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Around the world, Burkholderia spp. are emerging as pathogens highly resistant to �-lactam antibiotics, especially ceftazidime.
Clinical variants of Burkholderia pseudomallei possessing the class A �-lactamase PenI with substitutions at positions C69 and
P167 are known to demonstrate ceftazidime resistance. However, the biochemical basis for ceftazidime resistance in class A
�-lactamases in B. pseudomallei is largely undefined. Here, we performed site saturation mutagenesis of the C69 position and
investigated the kinetic properties of the C69F variant of PenI from B. pseudomallei that results in a high level of ceftazidime
resistance (2 to 64 mg/liter) when expressed in Escherichia coli. Surprisingly, quantitative immunoblotting showed that the
steady-state protein levels of the C69F variant �-lactamase were �4-fold lower than those of wild-type PenI (0.76 fg of protein/
cell versus 4.1 fg of protein/cell, respectively). However, growth in the presence of ceftazidime increases the relative amount of
the C69F variant to greater than wild-type PenI levels. The C69F variant exhibits a branched kinetic mechanism for ceftazidime
hydrolysis, suggesting there are two different conformations of the enzyme. When incubated with an anti-PenI antibody, one
conformation of the C69F variant rapidly hydrolyzes ceftazidime and most likely contributes to the higher levels of ceftazidime
resistance observed in cell-based assays. Molecular dynamics simulations suggest that the electrostatic characteristics of the oxy-
anion hole are altered in the C69F variant. When ceftazidime was positioned in the active site, the C69F variant is predicted to
form a greater number of hydrogen-bonding interactions than PenI with ceftazidime. In conclusion, we propose “a new twist”
for enhanced ceftazidime resistance mediated by the C69F variant of the PenI �-lactamase based on conformational changes in
the C69F variant. Our findings explain the biochemical basis of ceftazidime resistance in B. pseudomallei, a pathogen of consid-
erable importance, and suggest that the full repertoire of conformational states of a �-lactamase profoundly affects �-lactam
resistance.

The expanded-spectrum (ES) cephalosporin ceftazidime is a
first-line agent used to treat patients infected with Burkhold-

eria pseudomallei (1). B. pseudomallei is the causative agent of the
multisystem disease melioidosis, is a potential biothreat agent,
and possesses many innate antimicrobial resistance genes (2). In
some parts of the world, melioidosis is characterized by a 20 to
50% mortality rate with treatment, and the death rate increases to
�80% for patients with sepsis (2, 3). Resistance to ceftazidime is
common in clinical isolates of B. pseudomallei and is linked to
increased expression of serine �-lactamases (classes A and D) and
expression of different isoforms of the class A �-lactamase, as well
as to deletion of penicillin binding protein 3 (�PBP3) (4–12).

The class A �-lactamase PenI, also referred to as PenA and BPS,
produced by B. pseudomallei is part of the PenA family of class A
�-lactamases that are widely distributed in the genus Burkholderia
(5, 7, 13–15). Single-amino-acid substitutions at positions C69
and P167 are associated with ceftazidime resistance in PenI-ex-
pressing B. pseudomallei (5–7, 11). In class A �-lactamases, the
evolution of ceftazidime resistance is mediated by amino acid sub-
stitutions in the � loop (residues 164 to 179), the B3 �-strand
(residues 234 to 240), and, in rare instances, the oxyanion hole
(i.e., residue 69) (Fig. 1A) (16–18). The mechanistic contributions
of amino acid substitutions at these sites that enhance catalytic
efficiency toward ceftazidime are poorly understood and merit

further exploration. Ascertaining the details and mechanism of
ceftazidime resistance is critical to identifying future successful
therapies.

The focus of this work is Ambler residue 69 in PenI, which
forms the “back wall” of the oxyanion hole in class A �-lactamases
and is located on helix 2 (H2) proximal to the nucleophilic S70
between the B3 �-strand and the � loop (Fig. 1A). The oxyanion
hole is a “pocket” formed by the backbone amides of S70 and T237
that creates an electrophilic center attracting the �-lactam’s car-
bonyl for binding and subsequent hydrolysis. Conservation of
amino acids at position 69 is minimal, as class A enzymes possess
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different amino acids (e.g., M, C, A, T, and Q) at this position (Fig.
1B). Most often, substitutions at position 69 in other class A �-lac-
tamases (e.g., SHV, TEM, OHIO-1, and BlaC) are associated with
�-lactam–�-lactamase inhibitor resistance (e.g., ampicillin-cla-
vulanic acid) (16, 19–27). For example, M69I, -V, and –L variants
of SHV-1 are resistant to inhibition by clavulanic acid. �-Lacta-
mase inhibitor resistance in the SHV family of �-lactamases is
hypothesized to occur due to the “deformation” of the oxyanion
hole (25, 26).

On the other hand, studies using an entire panel of M69 variants
of SHV-1 revealed that residue 69 played a larger role in determining
substrate specificity, since M69K, -Y, and -F variants demonstrated
increased resistance to ceftazidime (16). This phenotype was attrib-
uted to movement of the B3 �-strand and repositioning of amino
acids in the active site that mimicked the case with extended-spec-
trum �-lactamases (ESBLs). Clearly, the mechanism that allows cef-
tazidime resistance due to amino acid substitutions at position 69 of
class A �-lactamases is complex.

In this study, we explore the role of Ambler position C69 and
its contribution to ceftazidime resistance in PenI using microbio-
logical, biochemical, analytical, and proteomic methods. Interest-
ingly, our data reveal that 9 of 19 substitutions at this position
increase ceftazidime resistance by �2 doubling dilutions. We
chose to study the C69F variant in detail as (i) it conferred an MIC
of 64 mg/liter despite lower protein expression levels; (ii) the
change to Phe is found in other enzymes, such as SHV; and (iii) the
C69Y variant of PenI was previously studied (6, 7). Our data sug-
gest that ceftazidime resistance in the C69F variant is mediated by
unique conformational species of the C69F variant, one of which
hydrolyzes ceftazidime rapidly when stabilized. Our findings pro-
vide new insight in the quest to understand �-lactamase-mediated
resistance in this clinically important pathogen.

MATERIALS AND METHODS
Strains and mutagenesis. Construction of the wild-type �-lactamase vec-
tors has been previously described (14). Site saturation and site-directed

mutagenesis were performed using the Quikchange XL site-directed-mu-
tagenesis kit (Agilent) according to the manufacturer’s protocol. Briefly,
primers that included all 19 amino acid substitutions at Ambler position
69 for blaPenI were designed. PCR was conducted using the phagemid pBC
SK(�) blaPenI as the template for the C69 site saturation primer sets. To
digest the template, 1.0 �l of DpnI was added to all of the reaction mix-
tures, and the reaction mixtures were incubated at 37°C for 1 h. Esche-
richia coli DH10B cells were electroporated with 1.0 �l of each reaction
mixture and plated on lysogeny broth (LB) agar plates containing 20 mg/
liter chloramphenicol as the selecting agent. Single colonies were chosen
for plasmid purification, and DNA sequencing by MCLAB (Molecular
Cloning Laboratories) was conducted to verify the mutations. Site-di-
rected mutagenesis was also performed as described above, but using the
pET24a(�) blaPenI vector with site-directed primers containing the nu-
cleotide sequence for the corresponding C69F substitution. After the mu-
tations were verified, pET24a(�) plasmids were transformed into E. coli
Origami 2(DE3) cells. All protein expression constructs carrying
pET24a(�) blaPenI are missing the signal peptide corresponding to the
first 90 nucleotides.

Cell-based assays. E. coli DH10B expressing blaPenI and position 69
from pBC SK(�) were phenotypically characterized using agar dilution
MICs. Mueller-Hinton (MH) agar was used for the cell-based assays, ac-
cording to the Clinical and Laboratory Standards Institute guidelines,
using a Steers replicator (28). Ampicillin, piperacillin, cephalothin, cefo-
taxime, and clavulanic acid were purchased from Sigma-Aldrich. Ceftazi-
dime was acquired from Research Products International Corp. Imi-
penem-cilastatin was obtained from its commercial source. Sulbactam
and aztreonam were bought from Astratech Inc., while tazobactam was
purchased from Chem-Impex International Inc.

Immunoblotting. Cells expressing PenI and all of the variants were
grown in LB to log phase (with an optical density at 600 nm [OD600]
between 0.6 and 0.7). The cells were pelleted and lysed using stringent
periplasmic fractionation to prepare crude extracts, as previously de-
scribed (29). The extracts were subjected to sodium dodecyl sulfate-poly-
acrylamide gel electrophoresis (SDS-PAGE) and transferred to polyvi-
nylidene difluoride membranes. The membranes were blocked in 5%
nonfat dry milk in 20 mM Tris-Cl with 150 mM NaCl, pH 7.4 (Tris-
buffered saline [TBS]), for 1 h and probed in 5% nonfat dry milk in TBS
with 1 �g/ml of polyclonal anti-PenI antibody (7) and a loading control,
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FIG 1 (A) Structure of the PenI �-lactamase and PenI’s active site displaying residues C69, S70, and T237 in green. The backbone amides of S70 and T237 form
the electrophilic center of the �-lactamase that draws in the carbonyl of the �-lactam (blue) for nucleophilic attack by the S70 hydroxyl side chain. C69 resides
on the back wall of the active site and does not participate in the catalytic mechanism. (B) Alignment of amino acid positions 66 to 73 from a variety of class A
�-lactamases showing the diversity at position 69.
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a 1:10,000 dilution of monoclonal anti-DNAK antibody (Stressgen), for 1
h. The membranes were washed five times for 10 min each time with TBS
with 0.05% Tween 20 (TBST), and for protein detection, blots were incu-
bated for 1 h in 1:10,000 dilutions of horseradish peroxidase (HRP)-con-
jugated anti-rabbit and anti-mouse secondary antibodies in 5% nonfat
dry milk in TBS. The blots were washed five times for 10 min each time
with TBST and developed using the ECL-Plus developing kit (GE Health-
care Life Sciences) or the SuperSignal West Femto Chemiluminescent
Substrate (Thermoscientific) according to the manufacturers’ instruc-
tions. A Fotodyne Luminary/FX was used to capture images.

Quantitative immunoblotting of �-lactamases. Previously described
methods were used to determine the amount of �-lactamase protein per
cell (30). Briefly, cells were grown and periplasmic extracts were prepared
as described above for immunoblotting. Cells pretreated with ceftazidime
at a concentration of 1 �g/ml were grown overnight in LB and then sub-
cultured and grown to an OD600 of 0.6 to 0.7 in LB with ceftazidime at 1
�g/ml. An aliquot of cells was used to determine the total cell number by
serial dilution, plating, and colony counts. A standard curve with known
amounts of purified PenI and crude extracts was used for immunoblot-
ting as described above. Band densities on the blot images were assigned
using EZQuant gel analysis software. The standard curve and total cell
number were used to calculate the amount of protein per cell.

�-Lactamase purification. The purification of PenI was described
previously (14). Briefly, E. coli Origami 2(DE3) cells expressing PenI and
the C69F variant �-lactamases expressed from the pET24a(�) plasmid
were grown in superoptimal broth to an OD600 of 0.6, 200 �M isopropyl-
�-D-1-thiogalactopyranoside was added, and the cells were grown for an
additional 3 h at 37°C. The cells were pelleted and lysed. The crude extracts
prepared from PenI and the variants were used for preparative isoelectric
focusing (pIEF) with a pH gradient from 3.5 to 10, followed by a nitrocefin
overlay for detection (31). The samples from pIEF were dialyzed against
10 mM phosphate-buffered saline (PBS), pH 7.4, for up to 48 h to remove
residual nitrocefin. The purity of the fractions from all of the preparations
was determined by SDS-PAGE. The gels were stained with Coomassie
brilliant blue R250. The protein concentrations were determined by mea-
suring the absorbance at 	280 and Beer’s law using the proteins’ extinction
coefficients (�ε) (21,555 M
1 cm
1 for PenI and the variants at 280 nm)
(14). The theoretical masses of the �-lactamases, as well as the extinction
coefficients, were obtained using the ProtParam tool on the ExPASy
Bioinformatics Resource Portal. To maintain full enzymatic activity, PenI
and the variant �-lactamases were stored in 10 mM PBS, pH 7.4, with 25%
glycerol at 
20°C.

Steady-state kinetics. The steady-state kinetic parameters were deter-
mined using an Agilent 8453 Diode Array spectrophotometer. All of the
assays were completed in 10 mM PBS at pH 7.4 at 25°C. The interactions
between the PenI �-lactamase (E) and the �-lactam (S) substrate studies
were initially interpreted according to the scheme presented in Fig. 2.

The spectroscopic properties of nitrocefin and ceftazidime, as well as
the poor catalytic efficiency of the C69F variant, limited the ability to
determine Km and Vmax values. To study ceftazidime hydrolysis, 10 �M
PenI or the C69F variant was mixed with 25 �M ceftazidime. Ceftazidime
hydrolysis was measured during a 2,000 s time course at an absorbance
of 	260.

Additionally, progress curves were obtained by inhibiting nitrocefin
hydrolysis with increasing concentrations of ceftazidime for a selected
time course. For these assays, ceftazidime and nitrocefin were initially
mixed, and then the enzyme was diluted in the reaction mixture. PenI was
maintained at 350 nM with ceftazidime concentrations ranging from 20 to
320 mM to observe inhibition of 50 �M nitrocefin hydrolysis for 300 s.
The C69F variant was held at 10 �M (to obtain measurable nitrocefin
hydrolysis) with a ceftazidime concentration range of 10 �M up to 1 mM
with 50 �M nitrocefin for 2,200 s. Progress curves were fitted to obtain
kobs values using the following equation: y � Vf � x � (V0 
 Vf) � [1 

exp(
kobs � x)]/kobs � A0, where, Vf is the final velocity, V0 is the initial
velocity, and A0 is the initial absorbance at 482 nm. The kobs values versus
the ceftazidime concentration were plotted. If a saturation curve was ob-
tained from the kobs versus the ceftazidime concentration graph, then a
modified Michaelis-Menten equation was used to determine KI and kinact

(32). Conversely, if a line was obtained, then the slope of the line was
determined to be k2/K (33). The KI and k2/K values were not corrected for
the use of nitrocefin, as the Km and Vmax values could not be determined
for the C69F variant.

Pre-steady-state kinetics. The pre-steady-state kinetic parameters
were determined using an Applied Photophysics SX20 stopped-flow ap-
paratus. All of the assays were completed in 10 mM PBS at pH 7.4 at 25°C.
To assess for a “burst” in ceftazidime hydrolysis, 10 �M the C69F variant
was mixed with 25 �M ceftazidime, and ceftazidime hydrolysis at an ab-
sorbance of 	260 was measured. In order to evaluate the changes in protein
conformation, 10 �M the C69F variant was preincubated for 10 min with
a polyclonal anti-PenI antibody (which was also used for immunoblotting
[see above]) according to the method developed by Citri et al. (34). The
preincubated C69 variant-antibody complex was again mixed with 25 �M
ceftazidime, and ceftazidime hydrolysis at an absorbance of 	260 was mea-
sured.

ESI-MS of ceftazidime. Electrospray ionization-mass spectrometry
(ESI-MS) of ceftazidime and the hydrolyzed products of ceftazidime
was performed on an Agilent Technologies 6460 Triple Quad mass
spectrometer equipped with an electrospray ion source. A check tune
was conducted in positive mode and passed on the Agilent 6460 Triple
Quad using ESI-L low-concentration tuning mix (Agilent; G1969-
85000). Samples consisted of 2 mM ceftazidime, 2 mM ceftazidime
with 100 mM sodium hydroxide (NaOH), 2 mM ceftazidime with 100
�M PenI, and 2 mM ceftazidime with 100 �M the C69F variant. These
samples were incubated at 37°C for 4 h, and then the protein was
removed using centrifugation on Nanosep centrifugation columns
with a 10,000 Da molecular mass cutoff (Pall Corp.) for 10 min at
10,000 rpm. One microliter of flowthrough from each centrifugation
was run on an Agilent Infinity 1260 high-performance liquid chro-
matograph (HPLC) with an Agilent Poroshell 120 EC-C18 2.7-�m,
3.0- by 50-mm column with the column temperature maintained at
25°C. The mobile phase consisted of 0.1% formic acid in water. The
small molecules were eluted using a gradient with final conditions of
10% mobile phase and 90% organic phase (100% acetonitrile with
0.1% formic acid). The samples were run in MS2 positive scan mode
with a starting mass of 400 atomic mass units (amu) and an ending
mass of 600 amu, a scan time of 500, the fragmenter set at 70, and the
cell accelerator voltage at 4. The settings for each of the data runs were
as follows: capillary voltage at 4.0 kV, gas temperature at 350°C, gas
flow at 10 liters/min, nebulizer at 40 lb/in2, sheath gas temperature at
350°C, and sheath gas flow at 11 liters/min. The spectra were analyzed
using the Agilent Mass Hunter Qualitative Analysis Program B.06.00.

ESI-MS of �-lactamases. ESI-MS of the intact PenI and the C69F
variant with and without ceftazidime was performed on a Waters Synapt
G2-Si quadrupole-time of flight mass spectrometer equipped with a Lock-
Spray dual-electrospray ion source, using glu-1-fibrinopeptide B as the
lock mass. The Synapt G2-Si was calibrated with a sodium iodide solution
using a 50 to 2,000 m/z mass range. Each �-lactamase (10 �M) was incu-
bated with the �-lactam (10 �M in most cases for a 1:1 �-lactam-to-�-

E    +     S                 E:S                 E-S                 E     +     P
k1

k-1

k2 k3

H2O

FIG 2 Interactions between the �-lactamase (E) and the �-lactam (S) were
initially interpreted according to the scheme shown. Here, the formation of the
noncovalent complex, E:S, is represented by the dissociation constant, Ks,
which is equivalent to k
1/k1. k2 is the first-order rate constant for the acylation
step, or the formation of the E-S complex. k3 is the rate constant for the
hydrolysis of the E-S acyl-enzyme and product (P) release. The Michaelis con-
stant, Km, is equivalent to Ks � (k3/k2 � k3).
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lactamase ratio, but up to 1 mM with PenI for a 100:1 ceftazidime-to-PenI
ratio) for various incubation times. The reactions were terminated by the
addition of 0.1% formic acid and 1% acetonitrile. The samples were run
using a Waters Acquity H class ultraperformance liquid chromatograph
(UPLC) on an Acquity UPLC BEH C18 1.7-�m, 2.1- by 100-mm column.
The mobile phase consisted of 0.1% formic acid in water. The �-lactamase
and �-lactamase–�-lactam complexes were eluted using a gradient with
final conditions of 15% mobile phase and 85% organic phase (100% ace-
tonitrile with 0.1% formic acid). Lock mass spectra were collected during
the sample injections. The tune settings for each of the data runs were as
follows: capillary voltage at 3.5 kV, sampling cone at 35, source offset at 35,
source temperature at 100°C, desolvation temperature at 500°C, cone gas
at 100 liters/h, desolvation gas at 800 liters/h, and nebulizer bar at 6.0. The
spectra were analyzed using MassLynx v4.1, modified for the lock mass
deviations by applying a gain factor, and deconvoluted using the MaxEnt1
program.

Molecular modeling. The crystal coordinates of PenI (Protein Data
Bank [PDB] 3W4P) were used to construct the acyl-enzyme representa-
tions of PenI and the C69F variant with ceftazidime, as previously de-
scribed, using the Discovery Studio 4.1 (DS 4.1) (Accelrys, Inc., San Di-
ego, CA) molecular-modeling software (17, 35). The variant was built by
substituting phenylalanine for the cysteine at position 69.

Ceftazidime was constructed for molecular modeling using the
Fragment Builder tools and was minimized using a Standard Dynam-
ics Cascade protocol of DS 4.1. Ceftazidime (missing its R2 side chain
[see below]) was automatically positioned in the active site of PenI
�-lactamase using the Flexible Docking module of DS 4.1. The proto-
col allowed for the flexible placement of a �-lactamase inhibitor in the
active site of PenI. After docking, the most favorable pose of ceftazi-
dime was chosen (i.e., demonstrating a short distance [2 to 3 Å] be-
tween Ser70: O (hydroxyl side chain of Ser70) and C7 of ceftazidime, as
well as anticipated active-site contacts), and the acyl complex was
created. The complex of the C69F variant with ceftazidime was created

in a similar fashion. To check the stability and to look for possible
conformational changes of the complex, Molecular dynamics simula-
tion (MDS) was conducted for 6 ps on PenI-ceftazidime and the C69F-
ceftazidime complexes, as previously described and validated (35).

TABLE 1 Cell-based assays to determine MIC values of E. coli DH10B expressing blaPenI and the C69X variants of PenI for selected �-lactams and
�-lactam–�-lactamase inhibitor combinations

Strain

MICa (mg/liter)

AMP THIN TAX CAZ AZT IMI AMP-CLAVb AMP-SULb PIP-TAZOc

E. coli DH10B pBC SK(�) 4 2 0.06 0.25 1 0.5 50/0.06 50/1 2/0.25
E. coli DH10B pBC SK(�) blaPenI

d 512 256 4 2 8 0.25 50/0.06 50/4 4/0.5
C69A 512 512 2 4 1 0.25 50/0.125 50/4 4/0.5
C69D 8 4 0.125 0.5 1 0.25 50/0.06 50/1 4/0.5
C69E 8 16 1 4 1 0.25 50/0.06 50/1 4/0.5
C69F 8 16 4 64 1 0.25 50/0.06 50/1 4/0.5
C69G 256 64 0.25 2 1 0.25 50/0.125 50/2 8/1
C69H 64 64 2 16 1 0.25 50/0.06 50/1 4/0.5
C69I 256 32 0.5 16 1 0.25 50/0.06 50/1 8/1
C69K 8 16 1 16 1 0.25 50/0.06 50/1 4/0.5
C69L 512 128 0.5 4 1 0.5 50/0.06 50/4 8/1
C69 M 256 256 2 16 1 0.5 50/0.06 50/1 4/0.5
C69N 256 128 0.5 8 1 0.5 50/0.06 50/2 8/1
C69P 4 2 0.06 0.25 1 0.25 50/0.06 50/1 2/0.25
C69Q 64 16 1 16 1 0.25 50/0.06 50/1 4/0.5
C69R 8 8 1 16 1 0.25 50/0.06 50/1 4/0.5
C69S 256 32 0.125 0.5 1 0.5 50/0.06 50/4 8/1
C69T 512 256 0.5 1 1 0.5 50/0.06 50/4 16/2
C69V 512 64 0.5 8 1 0.5 50/0.25 50/4 8/1
C69W 4 8 0.125 0.5 1 0.25 50/0.06 50/1 2/0.25
C69Y 4 16 8 64 1 0.25 50/0.06 50/1 4/0.5
a �-Lactam and �-lactamase inhibitor abbreviations: AMP, ampicillin; THIN, cephalothin; TAX, cefotaxime; CAZ, ceftazidime; AZT, aztreonam; IMI, imipenem; CLAV, clavulanic
acid; SUL, sulbactam; and TAZO, tazobactam. Experiments were completed in triplicate. Elevated CAZ MICs are in boldface.
b AMP was maintained at a constant concentration of 50 mg/liter, and the clavulanic acid and sulbactam concentrations were varied.
c Piperacillin and tazobactam were varied at a ratio of 8:1.
d All of the C69 variants were expressed from pBC SK(�) blaPenI in E. coli DH10B.
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FIG 3 Immunoblots of PenI and variants. (A) PenI �-lactamase (bottom band)
expression levels of E. coli DH10B cells carrying pBC SK(�) blaPenI (PenI) and the
C69 variants grown in LB to log phase; DNAK was used as a loading control (top
band). Lane “Negative” is E. coli DH10B with an empty pBC SK(�) phagemid.
(B) PenI �-lactamase expression levels of E. coli DH10B cells carrying pBC SK(�)
blaPenI (PenI) and the C69F variant grown in LB to log phase with or without
ceftazidime (CAZ) at 1 �g/ml. A standard curve was derived from the densities of
the bands for known concentrations of purified PenI (10 to 200 ng).
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RESULTS AND DISCUSSION
Cell-based assays of E. coli expressing blaPenI and the C69 vari-
ants. An isogenic E. coli library was created to assess the impact of
single-amino-acid substitutions. We observed that, in general,
changes at residue 69 in PenI increased resistance to ceftazidime,
but not to other �-lactams or �-lactam–�-lactamase inhibitor
combinations. As Table 1 shows, 13 of 19 variants demonstrated
an increase in the ceftazidime MIC compared to the wild-type
blaPenI counterpart when expressed in an isogenic background, E.
coli DH10B carrying the pBC SK(�) phagemid. The C69F and -Y
variants displayed the highest levels of ceftazidime MICs at 64
mg/liter, and the former (C69F) was chosen for further study. This
increase in the MIC was much more dramatic than that observed

with another class A �-lactamase, SHV-1. For SHV-1, only a two-
doubling-dilution increase in the ceftazidime MIC was observed
for the M69F variant (8 mg/liter) compared to wild-type SHV-1 (2
mg/liter) expressed in E. coli DH10B (16).

Interestingly, three variants, C69D, -P, and -W, were more
susceptible to both ampicillin and ceftazidime, unlike the other 16
variants. We hypothesize that the amino acid substitutions of as-
partic acid, proline, and tryptophan must alter the oxyanion hole
pocket due to the introduction of a negative charge, a kink in the
strand, and a steric clash caused by a large hydrophobic side chain,
respectively. These changes would directly impact the binding and
hydrolysis of ampicillin and ceftazidime. The understanding of
these mechanisms will be the focus of future study.
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Steady-state �-lactamase expression of PenI and C69 vari-
ants in E. coli. The pattern of susceptibility of the C69 variants
prompted us to measure the �-lactamase expression levels of PenI
and the C69 variants of these cells grown to log phase in LB. Here, we
asked whether the differences in the ceftazidime resistance profiles of
the C69 variants when expressed in E. coli could be the result of
changes in �-lactamase expression (Fig. 3A). Interestingly, expres-
sion of the C69F variant of PenI was less than steady-state wild-type
PenI expression. Growing the C69F variant with subinhibitory con-
centrations of ceftazidime returned the expression of C69F to steady-
state levels (Fig. 3B). A number of factors (e.g., altered transcription,

altered translation, protein half-life, proteolytic degradation, protein
stability, and/or transport into the periplasmic space) have the poten-
tial to influence the increased protein content. Deeper analysis of
these factors will be the focus of future work.

Ceftazidime turnover by PenI and the C69F variant. To assess
the �-lactam resistance profile of the C69F variant compared to
PenI, the �-lactamases were purified for steady-state and pre-
steady-state kinetics. We also investigated the �-lactam products
formed following hydrolysis by the �-lactamases.

Measuring hydrolysis of 25 �M ceftazidime by 10 �M PenI
and the C69F variant revealed that the C69F variant hydrolyzed an

6x10

0

0.5

1

1.5

2

2.5

3

3.5 547.1

468.0

6x10

0

0.5
1

1.5
2

2.5
3

3.5
4 486.1

6x10

0

0.25

0.5

0.75

1

1.25

1.5

1.75
474.0

486.1

6x10

0

0.2
0.4

0.6

0.8
1

1.2

1.4

1.6

2 mM ceftazidime incubated with 100 μM C69F variant at 37°C for 4 hrs
474.0

486.1

Counts vs. Mass-to-Charge (m/z)
400 410 420 430 440 450 460 470 480 490 500 510 520 530 540 550 560 570 580 590 600

2 mM ceftazidime incubated at 37°C for 4 hrs

2 mM ceftazidime incubated with 100 mM NaOH at 37°C for 4 hrs

2 mM ceftazidime incubated with 100 μM PenI at 37°C for 4 hrs

N

S

N+

H
N

O

N

S
N

O
COOH

O

NH2

COOH

 547 amu

N

S
H
N

O

N

S
N

O
COOH

O

NH2

COOH

468 amu

HN

S

N+

H
N

O

N

S
N

O
COOH

O

NH2

COOH

565 amu

OH

+HN

S
H
N

O

N

S
N

O
COOH

O

NH2

COOH

486 amu

OH

+HN

S
H
N

O

N

S
N

O
COOH

O

NH2

COOH

486 amu

OH

+HN

S
H
N

O

N

S
N

O
COOH

O

NH2

COOH

486 amu

OH

+HN

S
H
N

O

N

S
N

O
COOH

O

NH2

COOH

474 amu

OH

+HN

S
H
N

O

N

S
N

O
COOH

O

NH2

COOH

474 amu

OH

HN

S

N+

H
N

O

N

S
N

O
COOH

O

NH2

COOH

565 amu

OH

HN

S

N+

H
N

O

N

S
N

O
COOH

O

NH2

COOH

565 amu

OH

A.

B.

C.

D.

FIG 6 Small-molecule mass spectrometry revealed the observed products after incubation at 37°C for 4 h, restricting the mass range window to 400 to 600 amu.
(A) Ceftazidime (2 mM) alone showed a major peak of the full-size ceftazidime at 547 amu and a very minor peak at 468 amu representative of ceftazidime with
the breakdown of the R2 side chain to the exomethylene; increasing the fragmenter and cell accelerator voltage while conducting mass spectrometry can result
in artifactual breakdown to the 468-amu ceftazidime. (B) Ceftazidime (2 mM) hydrolyzed by 100 mM NaOH revealed one major peak of 486 amu, corresponding
to the hydrolyzed ceftazidime with breakdown of the R2 side chain to the exomethylene. (C) Ceftazidime (2 mM) hydrolyzed by 100 �M PenI identified two
peaks of 474 and 486 amu, which correspond to hydrolyzed ceftazidime with complete loss of the R2 side chain and hydrolyzed ceftazidime with breakdown of
the R2 side chain to the exomethylene, respectively. (D) Ceftazidime (2 mM) hydrolyzed by 100 �M the C69F variant identified two peaks of 474 and 486 amu,
which correspond to hydrolyzed ceftazidime with complete loss of the R2 side chain and hydrolyzed ceftazidime with breakdown of the R2 side chain to the
exomethylene, respectively. The full-size hydrolyzed ceftazidime of 565 amu was not observed under any tested condition.

Ceftazidime Resistance by the C69F Variant

February 2016 Volume 60 Number 2 aac.asm.org 783Antimicrobial Agents and Chemotherapy

http://aac.asm.org


amount of ceftazidime similar to that hydrolyzed by PenI within
1,500 s, but at different overall rates (Fig. 4A and B). PenI’s hydro-
lysis of ceftazidime follows an exponential decrease that is faster
than that of the C69F variant. This hydrolysis could be due to poor
affinity of ceftazidime for PenI, resulting in an instantaneous ve-
locity for the reaction that decreases as the ceftazidime is con-
sumed. Notably, the progress curve of the C69F variant with cef-
tazidime was biphasic with an initial burst in hydrolysis,
suggesting a branched pathway followed by a linear velocity sim-
ilar to a zero-order process, which may be attributable to better
affinity of ceftazidime for the C69F variant than PenI.

Two primary branched pathways for select substrates have
been described for certain �-lactamases. As initially reported by
Faraci and Pratt in 1985 (36), one branched pathway can occur as
a result of the loss of the R2 side chain of cephalosporins (Fig. 5A).
Another branched pathway can be observed due to a reversible
conformational change in the enzyme during hydrolysis of a ceph-
alosporin (Fig. 5B) (34). To aid in distinguishing between these
two possible branched mechanisms in C69F turnover of ceftazi-
dime, we performed small-molecule mass spectrometry and pre-
steady-state kinetics.

If the branched mechanism is due to loss of the R2 side chain,
then we would observe two ceftazidime products (P and P
R2)
(Fig. 5A and C). To test this possible mechanism, we incubated
ceftazidime alone, ceftazidime with NaOH (as a control), ceftazi-
dime with PenI, and ceftazidime with the C69F variant at 37°C for
4 h. In each case, the �-lactamase was removed using size exclu-
sion column chromatography, and the products were evaluated
using HPLC and triple quad mass spectrometry.

Unreacted ceftazidime produced the expected mass of un-
hydrolyzed substrate at 547.1 amu (Fig. 6A). The reaction that
served as a control (NaOH) revealed a peak of 486.1 amu,
which corresponds to hydrolyzed exomethylene ceftazidime
product (P
R2); the hydrolyzed product (P) of ceftazidime of
565 amu was not observed (Fig. 6B). The exomethylene prod-
uct of ceftazidime is predicted to occur as a result of catalysis by
the �-lactamase and was previously observed by other groups
(17, 37). Both PenI and the C69F variant incubated with cefta-
zidime produced the same two products of 474.0 amu and
486.1 amu, corresponding to the complete removal of the R2
side chain and hydrolyzed exomethylene ceftazidime product
(P
R2), respectively (Fig. 6C and D). The products observed
from hydrolysis of ceftazidime were missing the R2 side chain,

which leads us to hypothesize that a conformation change in
the �-lactamase may be major driving force behind the kinetics
observed. However, we note that the hydrolyzed ceftazidime
with an intact R2 side chain may be too unstable under these
conditions to be detected by this method. Thus, the contribu-
tion of the loss of the R2 side chain of ceftazidime to a branched
mechanism cannot be entirely ruled out.

Pre-steady-state kinetics was next used to further explore this
pathway, following the method developed by Citri and colleagues
(34). The burst amplitude for 10 �M the C69F variant with 25 �M
ceftazidime was approximately 1.5 �M, nearly 7-fold lower than
the enzyme concentration used in the assay, and represents a non-
stoichiometric burst (Fig. 7A) (38). Partitioning between the par-
allel reactions of a branched mechanism may be the cause of this
nonstoichiometric burst. Preincubating 10 �M the C69F variant
with the anti-PenI polyclonal antibody for 10 min increased the
burst amplitude to 17 �M when reacted with 25 �M ceftazidime
(Fig. 7B). These results are consistent with the work conducted by
Citri and colleagues with the Bacillus cereus class A �-lactamase,
showing that adding an antibody stabilizes a particular conforma-
tion of a specific �-lactamase, resulting in increased hydrolysis.
These data also support our contention that there is a conforma-
tional change in the �-lactamase (34).

Ceftazidime steady-state kinetic parameters were unable to be
accurately measured due to the spectroscopic properties of ceftazi-
dime and poor hydrolytic activity of the enzymes; thus, the ability of
ceftazidime to inhibit PenI and the C69F variant was assessed using a
competition experiment. Progress curves of nitrocefin inhibition by
ceftazidime revealed that 320 mM ceftazidime was required to almost
fully inhibit PenI versus only 1 mM ceftazidime for the C69F variant
(Fig. 4C and D). Subsequently, the kobs values were determined for
each progress curve, and when the kobs values were plotted versus the
concentration of ceftazidime, two different graphs were obtained. A
saturation curve for PenI was observed and fitted to obtain a KI ob-
served value of 23  3 mM and a kinact value of 0.026 s
1 (Fig. 4E). A
linear plot was detected with the C69F variant corresponding to a
slope or k2/K observed value of 102  10 M
1 s
1 (Fig. 4F). The
linearity of the C69F variant suggests rapid acylation, as well as better
affinity for ceftazidime than PenI. With SHV-1, the M69F variant
possessed only a 3-fold-lower Km value than wild-type SHV-1 (16).
The different kinetic properties of the C69F variant of PenI and the
M69F variant of SHV-1 were correlated with the higher ceftazidime
MIC for the C69F variant.
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FIG 7 (A) Burst in ceftazidime (25 �M) hydrolysis observed with 10 �M the C69F variant. Extrapolation (green line) of the steady-state velocity to the y axis
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Protein mass spectrometry. To further investigate our kinetic
observations, mass spectrometry of purified PenI missing its
signal peptide sequence (theoretical mass � 28,350 amu) and
the C69F variant missing its signal peptide sequence (theoretical
mass � 28,394 amu) with ceftazidime (theoretical mass � 546
amu), using a 1:1 ratio of ceftazidime to �-lactamase, was con-
ducted. Observable adducts were not detected between PenI and
ceftazidime over a 15-s to 15-min time course. After longer times,
up to 1 h, an acyl-enzyme adduct of PenI and ceftazidime was also
not detected under these conditions (Fig. 8A). However, at higher
ratios of ceftazidime to PenI—a ratio of 100:1—a small popula-
tion of acyl-enzyme (28,815  3 amu) could be observed after 1
min incubation (Fig. 8A). The mass of the adduct corresponded to
the exomethylene form of ceftazidime (measured mass � 467  3
amu) (Fig. 5C). Conversely, the C69F variant was found to rapidly
acylate ceftazidime (28,857  3 amu). Deacylation (28,390  3
amu) occurred within 15 min; only the 467  3 amu exomethyl-
ene form of ceftazidime adduct was observed with the variant (Fig.
8B). These data are in agreement with the small-molecule mass
spectrometry.

Molecular modeling. X-ray crystallography of class A �-lacta-
mases with substitutions at position 69 was previously unreveal-
ing in fully elucidating how amino acid changes affected clavu-
lanic acid binding (39). Earlier studies showed that structural
changes were not readily observed between the TEM-1 �-lacta-
mase and its M69L variant despite the presence of a resistance
phenotype when expressed in E. coli. Only upon molecular mod-
eling and MDS were any changes between the two �-lactamases
detected. Thus, to assess the contributions of the substitutions at
position C69 to the structure of the �-lactamase, molecular rep-
resentations of PenI and the C69F variant were generated and
MDS was conducted.

The apo forms of the �-lactamases revealed that the geom-
etry of the oxyanion hole was different in the C69F variant, as
the oxyanion hole water molecule was deeper in the pocket by
�1 Å than in PenI (Fig. 9A). The deeper oxyanion hole in the
C69F variant may serve to draw the carbonyl of ceftazidime
into the active site more readily than PenI, explaining the lower
values seen with competition experiments. Next, the exometh-
ylene form of ceftazidime was docked into the active sites of
PenI and the C69F variant. An acyl bond was formed with the
deprotonated oxygen of the hydroxyl side chain of S70 and the
ceftazidime carbonyl. Two important differences were evident
between the two acyl-enzyme models. First, the R1 side chain of
ceftazidime possessed two different orientations, similar to the
structure of cefotaxime in TOHO-1 (PDB 2ZQA); thus, differ-
ent orientations of the R1 side chain are conceivable. Second, in
the C69F variant model, ceftazidime formed 13 possible hydro-
gen-bonding interactions with active-site residues, mainly (8
interactions) with the B3 �-strand; a unique interaction with
D240 not seen with PenI was also observed (Fig. 9B). The C-4
carboxylate formed typically observed interactions with the B3
�-strand (e.g., hydrogen bonding with amino acids at positions
234, 235, and 237). Conversely, ceftazidime formed fewer po-
tential hydrogen bonds with active-site residues of PenI, and
the �-lactam C-4 carboxylate made uncommon interactions
with the left side of the active site (with residues S130 and
Y105) (Fig. 9C). Given the difference between PenI and the
C69F variant, the modeled form of the C69F variant may be the
conformation that hydrolyzes ceftazidime rapidly.
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FIG 8 Mass spectrometry of PenI and the C69F variant with ceftazidime
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formation (28,857 amu) within 15 s and returned to complete apo-enzyme
(28,390 amu) by 15 min.
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Mechanism for ceftazidime resistance. Our data led us to pro-
pose a new pathway explaining enhanced ceftazidime kinetics in
the C69F variant compared to PenI (Fig. 10). Using previously
published approaches as a guide (34, 36), we showed that the C69F
variant hydrolyzes ceftazidime along a branched kinetic pathway
compared to wild-type PenI. We found that the products formed
upon ceftazidime hydrolysis by PenI and the C69F variant lacked
the R2 side chain. In addition, pre-steady-state kinetics suggested
that the C69F variant may be present in at least two conforma-
tions; �-lactamases possessing different conformations have pre-
viously been observed (38, 40). We propose that the isoform of the
C69F variant that hydrolyzes ceftazidime rapidly was stabilized by
preincubation with an anti-PenI antibody. Almost-complete hy-
drolysis of 25 �M ceftazidime was observed within 100 s com-
pared to 1,500 s without the antibody preincubation. In the cell,
the C69F variant may be stabilized in the “rapid form” in the
periplasmic space, resulting in the high MIC of 64 mg/liter. Con-
versely, based upon (i) the observation that PenI possesses a KI

observed value of 23 mM and (ii) our inability to capture the
PenI-ceftazidime acyl-enzyme complex on mass spectrometry
unless the concentration of ceftazidime was raised, we propose
that PenI possesses poor affinity for ceftazidime compared to the
C69F variant.

What are the clinical and mechanistic implications of these
findings? Our investigations reveal that the C69F variant of PenI is

a unique �-lactamase. The wild-type enzyme, PenI, interacts with
ceftazidime so poorly that ceftazidime is able to reach the PBP
target, thus killing the bacterial cell. In contrast, when expressed in
E. coli, the C69F variant confers a high ceftazidime MIC (64 mg/
liter). To our surprise, we next discovered that a branched path-
way exists and that this variant �-lactamase can be present in two
conformations. Interestingly, one conformation of the C69F vari-
ant rapidly hydrolyzes ceftazidime and may be the dominant form
expressed in the cell, resulting in high MICs; the other conforma-
tion is catalytically impaired. The presence of ceftazidime in the
medium during growth also increases (e.g., stabilizes) the C69F
�-lactamase present in the periplasm (41). Underexpressed �-lac-
tamases and those with low hydrolytic activity may be overlooked
in clinical isolates using nonphenotypic diagnostic procedures
(e.g., mass spectrometry) for detection of antibiotic resistance
mechanisms (42); this could result in poor therapeutic choices
and treatment failure.

From a mechanistic standpoint, we posit that amino acid
changes that affect the tertiary structure by permitting conforma-
tional changes that enhance hydrolytic activity can have a signifi-
cant impact on substrate turnover. In the case of the C69F variant
of PenI, changes in the oxyanion hole result in alterations in hy-
drogen bond formation that permit catalysis of a substrate not
normally regarded as “favorable.” Considerations such as this
have significant impact on new �-lactam and �-lactamase inhib-
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to 13 hydrogen-bonding partners, including residue D240. (C) Molecular modeling of the PenI acyl-enzyme with ceftazidime in the active site revealed a limited
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itor design. Showing that conformational changes result in higher
MICs also adds a new level of complexity to understanding �-lac-
tamase evolution. Conversely, finding ways to inhibit conforma-
tional changes in enzymes with enhanced kinetic properties can
lead to new insights into allosteric inhibitor design (43). Such
unanticipated findings can open “new doors” in the design of
�-lactamase inhibitors.
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