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Abstract

Purpose of review—The development of culture-independent bacterial DNA sequencing 

techniques and integration into research practice has led to a burgeoning interest in the 

microbiome and its relevance to human health and disease. Introduction into the study of chronic 

rhinosinusitis in the past few years has shaped current thinking on the role of bacteria in the 

disease process.

Recent findings—Rich and diverse populations of bacteria inhabit the sinonasal cavity at all 

times. Decreased bacterial richness and diversity may be associated with disease state and 

outcomes.

Summary—Although there is much to be explored, the sinus microbiome appears to have 

potentially promising roles in many aspects of sinus health and disease.
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INTRODUCTION

Chronic rhinosinusitis (CRS) is a common, chronic inflammatory disorder of the paranasal 

sinuses. Multiple host and environmental factors have been implicated in the development of 

CRS; however, understanding the role of microbes has become increasingly important. The 

simple concept of a host interacting with a single pathogen has been replaced by a more 

complex combination of relationships between communities of microbes among themselves 

and the host. The microbiome is the potentially diverse community of microbiota existing in 

a delicate symbiotic relationship within a human microenvironment. As the anatomic region 

responsible for initially filtering the inspired external environment, the warm and moist 

sinonasal cavity is, not surprisingly, colonized by a high burden of microbes. Our 

understanding of this complex human–microbial community relationship in the sinuses has 
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grown significantly in recent years. Paralleling groundbreaking research in the 

gastrointestinal tract, the native microbial community of the paranasal sinuses likely 

contributes to maintaining a healthy state of the sinonasal mucosa, whereas dysbiosis – 

disruption of this balance – may contribute to inflammation through any number of 

mechanisms [1, 2]. However, much investigation is still needed in this area to understand the 

composite role of bacteria and other microorganisms in health and disease states, prior to 

initiation of a carefully prepared and rational treatment aimed at microbiome manipulation. 

This article aims to review our current understanding of the bacterial communities 

inhabiting the paranasal sinuses in both healthy and diseased states, and to explore the many 

challenges to studying these microbiota.

The important causal effect of microbial community dysbiosis in local and systemic 

inflammatory processes has been illustrated through extensive study of the gut epithelium in 

allergic and inflammatory disorders. Commensal gut microbiota promote immunologic 

development and maturation, direct immune homeostasis, and influence susceptibility to 

inflammatory and/or allergic disease [3–5]. A stable, diverse microbiome contributes to 

fortification of the epithelial barrier, development of innate and adaptive immune properties 

including immunoglobulin production [6, 7], induction of regulatory T cells [8], nutrient 

metabolism [9], and can stimulate formation of the mucus blanket [10]. Hence, maintenance 

of a diverse, healthy consortium of commensal organisms promotes many beneficial 

functions for the sinus, as well as serving the critical function of pathogen exclusion. 

Commensal microbes can compete with pathogens by acting as simple niche fillers or 

through active direct competitive inhibition. For example, a negative correlation between 

Staphylococcus epidermidis and S. aureus has been observed in the nasal cavity [11], 

possibly because certain strains of S. epidermidis produce a serine protease that directly 

inhibits S. aureus biofilm formation [12]. Recently, Yan et al. [13▪] identified 

Corynebacterium pseudodiphtheriticum as a negative predictor of S. aureus in the sinonasal 

cavity and demonstrated an antagonistic effect in vitro using a bacterial coculture assay. 

Similarly, Bessesen et al. [14], observed negative associations between methicillin-resistant 

S. aureus and a variety of microorganisms, including Streptococcus mitis, in the anterior 

nares of hospitalized patients.

These concepts logically lead to the potential therapeutic value of prebiotic or probiotic 

therapy. Well tolerated and therapeutically effective provision of beneficial microbes to a 

patient first requires a thorough understanding of the patient-specific pathophysiologic 

process to appropriately select directed therapy to achieve a beneficial change. Blind 

introduction of ‘good bacteria’ could result in any number of possible effects, given the 

myriad, largely uncharted, relationships between bacterial products and human 

physiological, metabolic, and immunological processes. In a heterogeneous disease process 

such as CRS, this is likely to result in a type II error (failure to reject a false null hypothesis), 

as has been the case in prior study for allergic rhinitis [15]. Interestingly, it has become 

recently apparent that early and/or frequent antibiotic administration results in deleterious 

effects even in a much delayed fashion, beyond the initial microbiome disturbance known to 

occur [16–19, 20▪].
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CURRENT SINUS MICROBIOME LITERATURE REVIEW

The prior notion that the paranasal sinuses were sterile in the healthy state has been largely 

abandoned, as the presence of viable bacteria in healthy sinuses is now well documented. 

Early studies utilizing culture-based microbial detection have now been replaced in the 

research setting with detection and identification of microbes using nucleic acid-based 

methods, which appear to be less biased and more sensitive than traditional culture [21, 22▪]. 

Using these molecular methods, numerous studies in recent years have described the rich 

and complex bacterial communities present in the paranasal sinuses of healthy adults, and 

documented a surprising preponderance of anaerobic organisms [23–25, 26▪, 27▪]. Also of 

note, the total amount of bacteria present in healthy and diseased sinuses appears to be 

similar, meaning that it is likely not the case that chronically diseased sinuses simply harbor 

more bacteria [28, 29▪].

Yan et al. [13▪] recently examined the sinonasal microbiome of 12 healthy adults, surveying 

the anterior nasal cavity, middle meatus, and sphenoethmoid recess over 3 weeks. The 

authors noted a temporally stable, highly individualized baseline microbiome, with some 

differences in microbiota between the anterior nares and deeper anatomic subsites. Although 

a thorough comparison among individual sinuses has yet to be published, these findings 

highlight two points: in healthy study participants, the sinonasal microbiome is relatively 

stable, as has been noted in previous study of the anterior nares [11], and the microbiome is 

highly individualized even in health. Recent large-scale studies of the human microbiome 

have discovered that many microbial community structures may promote health, despite the 

significant interpersonal variability, indicating that community function may be more 

important than the individual community members [30▪]. Another study that examined 

middle meatus swabs from 28 healthy study participants found that many harbored 

respiratory pathogens at low abundance, suggesting that pathogenic bacteria may be 

transient or permanent members of the healthy microbiome at relatively low amounts, when 

kept in check by a diverse healthy microbial community [27▪]. This finding suggests that an 

initial perturbation of the microbiome is required to remove the community check on a 

pathogen and allow for a ‘bloom’ that initiates a cascade of processes resulting in disease.

Recent review articles have thoroughly summarized the literature on microbial communities 

present in healthy and chronically diseased sinuses [31, 32]. There is no current consensus 

on the most common bacteria present in the healthy or diseased state, and there is no clear 

‘causative’ or ‘protective’ single organism. The bacterial communities identified in prior 

studies have varied, likely because of the heterogeneous nature of the disease and different 

patient populations, but also because of variations in sampling techniques, laboratory 

protocols, bacterial primer selection, sequencing methods, and data analysis pipelines, 

making cross-study comparisons extremely difficult. Even so, a few patterns do emerge. 

Propionibacterium acnes, S. epidermidis, S. aureus, and Corynebacterium spp. have been 

frequently identified as prevalent and abundant species in healthy controls [23, 25, 26▪, 27▪]. 

Organisms such as S. aureus and coagulase negative staphylococci may behave in a 

commensal or pathogenic fashion based on strain, bacterial gene expression, environmental 

conditions, and perhaps based on surrounding microbial interactions.

Ramakrishnan et al. Page 3

Curr Opin Otolaryngol Head Neck Surg. Author manuscript; available in PMC 2016 February 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Just as in the healthy state, there is not a universally accepted composition of the 

microbiome in CRS. However, some commonalities have been identified in multiple study 

findings. Although hundreds of bacterial species have been identified in CRS, anaerobes and 

S. aureus are often found to be significantly more prevalent and abundant in CRS versus 

healthy controls [23, 25, 26▪, 27▪, 33▪]. As mentioned earlier, despite this increased 

abundance of pathogenic bacteria, several groups have reported no difference in the overall 

quantity of bacteria present in CRS patients versus healthy patients [24, 27▪, 33▪]. Not 

surprisingly, reduced species richness and diversity is often found in CRS [23, 24, 33▪], 

further supporting the hypothesis that a shift in the bacterial community, rather than an 

influx of pathogenic bacteria, is associated with CRS. Conceptualizing these communities 

from a metagenomics and metatranscriptomics perspective, it may be that the function of the 

microbial community as a whole is the relevant determinant for health or disease.

As detailed study of the sinus microbiome is in its infancy, longitudinal studies of individual 

host and environmental influences have not yet been performed. However, cross-sectional 

analysis of cohorts of diseased patients have identified the presence of asthma and purulence 

[29▪], or a history of tobacco use [34], as factors that are associated with statistically 

different bacterial communities. Interestingly, in the first study, a number of patient-specific 

factors were examined, and the use of topical saline or topical intranasal steroids, or the 

presence of nasal polyps was not a predictor of altered microbiome composition. Similar 

findings were noted in a cross-sectional cohort of postoperative CRS with polyp patients, 

where the use of saline irrigations with or without budesonide was not found to influence the 

sinus microbiome [35]. To date, properly designed studies to evaluate for the effect of 

topical therapies on the microbiome have not been performed, so no real conclusions can be 

made. The effect of cigarette smoke and airway irritants, such as pollution, on bacteria has 

been studied in other contexts and it is not surprising that smokers appear to have unique 

bacterial signatures within the sinuses. A preliminary cross-sectional examination found that 

‘ever-smokers’ – those with a history of either current or former smoking – differed from 

nonsmokers, indicating that the effect of cigarette smoking may result in long-lasting 

changes to the airway microbiome [34]. This interesting finding requires follow-up 

investigation, as well as expansion to those exposed to secondhand smoke.

Mounting evidence in humans suggests that a more diverse microbiome is associated with 

improved health outcomes and less disease burden across a broad range of abnormalities 

[36, 37]. For example, studies of the gut microbiome suggest that antibiotic administration 

can result in decreased diversity, which in some patients may be prolonged [16, 18, 38]; 

these patients are at increased risk of potentially life-threatening Clostridium difficile 

infections [39–41]. Similarly, a recent study has reported that patients with more diverse 

sinonasal microbiomes have better postsurgical outcomes [29▪], establishing that the 

microbiome can serve at least as a disease modulator. In this study, the authors found that 

greater baseline microbial diversity in the middle meatus, which was characterized by a 

higher abundance of corynebacteria, was associated with more favorable postsurgical 

endoscopy scores and less need for antibiotics or procedural intervention at 6 months of 

follow-up. Early evidence has also shown that treatment interventions including surgery, 

antibiotics, and sinus rinses have the ability to alter the bacterial community and even 
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ultimately increase diversity after an initial drop in the complexity of the microbiome [20▪, 

42▪]. In summary, a diverse assemblage of microorganisms colonizes the sinonasal cavities 

in the healthy state and perturbations in the types and quantities of microorganisms making 

up these communities have been described in multiple studies of CRS. It is likely that the 

magnitude and quality of the dysbiosis that arises in an individual’s sinonasal cavities can 

directly impact their disease severity and outcomes.

CHALLENGES

Bacteria have been the most studied of the microbes in relation to human health and disease; 

however, there is growing evidence that fungi, viruses, and bacteriophages may also 

contribute to the ‘metaorganism.’ Many studies have shown no difference in fungal 

prevalence between CRS and controls, and although findings have differed, the fungal 

microbiome may be more important for CRS with nasal polyps or other phenotypes of CRS 

than for CRS without nasal polyps [26▪]. Although no studies to date have thoroughly 

profiled the viral or bacteriophage populations present in the paranasal sinuses, evidence 

suggests that upper airway rhinovirus infection can alter the nasopharyngeal microbiome 

[43]. The relative absence of fungal and viral study is likely a lag behind the bacterial 

microbiome research explosion, as the initial microbial detection techniques focused 

primarily on the numerically dominant bacteria. As methods for designing reliable primers 

and comprehensive sequence databases are now being validated for study of fungi and 

viruses, we expect that a more robust understanding of the microbial diversity of the 

sinonasal cavities will emerge.

Sampling technique is also somewhat variable between studies, making cross-study meta-

analyses a challenge. It appears that the anterior nasal cavity microbiome differs from the 

middle meatus and sphenoethmoid recess [13▪], but the optimal site of sampling has yet to 

be agreed upon. The middle meatus is frequently used as a representative sampling site for 

the deeper sinuses, given its high agreement in culture comparison studies with the 

maxillary sinus [44], likely resulting from its position within the anterior ethmoid drainage 

pathway of the maxillary, anterior ethmoid, and frontal sinuses [45]. Owing to its relative 

ease of access in the clinical and research setting, and presumed similarity to deeper sinuses, 

this area has been used for sampling in numerous studies to date. Furthermore, surface 

bacteria far outweigh intramucosal bacteria, which have recently been documented to occur 

in sinus disease states at a low relative amount. It is unclear if biopsies of tissue are required 

to provide a more nuanced means of sampling microbes or if aggressive surface swabbing is 

sufficient [46▪, 47].

An additional complication of microbiome studies is the reliance on identification of 

bacterial DNA and PCR assay, because PCR amplification of bacterial DNA may be from 

inactive or dead bacteria, or cells in the process of phagocytosis and DNA digestion. We 

initially assessed bacterial DNA obtained from surface swabs of the middle meatus in 

parallel using quantitative PCR and culture in nonspecific media and found that DNA counts 

amplified with panbacterial primers used in bacterial microbiome study correlated with 

colony counts obtained by culture (Fig. 1 [48]). This suggests that much of the bacterial 

DNA identified by surface swab using culture-independent methods is live and functional. 
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Although primer sets, sequencing technology, sequence databases, and tools for sequence 

alignment and statistical analysis vary, some common concepts can be examined. 

Specifically, it appears that richness (i.e., number of species present) and diversity (i.e., 

broad and even distribution of numerous organisms) are relevant measures.

Although bacteria are certainly easier to study at this time, this does not necessarily make 

them more important in disease pathogenesis. Current technology has allowed us to define 

bacterial populations with DNA-based detection methods such as 16S ribosomal RNA 

(rRNA) gene sequencing; however, enumerating the bacterial DNA and genes present is 

only the initial step, as we ultimately desire to understand activity and function. The real 

question is not simply what microbes are there, but ‘what are they doing there?’ Thus, 

addressing microbial community functionality through other Omic technologies such as 

metagenomics, metatranscriptomics, metaproteomics, or metabolomics, is critical as there 

are likely many ‘normal’ communities of microbes that can achieve the same healthy 

symbiosis with the host. Associations between bacterial communities and disease or subject 

metadata can be found, but are these changes an active part of the disease process, or simply 

a by-product? It remains a challenge to determine whether microbiome alterations initiate or 

propagate disease, can modulate the efficacy of therapeutic intervention, or are a by-product 

of the disease process or medications commonly administered to these patients [2]. And, if 

they are an active part of sinus physiology, how do they function, and how can we benefit 

from this understanding?

CONCLUSION

Although we acknowledge the high interpersonal variability in the makeup of the sinonasal 

microbiome and that host and external factors may influence bacterial community structure 

and function, it is very possible that the microbiome can influence both the natural history of 

a disease and its therapeutic outcomes. Many challenges remain in determining the optimal 

manner for research examination; however, the initial studies suggest potential for value in 

the nascent field and consideration for relevance in global epithelial function.
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KEY POINTS

• Rich and diverse populations of bacteria are present in the sinonasal cavities, 

even in the healthy state.

• Culture-independent detection has led to an appreciation of the abundance of 

anaerobic organisms in the sinuses.

• Bacterial richness and diversity may play a role in the maintenance of health, 

development of disease, and determination of treatment outcome.

• Future study will include the potential for fungi, viruses, and bacteriophages to 

influence the functional activity of the microbiome.
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FIGURE 1. 
Total bacteria/ml in each of 25 sample swabs obtained from 14 CRS patients and nine 

healthy control study participants, as determined by counting colonies grown with 

traditional culture using Amies media (BD Diagnostic Systems, Franklin Lakes, New 

Jersey), and with culture-independent [48] QPCR (line of fit r2 = 0.292, P = 0.0053 using 

paired t-test and multivariate linear regression). Each point represents an average of colonies 

grown in duplicate culture and DNA amplified with triplicate QPCR. QPCR, quantitative 

PCR.
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