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Abstract

In social environments, it is crucial that decision-makers take account of the impact of their 

actions not only for oneself, but also on other social agents. Previous work has identified neural 

signals in the striatum encoding value-based prediction errors for outcomes to oneself; also, recent 

work suggests neural activity in prefrontal cortex may similarly encode value-based prediction 

errors related to outcomes to others. However, prior work also indicates that social valuations are 

not isomorphic, with social value orientations of decision-makers ranging on a cooperative to 

competitive continuum; this variation has not been examined within social learning environments. 

Here, we combine a computational model of learning with functional neuroimaging to examine 

how individual differences in orientation impact neural mechanisms underlying ‘other-value’ 

learning. Across four experimental conditions, reinforcement learning signals for other-value were 

identified in medial prefrontal cortex, and were distinct from self-value learning signals identified 

in striatum. Critically, the magnitude and direction of the other-value learning signal depended 

strongly on an individual’s cooperative or competitive orientation towards others. These data 

indicate that social decisions are guided by a social orientation-dependent learning system that is 

computationally similar but anatomically distinct from self-value learning. The sensitivity of the 

medial prefrontal learning signal to social preferences suggests a mechanism linking such 

preferences to biases in social actions and highlights the importance of incorporating 

heterogeneous social predispositions in neurocomputational models of social behavior.
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1. Introduction1

Navigating one’s environment, whether it be foraging for food or interacting with social 

partners, requires evaluating available options and taking actions that are likely to benefit 

oneself. The application of formal learning models to the analysis of decision-related neural 

activity has begun to reveal the neural basis of computations underlying value-guided 

decision-making in humans (D’Ardenne et al., 2008; Daniel and Pollmann, 2014; Jocham et 

al., 2011). These data have shown that individuals learn the value associated with an action 

through experience by serially comparing expectations with outcomes (Krugel et al., 2009; 

Seymour et al., 2004; Sutton and Barto, 1988). Through this general process, humans 

dynamically learn how to value their actions and their environment, and dopaminergic 

signaling is believed to underlie these learning signals (Bayer and Glimcher, 2005; Delgado 

et al., 2008; den Ouden et al., 2010; Montague et al., 2006; Schultz et al., 1997).

This process becomes more complicated when making decisions that also impact others, 

whether friend, partner, adversary, or stranger. To successfully navigate such social 

transactions, it is crucial that decision-makers be able to assess (i) the value of the decision 

for oneself and (ii) the value of the decision to others, based upon one’s own motivations 

toward oneself and the social partner. Previous studies have identified brain signals 

associated with outcomes delivered to oneself (Delgado et al., 2008; Galvan et al., 2005; 

Pessiglione et al., 2006; Ramnani et al., 2004) and outcomes delivered to others (Apps et al., 

2013; Nicolle et al., 2012; O’Connell et al., 2013; Suzuki et al., 2012).

However, it is relatively less well understood how outcomes delivered to others are 

implemented in reinforcement learning environments. Behavioral research indicates that 

valuation of social outcomes, i.e. outcomes that involve other agents, depend on social 

preferences or motivations that can vary across individuals. For example, competitive types 

seek outcomes benefiting oneself at the expense of the social partner, while cooperative 

types seek outcomes benefiting both self and other (Fehr and Krajbich, 2014; Lurie, 1987; 

McClintock and Liebrand, 1988; Murphy and Ackermann, 2014). Studies of inequality 

aversion and guilt aversion have identified neural correlates of preferences over divisions of 

resources (Chang et al., 2011; Crockett et al., 2010; Fliessbach et al., 2007; Haruno and 

Frith, 2010; Tricomi et al., 2010), while measures of social value orientation have identified 

individual differences in neural correlates of these preferences (Haruno and Frith, 2010). 

However, the role of social preferences has not been taken into account in tasks that require 

learning the consequence of one’s own action for social partners.

1Abbreviations. SVO: Social Value Orientation; mPFC: medial prefrontal cortex; PES: prediction error for outcomes (including 
negative rewards eg – $70) received for oneself (i.e. the decision maker); PEO: prediction error for outcomes received by another 
person. Vs: value of outcome delivered to Self; Vo: value of rewards punishments delivered to Other
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Here we examine the process by which decision-makers learn how actions map onto 

outcomes for others. In doing so, we first identify learning signals underlying value-based 

decision-making for others and differentiate these signals from value-based learning signals 

for oneself, replicating and extending previous research efforts; subsequently we show how 

these signals vary parametrically as a function of social value orientation. That is, in a large 

cohort of participants, we show that the direction and magnitude of learning signals based on 

the value of an outcome for a social partner vary with the cooperative or competitive 

orientation of the participant.

2. Materials and Methods

2.1. Overview of procedures

Prior to scanning, the social value orientation (competitive, individualistic or cooperative) of 

participants was assessed through a parametric estimation by a sequential testing procedure 

(PEST). In this assessment, participants chose between allocations of an endowment 

between the participant and an anonymous social partner. Participants were then instructed 

that they would make a series of choices while in the MRI scanner (Fig. 1). Additionally, 

they were told that their payment and the payment of the anonymous social partner would be 

based on a random subset of their choices. Seventy-two participants underwent 3T fMRI as 

they performed six manipulations of an instrumental learning task. In each condition, 

participants chose between two square fractals that were probabilistically (80:20) related to 

gains or losses for the decision-maker and another, unknown to them, participant (for 

instance $70 for the participant and −$70 for the other participant). The manipulations 

varied in the magnitude and valence of value assigned to oneself and the value assigned to 

the social partner. The order in which blocks were presented was pseudorandomized across 

participants.

2.2. Participants

Ninety participants (mean age 27.37 years; 28 female) were recruited from a college and 

community sample. Ten participants were excluded following the social value orientation 

assessment described below, as the parametric estimation by sequential testing (Luce, 2000) 

procedure did not produce reliable estimates across repeated measures. Seven additional 

subjects were excluded from neuroimaging analysis based on excessive movement during 

scanning. One subject was excluded as behavioral responses were not recorded for 40% of 

his/her trials. One condition [self −70 / other −70 ; self +70 / other +70] of a second subject 

was excluded for missing behavioral responses as well.

2.3. Social value orientation assessment

(see Fig. SM1). We employed a psychophysics-inspired assessment (Parameter Estimation 

by Sequential Testing – PEST) a non-learning choice task designed to assess social value 

orientation (SVO; (McClintock and Liebrand, 1988); (Kelly and Stahelski, 1970; Kuhlman 

and Marshello, 1975; Sattler and Kerr, 1991; Van Lange and Kuhlman, 1994). During the 

PEST procedure, participants serially made preference choices between two allocations. 

Each allocation included a number of points for the participant and a number of points to 

another anonymous participant. The two allocations were represented by a pair of numbers 
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placed to the left and right of a fixation cross (see SM Fig. 1a). One row indicated the 

number of points for the participant whereas the other row indicated the number of points 

for the second person. To increase the attention to both types of outcomes, the position of 

the ‘self’ and ‘other’ amounts (top or bottom row) was randomly determined on each trial. 

The participant pressed one of two keys to indicate the preferred choice. Following the key 

press, the choice was highlighted in red for 1 second and then a new trial started. The 

participant was informed that: (i) s/he would never meet the ‘other’ person or know each 

other’s identity; (ii) the other person would be paid according to one, randomly determined, 

choice outcome; and, (iii) the other person would not make similar or any kind of decisions 

influencing the participant’s payment.

Initial allocations—The allocation pairs presented to the participant for each decision 

were based on a two-dimensional geometric representation of value, where the x-axis 

represents outcomes to ‘self’ whereas the y-axis represents outcomes to ‘other’ (SM Fig. 

1b). Allocations were positioned on a circle with a center at (0,0) and radius of 100. Initially, 

the allocations were rounded so that they were in multiples of 5. For example, an allocation 

with an angle of 45° between self and other axes and radius of 100 equals x-value of 70.7 

(rounded to 70) and y-value of 70.7 (rounded to 70). The algorithm started by offering two 

different allocations. To ensure that the social value orientation derived from this procedure 

was reliable, we repeated the procedure three times during the same experimental session 

with differing initial allocations: in the first case, initial allocations were [SELF<0, 

OTHER<0] and [SELF<0, OTHER>0]; in a second case, initial allocations were [SELF<0, 

OTHER >0] and [SELF>0, OTHER<0]; and in a final case, initial allocations were 

[SELF<0, OTHER <0] and [SELF>0, OTHER>0].

Subsequent allocations—The values of the subsequent choice pairs were determined in 

part, by allocations of the previous choice pairs: the algorithm retained the unchosen 

allocation as one option whereas the chosen allocation was moved towards the unchosen 

option with a step angle derived from a uniform distribution with a mean of (2*pi/40) 

radians (9 degrees). The resulting values were again rounded to a multiple of 5. Based on 

this algorithm the two vectors gradually approximated the preferred vector for each 

participant. On each step the algorithm would check whether the step was larger than the 

difference between the two options, in order to prevent one option ‘crossing’ the other one 

(i.e. the originally more cooperative alternative becoming more competitive). If the step was 

larger then it could take one of the following actions:

1. Reduce the step to half. If the difference between the two alternatives was smaller 

than half of the step then it would move to algorithms (2) or (3), as described below

2. Change the values of the unchosen alternative by adding (or subtracting, depending 

on the direction of the change) 5 points to self- and other-values. If this also 

resulted in allocations ‘crossing’ each other then the algorithm (3) was 

implemented.

3. Change the values of the unchosen alternative by adding (or subtracting, depending 

on the direction of the change) 2 points to self- and other-values.

Christopoulos and King-Casas Page 4

Neuroimage. Author manuscript; available in PMC 2016 February 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Notice that the algorithm could choose to directly implement (2) without implementing (1); 

also (3) could be directly implemented, without the need of implementing (1) and (2).

Final allocation—On each trial, the algorithm checked whether it should stop. If both the 

difference between the two ‘self’ values and the difference between the two ‘other’ values 

were smaller than 6 points, then the algorithm stopped. The average of the two angles 

associated with the final two allocations for each assessment were used as the measure of 

SVO.

This sequential testing algorithm yielded social value orientations measurements with strong 

test-retest reliability. Participants made choices in three separate assessments, and each 

version had different initial allocations (see description above). Estimated angles across the 

assessments showed strong test-retest reliability (mean R2 = .54). To exclude the minority of 

participants with unreliable measures of SVO, any participant with a difference between 

SVO measurements greater than 15° was excluded. Of the 90 participants assessed, ten were 

excluded based on this criterion. The test-retest reliability of the remaining participants was 

high (mean R2 = .92). The boundary criteria for the three groups (cooperative, individualists 

and competitive) were defined as the mean SVO of the sample plus (cooperative threshold) 

or minus (competitive threshold) a half standard deviation of the sample (yielding 10.16 and 

−9.57 as boundaries). The average SVO measures of the included participants are depicted 

in SM Fig. 2, and individual SVO estimates for each individual are reported in SM Table 2.

3. Social Value Learning task (fMRI)

Prior to scanning, all participants received instructions about the mechanics of the tasks, and 

it was explained to each participant that they would be making choices that would form the 

basis of their own payment and the payment of a second person. The participant was 

informed that: (i) s/he would never meet the other person or know each other’s identity; (ii) 

the other person would be paid according to the outcomes of a randomly chosen subset of 

decisions; and, (iii) the other person would not be making similar decisions for the 

participant.

The scanning session was separated into 6 blocks. Each block consisted of 30 trials in which 

participants chose between two squares depicting fractals. Six different fractals were used, 

so players learned values associated with each fractal a single time, and fractals were 

randomly positioned to the left or right of a fixation cross. The outcomes associated with 

each fractal were randomly determined for each participant. Within each block, one fractal 

was associated with one allocation with 80% probability and a second allocation with 20% 

probability. The other fractal was associated with the first allocation with 20% probability 

and the second outcome with 80% probability. The probabilities on each trial were 

pseudorandom, so that every 10 trials included 2 less probable outcomes.

The allocations for each block were as follows, where ε is a uniform discrete distribution 

with mean 0 and range of 10:

• [Self: −70 + ε, Other: −70 + ε] vs. [Self: −70 + ε, Other: +70 + ε]

• [Self: −70 + ε, Other: −70 + ε] vs. [Self: +70 + ε, Other: −70 + ε]
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• [Self: −70 + ε, Other: −70 + ε] vs. [Self: +70 + ε, Other: +70 + ε]

• [Self: −70 + ε, Other: +70 + ε] vs. [Self:+70 + ε, Other: −70 + ε]

• [Self: −70 + ε, Other: +70 + ε] vs. [Self: +70 + ε, Other: +70 + ε]

• [Self: +70 + ε, Other: −70 + ε] vs. [Self: +70 + ε, Other: +70 + ε]

Each trial began with a 1 second fixation cross on a black background, plus a value derived 

from an exponential distribution with mean of 1 second, truncated at 6 seconds. On the next 

screen two fractals appeared on the left and right of a fixation cross that subtended 10 

degrees of visual field. Participants were required to respond within 3 seconds by choosing a 

left or right button. The chosen stimulus was framed by a white square for 0.5 second plus a 

value derived from an exponential distribution with mean of 1 second, truncated at 6 

seconds. Then the outcome allocation (i.e., outcome for self and outcome for other) was 

displayed for 2 seconds (Fig. 1). The order in which blocks were presented was 

pseudorandomized across participants.

4. Computational modeling

We monitored decision-related hemodynamic activity with functional magnetic resonance 

imaging, and subsequently modeled these data using two prediction error regressors 

generated by fitting participant choices to a reinforcement learning model of reward for 

oneself and a social partner (Fig. 1b). Within this hybrid model, the “self expected value” 

(EVS) and “other expected value” (EVO) are updated on a trial-by-trial basis through 

separate prediction errors (PES and PEO, respectively), and PEO is transformed to reflect 

the competitive or cooperative preference of a decision-maker. The transformation of PEO 

(Fig. 1b) is achieved by weighting the monetary outcome received by the other person by a γ 

parameter. For instance, if the other person receives $70, then, for a competitive person (γ=

−1) the algorithm will behave as if the outcome is negative (γ ×$70 = −$70); on the 

contrary, for a cooperative person (γ=1) a positive outcome will produce a positive 

prediction error. This simple formulation reinforces cooperative and competitive actions for 

cooperative and competitive subjects, respectively.

Differences between expected and experienced outcomes were modelled using a modified 

standard Q-learning algorithm described by Sutton & Barto (1998) and implemented in a 

similar instrumental probabilistic learning task by Pessiglione et al., (2006). As illustrated in 

Fig. 1b, at each decision outcome, the algorithm computes (i) an expected value of the 

stimulus chosen for the outcome received by the subject (EVS) and (ii) a second expected 

value for the outcome received by the other subject (EVO). EVS is updated by the usual rule 

EVS,t = EVS,t−1 + αS(PES,t), where αS represents a learning rate parameter, PES,t represents 

a prediction error defined as VS,t – EVS,t and VS,t is the reward received by the subject at 

time t. Similarly, EVO is updated by the rule EVO,t = EVO,t−1 + αO(PEO,t), where αO again 

represents a learning rate parameter, PEO,t represents a prediction error defined as γ(VO,t) 

EVO,t and VO,t is the reward received by the subject at time t, while γ takes the values of 1 

or −1 in order to allow for both cooperative and competitive orientations. Thus, if γ=−1, then 

a positive outcome for the other person is subjectively perceived as a negative outcome for 

the decision maker. The probability of choosing one stimulus over another is estimated by 
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the softmax rule. For example, the probability of choosing stimulus A is estimated as Pa(t) = 

exp(EVNET,A(t)/β)/(exp(EVNET,A (t)/β) +exp(EVNET,B(t)/β)), where EVNET,A = EVS,A + 

EVO,A and EVNET,B = EVS,B + EVO,B and β is a temperature parameter.

We estimated gamma (γ) for each subject by focusing on the two conditions in which 

outcomes delivered to the other varied, while outcomes delivered to self were kept constant 

(conditions [self −70 / other −70 ; self −70 / other +70] & [self +70 / other −70 ; self +70 / 

other +70] illustrated in Figures 2c and 2d). For that reason, the estimation procedure 

followed two steps: in the first step we estimated learning rates (αS, αO), gamma (γ) and 

temperature (β) for each subjectin these two conditions only. The goal of this step was to 

extract the γ that best fit these two conditions. Subsequently, the estimated γ value was used 

as a constant for estimations in all other conditions; all other parameters were estimated 

within each block in order to maximize the likelihood of the model choosing participants’ 

actual choices.

Allowing γ to take the values of −1 or +1 enabled the model to account for the social 

preference of individual participants. For example, when a competitive individual chose a 

stimulus that resulted in an unexpectedly positive outcome for their social partner, negative 

values of γ mean that the positive reward for the social partner translates into a negative 

update of the Q-value associated with the chosen stimulus. Average learning rates (αS, αO), 

temperature (β), mean negative log likelihood and pseudo-R2 (Camerer and Ho, 1998) for 

each subgroup and condition are reported in SM Table 1. Pseudo-R2 is defined as (r−l)/r, 

where r is the log likelihood of a model choosing randomly and l is the log likelihood of our 

model. The estimated pseudo-R2 assessing model fit were comparable to previous reports 

modelling choice behavior (mean pseudo-R2 for our model: .32; (Daw et al., 2006): .31; (Li 

and Daw, 2011): .35; (Rutledge et al., 2009): .18; (Simon and Daw, 2011): .28).

We also estimated the Akaike Information Criterion (AIC) for alternative models discussed 

below. We employed the following formula to estimate the AIC: AIC = 2k−2Log(L), where 

k is the number of parameters and L is the log likelihood of each model, estimated across all 

trials and subjects. Lower AIC values indicate a better fit of the observed behavior. The 

number of parameters for each model is described in the Results section.

5. Results

5.1. Neural prediction error signal for self-value

To identify activity underlying prediction errors associated with outcomes for oneself (PES), 

we focused on four experimental conditions in which self-value differed for outcomes 

associated with A and B. In the first manipulation (Fig. 2a), choosing one stimulus resulted 

in gains for oneself (+70 points, ±5) and for the other participant (+70 points, ±5) with 80% 

probability, whereas it yielded loss for oneself (−70 points, ±5) and gain for the other 

participant (+70 points, ±5) with 20% probability. The alternative stimulus yielded the same 

allocations, but with the probabilities reversed (i.e., self-gain, other-gain with 20% 

probability and self-loss, other-gain with 80% probability). Note that both stimuli resulted in 

a positive outcome (+70) for the other participant. Thus, this first experimental manipulation 

is similar to previous studies of value-learning for oneself, as actions are guided by 
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differences in value for the decision-maker only. Similarly, in a second condition (Fig. 2b) 

possible outcomes were either (+70 self / −70 other) or (−70 self / −70 other), thus allowing 

self outcomes to primarily guide learning. In two additional conditions (Fig. 2e and 2f), 

possible outcomes differed for oneself, as well as for the social partner.

When PES were parametrically regressed to the hemodynamic activity at the outcome of 

each decision, correlated neural activity was found in bilateral ventral striatum across all 

conditions (Fig. 3a, upper panel; coordinates for PES across all conditions combined: 

4,10,−4, P < .01, FWE whole-brain-corrected), consistent with previous studies of self-

interested probabilistic learning (Hare et al., 2008; Pessiglione et al., 2006). The robustness 

of PES-related activity in the striatum across conditions was confirmed by separately 

examining the statistical significance at peak voxels in ventral striatum within each 

condition separately (Fig. 3a, lower panel). This analysis confirmed significant PES-related 

activity in striatum for each condition.

5.2. Preference-dependent prediction error learning of other-value

Prediction errors for outcomes to others (PEO) were modeled using a similar reinforcement 

learning algorithm as PES above, substituting other-value for self-value (Fig. 1b; see 

Supplementary Material). However, to incorporate cooperative and competitive orientation 

toward social partners, our algorithm weighted other-value by a parameter, γ, that took 

values of +1 or −1. The right panel of Fig. 1b illustrates the effect of the γ parameter. 

Consider the perspective of a decision-maker when a choice results in a social partner 

receiving +70, an amount that exceeds the expectations of the decision-maker. A 

cooperative individual, with γ = +1, would subjectively experience the result to be an 

unexpectedly good outcome, corresponding to a positive prediction error that updates EVO 

to be more positive. In contrast, a competitive individual, with γ = −1, would subjectively 

experience the result as an unexpectedly bad outcome, corresponding to a negative 

prediction error that updates EVO to be more negative. In this way, inclusion of the γ 

parameter enables the model to incorporate preference-dependent prediction errors, and 

these prediction errors update EVO to reflect the subjective perspective of the decision-

maker (not the social partner).

5.3. Support for the model

As it is the case for all computational approaches trying to explain neurobehavioral data, the 

space of possible models is very large. Thus, there is the possibility that an alternative model 

that either we have not considered or the present data do not easily accommodate could 

explain the underlying process in a better way. Here, we provide evidence supporting the 

present model in three ways: (i) we employ an external measure of social preference to 

provide external validation for the included γ parameter of our model; (ii) we relate a model-

free estimate of social preference within our task to the included γ parameter estimates, (iii) 

we compare goodness-of-fits metrics of the present model to corresponding metrics of a 

number of alternative models described below.

5.3.1. External measures—External validity for the fitted γ parameter values was 

established through a non-learning choice task designed to assess social value orientation 
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(SVO; (McClintock and Liebrand, 1988), (Kelly and Stahelski, 1970; Kuhlman and 

Marshello, 1975; Sattler and Kerr, 1991; Van Lange and Kuhlman, 1994)). In this task, 

participants completed a series of psychophysics-based, adaptively updated dictator games 

(SM Fig. 1; SM Table 1). This procedure yields an estimate of the extent to which social 

agents prefer allocations that maximize the sum of the self and other outcomes 

(“Cooperative”), prefer allocations that maximize the signed difference between self and 

other outcomes (“Competitive”), or are indifferent to the outcomes of others 

(“Individualistic”), seeking to maximize only their own outcomes. The correspondence 

between the SVO metric and fitted values of γ are illustrated in Fig. 4a. Values of γ for 

SVO-determined competitive individuals were negative, values of γ for SVO-determined 

cooperative individuals were positive, and SVO-determined individualists had values of γ 

that did not differ from zero on average. Note that while individual estimates of γ take 

values of either −1 or 1, the average of the group of SVO-determined individualists did not 

differ from zero.

5.3.2. Model-free estimations—To confirm that fitted values of γ reflect social 

orientation expressed within the learning task, binary logistic regressions for each subject s 

data were estimated using self- and other-outcomes in the previous trial as predictors and 

choice (‘stay’ = 1; switch = 0) as the dependent variable. Beta coefficients associated with 

other-outcomes are plotted against average fitted values of γ in Fig. 4b. Individuals who 

were likely to ‘switch’ following a positive other-outcome in the logistic regression were 

also estimated to have negative values of γ in the hybrid model estimation, individuals who 

were likely to ‘stay’ following a positive other-outcome in the model-free analysis had 

positive values of γ, and individuals who were as likely to ‘stay’ as they were to ‘switch’ 

regardless of the other-outcome had values of γ that did not differ from zero on average.

5.3.3. Alternative models—The goodness-of-fit of the current model was also compared 

with a number of alternative models described below:

• Alternative model (i). A first possibility is to allow γ to freely vary between −1 and 

1. We tested this model and we found that mean Akaike Information Criterion 

(AIC) values to be lower in that case (original model: 531.08 [(19 free parameters: 

6 conditions ×3 parameters (α Self (learning parameter for self), α Other (learning 

parameter for other), β (temperature)) + one γ (social orientation weighting 

parameter or −1 or +1)).] vs. 533.5 (alternative model) (19 free parameters: 6 

conditions ×3 parameters + one γ varying in the [−1, 1]). On a first reading the two 

AIC values seem to be close enough but we have to consider that the alternative 

model allows for γ to take all possible values (as compared to the original model 

which allows only two values). AIC is unable to capture this variability as it is 

sensitive only to the number of parameters and not the values they are allowed to 

take. Therefore, by lex parsimoniae, i.e. that models that recruit shorter 

computations are assigned higher probabilities and therefore preferred (Gauch, 

2003) the judgment is in favor of the original model.
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• Alternative model (ii) (18 free parameters: 6 conditions ×3 parameters). To assess 

the impact of γ on the behavioral fit of the model, AIC values were also compared 

for models with and without γ .The AIC for the model without γ was 558.6.

• Alternative model (iii) (13 free parameters: 6 conditions ×2 parameters + one γ) 

Another possibility is that instead of participants computing each value (self and 

other) separately, they actually compute a weighted combination of the self and 

other outcome values in a single step (i.e. there is one prediction error based on 

updating the value of the bundle: Vtot = Vself + γVother). This model also has 

higher AIC values (562.40 as compared to 531.5) and thus we believe that it is not 

appropriate for the present data.

• Alternative model (iv). (12 free parameters: 6 conditions ×2 parameters). Another 

possibility is that participants altogether ignore the value offered to the other 

person. This can be modeled by setting γ = 0 for the original model, which means 

that the “other” values are not used in the computation of the value of (and the 

associated probabilities of choosing) each stimulus. This model also has higher 

AIC values (535.24).

• Alternative model (v). (13 free parameters: 6 conditions ×2 parameters + one γ) 

Another possibility is that participants have the same learning α parameter for self 

and other values. This model also has higher AIC values (563.37).

5.4. Neural prediction error signal for other-value

To examine how decision-makers learn how their choices map onto outcomes for social 

partners, we focused on four manipulations in which other-value differed for outcomes A 

and B (Fig. 2c, 2d, 2e, 2f). In one of these manipulations (Fig. 2c), choosing one stimulus 

resulted in gain for oneself (+70) and gain for the other participant (+70) with P = 80%, and, 

with P = 20%, it yielded gain for oneself (+70) and loss for the other participant (−70). 

Again, the alternative stimulus yielded the same outcomes, but the probabilities were 

reversed. In another manipulation (Fig. 2d), outcomes to social partners were the same as 

described above, but outcomes to oneself were losses (−70) rather than gains. In two 

additional manipulations (Fig. 2e and 2f), both self-value and other-value varied across the 

two options, allowing the examination of both PES and PEO simultaneously.

Preference-dependent PEO were calculated as described above (Fig. 1b), and parametrically 

regressed to hemodynamic activity at the outcome of each decision. Strikingly, this analysis 

identified a strong correlate of PEO in medial prefrontal cortex (MPFC), indicating that 

hemodynamic activity in this region reflects the updating of value expectations for others in 

a manner that takes into account the social preference of the decision-maker (Fig. 3b, upper 

panel; coordinates for PEO across all conditions combined: 10,54,0, P < .01, FWE whole 

brain corrected). The robustness of PEO-related activity in MPFC across conditions was 

further tested by separately examining statistical significance at peak voxels in MPFC within 

each condition separately (Fig. 3b, lower panel). This analysis confirmed significant PEO-

related activity in MPFC for each condition.
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To further elucidate the PEO signal we explored the MPFC response as a function of the 

valence of the PEO and the SVO (Fig. 4c). To facilitate this analysis, we multiplied the PEO-

related hemodynamic response by each decision-maker’s γ, thus transforming the PEO 

signal to the perspective of the ‘other’ social partner. In doing so, the positive PEO of the 

cooperative decision-maker (better than expected from the perspective of ‘other’) becomes 

comparable to the negative PEO of the competitive decision-maker (again, better than 

expected from the perspective of ‘other’). We subsequently subtracted hemodynamic 

responses of trials associated with unexpectedly positive outcomes to ‘other’ from 

hemodynamic responses of trials associated with unexpectedly negative outcomes to ‘other’, 

and plotted the resulting difference by SVO (Fig. 4c). The resulting heatmap reveals that 

cooperative participants have higher MPFC response when they experience an unexpected 

negative outcome for the other person (see also Table 1). This difference is gradually 

reversed as SVO decreases: competitive participants have higher MPFC response for 

unexpectedly positive outcomes for the social partner. Notice that for SVO close to zero, the 

difference between the two signals is negligible. Taken together, these data indicate that 

MPFC signals outcomes that are preference-incongruent.

An alternative hypothesis for the apparent indifference of individualists to PEO is that 

individualists may be modulating their behavior depending on whether they themselves 

receive positive or negative outcomes. For example, it could be the case that an individualist 

seeks to minimize envy and guilt by both seeking negative outcomes for others when 

receiving negative outcomes for oneself (condition S−/O− vs. S−/O+) and seeking positive 

outcomes for others when receiving positive outcomes for oneself (condition S+/O− vs. S

+/O+). To explore this possibility, we examined whether individualists remain indifferent to 

the outcome of others regardless of their own outcomes, or whether orientation towards 

others is dependent on self-value. Behaviorally, we found that SVO-defined individualists 

exhibited no preference for positive or negative outcomes to others, either when consistently 

receiving positive self-values (null hypothesis that individuals choose S+/O+ and S+/O− in 

Fig. 2a with equal frequency; p =.34, t=.97, df=33) or when consistently receiving negative 

self-values (null hypothesis that individuals choose S−/O− and S−/O+ in Fig. 2b with equal 

frequency: p = .82; t = .23, df =33). Similarly, we found no evidence that individualists 

respond differentially to PEO in MPFC as a function of valence for either of these conditions 

(S+/O+ vs. S+/O−; S−/O+ vs. S−/O−). That is, the prediction error responses following 

either positive value outcomes to other and negative value outcomes to other did not differ 

in either condition (SM Fig. 4; SM Tables 4 & 5).

Finally, to quantify the suggested neural dissociation of PES and the preference-incongruent 

PEO, we examined neural correlates of PES and PEO in both striatum and MPFC (Fig. 3c). A 

repeated-measures 2×2 ANOVA revealed a significant interaction for REGION and PE 

(F71=9.3; P < .005), confirming that the striatum and MPFC preferentially encode PES and 

PEO, respectively.

6. Discussion

Across four experimental conditions, our results provide strong evidence that prediction 

error learning signals in MPFC are used to update value for social partners, in a way that is 
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topographically and functionally distinct from prediction error signals used to update value 

for oneself. Crucially, the PEO signal is strongly associated with individual differences in 

how decision-makers prefer to divide resources with social partners in environments that do 

not require learning. That is, while value learning for others was well characterized by the 

same reinforcement learning process that guides non-social reward learning, the direction 

and magnitude of the neural signal was strongly determined by the social goals of the 

decision-maker: cooperative agents show increased MPFC activity in response to ‘negative’ 

outcomes for social partners, while competitive agents show increased MPFC activity in 

response to good outcomes for social partners.

The localization of PEO-related activity across the four tasks (maximal at 10,54,0) was 

found to fall within anterior rostral medial prefrontal cortex (arMPC), and previous work 

suggests a critical role of arMPC in modeling mental states of other people, including how 

actions impact social partners (Amodio and Frith, 2006; Bzdok et al., 2013; Coricelli and 

Nagel, 2009; Decety and Sommerville, 2003; Gallagher and Frith, 2003; Hare et al., 2010; 

McCabe et al., 2001; Van Overwalle and Baetens, 2009; Winston et al., 2002; Zaki and 

Mitchell, 2011). Recent studies have implicated MPFC in goal-directed choices that involve 

social agents (Behrens et al., 2008; Hampton et al., 2006; Nicolle et al., 2012; Suzuki et al., 

2012; Yoshida et al., 2010), whereas other studies have focused on the role of striatum in 

evaluating rewards delivered to others (Harbaugh et al., 2007; Hsu et al., 2008; Suzuki et al., 

2012). The current results are consistent with (Suzuki et al., 2012), suggesting that MPFC is 

recruited while learning to simulate the choices of others in addition to learning for oneself.

Another study (Apps et al., 2013) reported that anterior cingulate cortex activity correlated 

with prediction error signals when monitoring (expected or unexpected) outcomes delivered 

to a second person. In contrast to the present study, participants in Apps et al. were not 

responsible for the action leading to the outcome of the second person. Taken together, these 

studies potentially suggest that other-value prediction error signals are computed separably 

for outcomes for which one is responsible, and outcomes for which one’s decision does not 

determine the outcome, and that only the former is sensitive to the motivational orientation 

of the decision-maker.

Individual differences in the direction and magnitude of the PEO identified here highlight 

the importance of polymorphic social orientation for neurocomputational models of social 

decision-making ((Kuhlman and Marshello, 1975; McClintock and Liebrand, 1988; Van 

Lange and Kuhlman, 1994), (Bowles and Gintis, 2004; Fehr and Fischbacher, 2002; 

Kuhlman and Wimberley, 1976; Kurzban and Houser, 2005)). The current data indicate that 

social orientation strongly modifies learning-related value-representations for others when 

making decisions that impact others. Strikingly, in additional analyses we find no evidence 

that other-value is represented independent of the social preference of the decision-maker 

during social learning.

The present design does not exhaustively examine how Vs and Vo are integrated in the 

human brain. For example, alternative models have been suggested (see for instance Van 

Lange (1999)) that include fairness or (in)equity considerations. Such models have been 

constructed to predict behaviour across a wider space of allocations, where the self- and 
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other- values vary considerably. For the allocations used here, where the Self or Other 

values are allowed to vary within a limited space, the alternative models would make very 

similar predictions. Yet, all previous models assume that Vo is transformed (usually by 

multiplying with a constant, as in our case) and this transformation represents the social 

orientation of the agent. Thus, here, we identify how the outcome received by the other is 

weighted using a typical PEST procedure; we find that the weighting is also employed in the 

learning process and corresponds to the external metrics (PEST). Finally, our data suggest 

that MPFC responses produce prediction error signals that mirror this weighting.

It could be suggested that the brain responses identified here, especially the MPFC PEO 

signal, reflect a non-social perceptual or learning process, and further work will be required 

to test this possibility. For example, the MPFC signal could reflect updating of numeric 

values more generally, rather than the value-based outcome to a social partner. While the 

current design does not eliminate this possibility, the current data demonstrate this signal to 

be systematically related to the social preferences of participants. Thus, if the MPFC signal 

indeed reflected more general learning process, it nevertheless appears to be employed to 

guide decisions in a social preference-dependent manner.

While the current study focuses on learning when making decisions impacting others, 

related work has investigated how information from others impacts self-interested choices 

and associated outcomes. Behrens and colleagues (Behrens et al., 2008) and Burke and 

colleagues (Burke et al., 2010) found that social information and personal experience are 

combined to influence self-interested decisions and associated outcomes through separable 

learning signals. In contrast with this work, however, the PEO signal identified in our 

present work is used to preferentially represent social-orientation weighted outcomes for 

others; critically, this information is used to reinforce the values of actions, akin to 

prototypic a-social reinforcement learning paradigms. To our knowledge, this is the first 

study to isolate such a signal. It is therefore expected that further studies will be required to 

elucidate the exact nature of the preference-dependent PEO signal, as well as its relationship 

to PES. Indeed, initial accounts of the classic PES signal were similarly and necessarily 

incomplete, and led to the development of a broad field of neurocomputational signals 

underlying reward-guided learning for oneself. We expect that the present data will open a 

variety of research questions, including those examining the precise spatio-temporal and 

computational properties of this signal, possible alterations following pharmacological 

manipulations, disease or stress, the impact of various social norms on its amplitude, and 

alterations in the neurocomputational signal in more complex social contexts.

It is noteworthy that the neural learning signals identified here independently encode 

positive and negative reward prediction errors for ‘self’ and ‘other’ outcomes, respectively. 

In the case of reward for oneself, the receipt of an unexpectedly positive outcome leads to an 

increase in the value associated with the reward-predicting cue, and activity in ventral 

striatum mirrors this increase. However, in the case of rewards for others, the receipt of 

unexpected preference-congruent outcomes (i.e., better than expected), leads to decreased 

activity in MPFC activity (Fig. 4 and Table 1). The functional significance of learning self- 

and other-value through opponently-valenced learning signals here is unclear. One 

possibility is that decision processes seeking to satisfy multiple goals are hierarchically 
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updated, such that action-value pairs associated with primary goals (e.g., maximizing self-

value) are updated through positive PE, while updating based on secondary goals (e.g., 

maximizing value for others) are updated through negative PE. Thus, cooperative 

individuals may primarily seek and update good outcomes for themselves and avoid and 

update bad outcomes for others second; while competitive individuals again primarily seek 

and update good outcomes for themselves first, avoiding good outcomes for others second. 

While this speculation cannot be confirmed within the current task, it suggests a number of 

questions regarding how multiple channels of information are combined and reconciled 

when making a social decision and how such outcomes are simultaneously updated.

4.1. Conclusions

Taken together, these data reveal neural computations fundamental to learning in social 

environments, where it is critical to take into account the impact of our actions to others. A 

significant conclusion of the present study is the necessity to incorporate the often ignored 

fact that populations and their social orientations are polymorphic – thus individual 

differences might exist and actually mask interesting phenomena. The present results bring 

together the tradition of reinforcement learning, which examines how humans adapt in 

dynamic environments, and behavioral game theory, where agents take actions that impact 

others. We choose to study a basic question: how outcomes are evaluated without the 

presence of any strategic component. The results suggest that monetary values are early on 

transformed. This conclusion informs the study of more complex strategic interactions as it 

implies that the game matrixes (for instance in a prisoner s dilemma game) are transformed 

to the so-called “effective matrixes” (where outcomes are weighted by social orientation). 

Finally, we believe that the present study, along with other similar studies (Decety and 

Lamm, 2007; Kishida and Montague, 2012; Wolpert et al., 2003) sets the basis for the 

further development of the field of social computational neuroscience, where social actions 

can be formally described by computational models and neurobiological mechanisms.
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Highlights

• Social actors must learn how their actions impact other people (‘others’)

• Prediction error (PE) signals of outcomes for others are found in medial 

prefrontal cortex

• Size and direction of these social learning signals depend on social preferences 

of the actors (competitive or cooperative)

• PE signals for others are distinct from PE signals tracking value for oneself
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Fig. 1. Social Value Learning task and learning model
(a) Each trial began with a fixation cross (~2 secs) indicating the onset of a new trial. Two 

unique fractal stimuli representing two decision options were displayed until a decision was 

submitted by keypress (limited to 3 secs). The chosen stimulus was subsequently framed for 

~1.5 secs, after which the outcomes for the decision-maker and the social partner were 

revealed for 2 secs. In each of six conditions, each participant made 30 choices between two 

options associated with probabilistic gain (or loss) for the decision-maker, as well as 

probabilistic gain (or loss) for a social partner.

(b) Hybrid learning model of self-value and preference-dependent other-value. Choices 

produced an outcome for the actor and a different outcome for the social partner 

simultaneously. Following typical reinforcement learning algorithms, rewards received for 

self (blue circle) update the expected value (EV) of a choice at time t via prediction errors 

(PE) weighted by a learning rate (α). Rewards that are delivered to the social partner (red 

circle - ‘other’) are also updated by the same mechanism with the difference that the value is 

subjectively transformed (pink inset) according to social preferences, represented by the γ 

coefficient. For example, a competitive orientation will transform a positive outcome to a 

negative subjective value, thus producing a negative prediction error.
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Fig. 2. Conditions of the experiment testing for ‘Self’ and ‘Other’ Prediction Error
In each condition participants learn by trial and error the following contingencies: (a) Self 

PE (1): Option A offers +70 to the decision maker and +70 to the Other participant [S+/O+] 

with P=80% or −70 to the decision maker and +70 to the Other participant [S−/O+] with 

P=20%. Option B offers the same outcomes but with opposite contingencies [S+/O+] with 

P=20% or [S−/O+] with P=80%. Notice that both options offer positive outcomes to Other; 

therefore, choice behavior and learning is primarily guided by Self PE.

(b) Self PE (2): Option A offers +70 to the decision maker and −70 to the Other participant 

[S+/O−] with P=80% or −70 to the decision maker and −70 to the Other participant [S−/O−] 

with P=20%. Option B offers the same outcomes but with opposite contingencies. Notice 

that both options offer negative outcomes to Other.

(c) Other PE (1): Option A offers +70 to the decision maker and +70 to the Other participant 

[S−/O−] with P=80% or +70 to the decision maker and −70 to the Other participant [S−/O−] 

with P=20%. Option B offers the same outcomes but with opposite contingencies. Notice 

that both options offer positive outcomes to Self; therefore, choice behavior and learning is 

primarily guided by Other PE.

(d) Other PE (2): Option A offers −70 to the decision maker and +70 to the Other participant 

[S+/O+] with P=80% or −70 to the decision maker and −70 to the Other participant [S+/O−] 

with P=20%. Option B offers the same outcomes but with opposite contingencies. Notice 

that both options offer negative outcomes to Self.
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(e) Self and Other PE (1): In this and the next condition both Self and Other PE vary. Option 

A offers −70 to the decision maker and +70 to the Other participant [S−/O+] with P=80% or 

+70 to the decision maker and −70 to the Other participant [S+/O−] with P=20%. Option B 

offers the same outcomes but with opposite contingencies.

(f) Self and Other PE (2): Option A offers +70 to the decision maker and +70 to the Other 

participant [S+/O+] with P=80% or −70 to the decision maker and −70 to the Other 

participant [S−/O−] with P=20%. Option B offers the same outcomes but with opposite 

contingencies.
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Fig. 3. Self and Other Prediction Error
(a) Prediction error signal for self-value. In each of 72 subjects, prediction errors associated 

with updating of self-value (PES) were estimated across four experimental conditions and 

subsequently regressed to hemodynamic activity. The four conditions are depicted in Fig. 

2a, 2b, 2e, 2f, and correspond to the conditions in which self-value differed between the two 

available options. Upper panel: Consistent with previous reports of PE-related hemodynamic 

activity, a random-effects analysis across the four conditions revealed PES-related activity in 

ventral striatum (coordinates 4,10, −4; P < .005, FWE whole-brain-corrected). Lower panel: 

Z-values in ventral striatum are plotted separately for each of the four conditions (most 

significant voxel in striatum plotted for each condition: 6,4, −4; −8,20, −2; 16,6, −8; 28, 

−82, −22, respectively). For example, the first bar corresponds to the condition in which the 

two options yield either a positive or negative outcome to Self and always a positive 

outcomes to Other, while the last bar corresponds to the condition in which the two options 

yield positive or negative outcomes for both Self and Other. Z-Values for each of the four 

conditions exceeded the threshold for P < .001 (equivalent Z-value: 3.09), indicating striatal 

PES signal to be evident both within and across conditions.

(b) Prediction error signal for other-value. Preference-dependent prediction errors associated 

with updating of other-value (PES) were estimated across four experimental conditions and 

subsequently regressed to hemodynamic activity. The four conditions are depicted in Fig. 

2c, 2d, 2e, 2f, and correspond to the conditions in which other-value differed between the 

two available options. Upper panel: A random-effects analysis across the four conditions 

revealed PEO-related activity in medial prefrontal cortex (MPFC; coordinates 10,54,0; P < .

001, FWE whole-brain-corrected). Lower panel: Z-values in MPFC (coordinates 4,60,14; 

12,58,12; 4,58,2; 10,50,2) are plotted separately for each of the four conditions. Z-Values 

for each of the four conditions exceeded the threshold for P < .001 (equivalent Z-value: 

3.09), indicating MPFC PEO signal to be evident both within and across conditions.

(c) Beta values representing fitted responses to self [blue] and other [red] PE in 

medialprefrontal cortex (coordinate 10,54,0) and ventral striatum (coordinate 4,10,-4). The 

interaction of Region x PE type is significant (F71 = 9.3; P < .005).
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Fig. 4. Prediction error for “Other Values” (VO)
(a) We divided the group of the 72 participants into three groups based upon an independent 

assessment of Social Value Orientation (see Methods). In this separate task, participants 

chose between allocations of an endowment between oneself and an anonymous social 

partner, thus revealing the Cooperative, Individualistic, or Competitive orientation of each 

participant. We used the mean SVO ± ½ std. deviation as boundary criterion. For each SVO-

determined group, the average γ (i.e., fitted parameter determining social preferences in the 

hybrid learning model) is plotted on the y-axis. Positive γ is consistent with a cooperative 

orientation, while negative γ is consistent with a competitive orientation.

(b) For each subject we tested a binary logistic regression model with the ‘outcome to self’ 

and ‘outcome to other’ received on the previous trial as predictors; the choice (stay or 

switch) in the present trial as the dependent variable. We then created three groups based on 

the estimated betas associated with VO, using the mean beta value ± ½ std. deviation as 

boundary criterion. Positive beta values correspond to a higher probability of choosing 

“stay” when VO of the previous trials is positive. The average γ (i.e., fitted parameter 

determining social preferences in the hybrid learning model) is plotted on the y-axis for each 

group.

(c) Differential BOLD response to positive and negative PE as a function of Valence, Social 

Value Orientation and time. X-axis represents time since onset of outcome screen. Y-axis 

represents Social Value Orientation. The heatmap represents fitted BOLD response to 

positive PE minus negative PE in 72 subjects. To facilitate comparison, we multiplied the 

PEO-related hemodynamic response by each decision-maker’s γ, thus transforming the PEO 

signal to the perspective of the ‘other’ social partner. Thus, the positive PEO of the 

cooperative decision-maker (better than expected from the perspective of ‘other’) becomes 

comparable to the negative PEO of the competitive decision-maker (again, better than 

expected from the perspective of ‘other’). Insets on the right depict peristumulus time 
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histograms to positive and negative PE for the three groups. Dotted line represents the 

boundaries separating the three groups.

(d) Correlation (r = .37; P < .005) between social value orientation (X-Axis) and difference 

in BOLD response 4 secs after the onset of the outcome screen (Y-axis).
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Table 1

Relationship of behavioral PEO to neural response in MPFC. Note MPFC activity is negatively related to the 

modeled PEO, regardless of social preference

Subject‘s Social Outcome Behavioral MPFC

Preference to Other PEO Response

Cooperative Positive $ (+) Positive (+) Negative (−)

Cooperative Negative $ (−) Negative (−) Positive (+)

Individualistic Positive $ (+) Zero (±0) Negligible

Individualistic Negative $ (−) Zero (±0) Negligible

Competitive Positive $ (+) Negative (−) Positive (+)

Competitive Negative $ (−) Positive (+) Negative (−)
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