiently ef-

fluxed. In agreement with these results, our single ampC deletion
mutant also showed a slight increase in susceptibility to imipenem
but no change in susceptibility to meropenem (Table 1).

A further deletion of poxB from an ampC and oprD deletion
mutant did not alter susceptibility (Table 3). However, overex-
pression of PoxB in an oprDampCpoxB-deficient background
significantly increased the MICs of all the carbapenems, in-
cluding imipenem (Table 3), showing that, in fact, PoxB can
hydrolyze all of these �-lactams. In particular, the increase in
MIC observed for meropenem reached the CLSI clinical resis-
tance breakpoint for this carbapenem (�8 �g/ml) (48). Deter-
mination of MICs by the broth microdilution method corrob-
orated the Etest results (see Fig. S4A to D in the supplemental
material).

Previous biochemical studies showed that the supposed pre-
ferred substrates of oxacillinases, namely, oxacillin and cloxacillin,
were hydrolyzed very poorly, if at all, by PoxB (28). Additionally,
PoxB exhibited very low affinity toward most of the substrates
tested, which included benzylpenicillin, ampicillin, piperacillin,
and cephalothin. PoxB, however, did exhibit the highest affinity
toward imipenem, although its ability to hydrolyze it was low (28).
Against meropenem, PoxB exhibited low affinity and weak hydro-
lysis, while overexpression in trans did afford the cells a decrease in
susceptibility (increase in MIC) against meropenem but not imi-
penem (28). Similarly, our work shows that PoxB does not signif-
icantly hydrolyze penicillin and cephalosporin �-lactams. In con-

TABLE 3 Susceptibility profiles of oprD mutants

Carbapenem
IPTG concn
(mM)

MICa (�g/ml)

PAO1
(vector)

PAO�oprD
(vector)

PAO�ampC�oprD
(vector)

PAO�ampC�poxB�oprD
(vector) PAO�ampC�poxB�oprD(pPoxB)

Imipenem 0 1.5 8–12 0.75–1 0.75–1.5 0.75–1.5
1 1.5 8–16 1 0.75–1 4–8

Meropenem 0 0.38– 0.75 6 2–4 4 6
1 0.50– 0.75 6 2–4 6 16–32

Doripenem 0 0.38 0.75–1 0.75 1–1.5 1–1.5
1 0.38 1.5 0.5–1 1 8–12

a MICs were determined by Etest.

FIG 6 Timed inhibition of PoxB with increasing concentrations of avibactam.
Cell lysate from IPTG-induced (1 mM) PoxB-overexpressing cells was incu-
bated with various concentrations of avibactam. The absorbance at 442 nm
was measured to examine inhibition of chromacef hydrolysis and, thus, inac-
tivation of PoxB by avibactam.
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trast to the findings of previous work, however, we show that
PoxB, when overexpressed, is capable of hydrolyzing not only
meropenem but also imipenem and doripenem, producing a de-
crease in susceptibility toward these �-lactams. Importantly, our
work here also includes strains that lack the outer membrane
porin OprD, which we know plays an important role in carbap-
enem uptake. In short, PoxB is a carbapenemase with a narrow
spectrum of hydrolysis.

Avibactam is a weak inhibitor of PoxB �-lactamase. The cur-
rently available �-lactamase inhibitors, tazobactam, sulbactam,
and clavulanic acid, have traditionally been considered class A
enzyme inhibitors, as they generally lack activity against the class
B, C, and D �-lactamases (81–85). PoxB is not the exception, and
like most class D enzymes, it is only poorly inhibited by these
compounds (28). A new reversible �-lactamase inhibitor, termed
avibactam, with a broader spectrum of activity that includes class
A, some class C, and even some class D enzymes, has recently been
approved for clinical use in combination with ceftazidime (86–
88). We have examined the ability of avibactam to inhibit PoxB ac-
tivity in cell lysates from PAO�ampC�poxB(pPoxB) by quantifying
the hydrolysis of the chromogenic substrate chromacef in the pres-
ence of avibactam.

A general downward trend of inhibition was observed with
increasing concentrations of avibactam (Fig. 6; see also Fig.
S5D in the supplemental material). Avibactam did appear to be
a more effective PoxB inhibitor than tazobactam, sulbactam,
and clavulanic acid, but even very high concentrations of
avibactam failed to completely abolish �-lactamase activity,
suggesting that avibactam is only a weak inhibitor (see Fig. S5
in the supplemental material). Specifically, a concentration of
1,000 �M was needed to significantly reduce the PoxB-mediated hy-
drolysis of chromacef (Fig. 6; see also Fig. S5D in the supplemental
material), whereas PoxB activity was decreased by more than half (see
Fig. S5D in the supplemental material) at a concentration of 2,000
�M (530.488 �g/ml), which is 75-fold higher than that of the highest
concentration of avibactam used in clinical studies (0.5 to 7 �g/ml)
(89–91).

PoxB inhibition was also tested by growing PoxB-expressing
strains in CAMH agar with IPTG in the presence of avibactam at a
clinically relevant concentration (4 �g/ml), which has previously

been shown to significantly increase susceptibility and/or eliminate
resistance to various �-lactams (92–94). Given that PoxB expression
increases the MICs of imipenem, meropenem, and doripenem (Ta-
ble 3), inhibition of PoxB by avibactam should produce a decrease in
the MICs of these carbapenems. Our results show, however, that the
carbapenem MICs for PoxB-expressing cells were not altered in the
presence of this inhibitor (Table 4), suggesting that avibactam does
not significantly inhibit PoxB activity.

Although avibactam has shown variable activity against class D
enzymes, it remains a more potent and effective inhibitor of class
A (87, 89–91, 95) and C (87, 88, 90, 95) enzymes, including the
problematic class A Klebsiella pneumoniae carbapenemases, or
KPCs (96, 97). OXA-48 appears to be just one of a few class D
enzymes against which avibactam is active (89, 98, 99). However,
a kinetics study found the rates of reaction of avibactam with
OXA-48 and OXA-10 to be much lower than those of the other
tested class A and C enzymes (100). Although the structures and
hydrolytic activities of oxacillinases vary widely, the emerging
trend suggests that avibactam is not a very good inhibitor of class
D enzymes. It is thus not surprising that avibactam is only a weak
inhibitor of PoxB (OXA-50).

Concluding remarks. The PoxB �-lactamase is a naturally oc-
curring and uninducible enzyme that is expressed at low and con-
stitutive levels in P. aeruginosa. The naturally low levels of expres-
sion do not appear to contribute to the intrinsic �-lactam
resistance of the lab strain PAO1. Its narrow hydrolysis spectrum,
however, consisting of carbapenems, was evident upon expression
in trans. Although the carbapenem-hydrolyzing phenotype was
particularly pronounced in the absence of the carbapenem-spe-
cific outer membrane porin OprD, the relevance of PoxB in the
clinical setting is uncertain.

Mutational overexpression of PoxB has not been previously
reported, but the introduction and use of the newly developed
class A/C enzyme inhibitors, such as avibactam and relebactam,
are likely to act as selective pressure for expression of the naturally
encoding carbapenemases in P. aeruginosa, namely, PoxB (OXA-
50) and the recently reported metallo-�-lactamase PIB-1 (26).
Relebactam, currently in clinical development in conjunction
with imipenem-cilastatin, and its closely related counterpart,
avibactam, can both inactivate P. aeruginosa AmpC but generally
do not improve the activity of �-lactams against most class B and
D enzymes (87, 93, 101–104). The concern about the use of such
inhibitors is that inactivation of AmpC by avibactam- or relebac-
tam-like compounds in the presence of carbapenems could select
for carbapenem-nonsusceptible strains that overproduce a car-
bapenemase.
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TABLE 4 Effect of avibactam on carbapenem MICs

Carbapenem
CAMH agar
supplement

MICa (�g/ml)

PAO�ampC�poxB
�oprD(vector)

PAO�ampC�poxB
�oprD(pPoxB)

Imipenem Alone 0.25 0.75
IPTGb 1.5 6
IPTG  AVc 1.5 4, 6

Meropenem Alone 6 4
IPTG 4, 6 32
IPTG  AV 6, 4 32

Doripenem Alone 0.75–1 0.75–1
IPTG 0.75–1 8
IPTG  AV 1–1.5 8

a MICs were determined by Etest.
b IPTG was used at a concentration of 1 mM.
c AV, avibactam. Avibactam was used at a concentration of 4 �g/ml.
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