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Abstract

Missing data estimation is an important challenge with high-dimensional data arranged in the form 

of a matrix. Typically this data matrix is transposable, meaning that either the rows, columns or 

both can be treated as features. To model transposable data, we present a modification of the 

matrix-variate normal, the mean-restricted matrix-variate normal, in which the rows and columns 

each have a separate mean vector and covariance matrix. By placing additive penalties on the 

inverse covariance matrices of the rows and columns, these so called transposable regularized 

covariance models allow for maximum likelihood estimation of the mean and non-singular 

covariance matrices. Using these models, we formulate EM-type algorithms for missing data 

imputation in both the multivariate and transposable frameworks. We present theoretical results 

exploiting the structure of our transposable models that allow these models and imputation 

methods to be applied to high-dimensional data. Simulations and results on microarray data and 

the Netflix data show that these imputation techniques often outperform existing methods and 

offer a greater degree of flexibility.
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1. Introduction

As large datasets have become more common in biological and data mining applications, 

missing data imputation is a significant challenge. We motivate missing data estimation in 

matrix data with the example of the Netflix movie rating data [2]. This dataset has around 

18,000 movies (columns) and several hundred thousand customers (rows). Customers have 
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rated some of the movies, but the data matrix is very sparse with a only small percentage of 

the ratings present. The goal is to predict the ratings for unrated movies so as to better 

recommend movies to customers. The movies and customers, however, are very correlated 

and an imputation method should take advantage of these relationships. Customers who 

enjoy horror films, for example, are likely to rate movies similarly, in the same way that 

horror films are likely to have similar ratings from these customers. Modeling the ratings by 

the relationships between only the movies or only the customers as with multivariate 

methods and k-nearest neighbor methods, seems shortsighted. Customer A's rating of Movie 

1, for example, is related to Customer B's rating of Movie 2 by more than simply the 

connection between Customer A and B or Movie 1 and 2. In addition, modeling ratings as a 

linear combination of the ratings of movies or a combination of customer ratings as with 

singular value decomposition (SVD) methods fails to capture a more sophisticated 

connection between the movies and customers [21]. Bell et. al, in their discussion of 

imputation for the Netflix data, call all of these methods either “movie-centric” or “user-

centric” [1].

We propose to directly model the correlations among and between both the customers 

(rows) and the movies (columns). Thus, our model is transposable in the sense that it treats 

both the rows and columns as features of interest. The model is based on the matrix-variate 

normal distribution brought to our attention by Efron [8], which has separate covariance 

matrix parameters for both the rows and the columns. Thus, both the relationships between 

customers and between movies are incorporated in the model. If matrix-variate normal data 

is strung out in a long vector, then it is distributed as multivariate normal with the 

covariance related to the original row and column covariance matrices through their 

Kronecker product. This means that the relationship between Customer A's rating of Movie 

1 and Customer B's rating of Movie 2 can be modeled directly as the interaction between 

Customers A and B and Movies 1 and 2.

In practice, however, transposable models based on the matrix-variate normal distribution 

have largely been of theoretical interest and have rarely applied to real datasets because of 

the computational burden of high-dimensional parameters [13]. In this paper, we introduce 

modifications of the matrix-variate normal distribution, specifically restrictions on the 

means and penalties on the inverse covariances, that allow us to fit this transposable model 

to a single matrix of data. The penalties we employ give us non-singular covariance 

estimates that have connections to the singular value decomposition and graphical models. 

With this theoretical foundation, we present computationally efficient Expectation 

Maximization-type (EM) algorithms for missing data imputation. We also develop a two-

step process for calculating conditional distributions and an algorithm for calculating 

conditional expectations of scattered missing data that has the computational cost of 

comparable multivariate methods. These contributions allow one to fit this parametric 

transposable model to a single data matrix at reasonable computational cost, opening the 

door to numerous applications including user-ratings data.

We organize the paper beginning with a review of the multivariate regularized covariance 

models (RCM) and a new imputation method based on these models, Section 2. The RCMs 

form the foundation for the transposable regularized covariance models (TRCM) introduced 
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in Section 3. We then present new EM-type imputation algorithms for transposable data, 

Section 4, along with a one-step approximation in Section 4.2. Simulations and results on 

microarray and the Netflix data are given in Section 5, and we conclude with a discussion of 

our methods in Section 6.

2. Regularized Covariance Models and Imputation with Multivariate Data

Several recent papers have presented algorithms and discussed applications of regularized 

covariance models (RCM) for the multivariate normal distribution [11, 22]. These models 

regularize the maximum likelihood estimate of the covariance matrix by placing an additive 

penalty on the inverse covariance or concentration matrix. The resulting estimates are 

nonsingular, thus enabling covariance estimation when the number of features is greater than 

the number of observations. In this section, we give a review of these models and briefly 

describe a new penalized EM algorithm for imputation of missing values using the 

regularized covariance model.

Let Xi ~ N(0, Δ) for i = 1 … n, i.i.d. observations and p features. Thus, our data matrix, X is 

n × p with covariance matrix Δ ∈ ℜp × p. The penalized log-likelihood of the regularized 

covariance model is then proportional to

(1)

where  and q is either 1 or 2, i.e. the sum of the absolute value or square of 

the elements of Δ−1. The penalty parameter is ρ. With an L2 penalty, we can write the 

penalty term as .

Maximizing ℓ(Δ) gives the penalized-maximum likelihood estimate (MLE) of Δ. Friedman 

et. al [11] present the graphical lasso algorithm to solve the problem with an L1 penalty. The 

graphical lasso uses the lasso method iteratively on the rows of Δ̂−1, and gives a sparse 

solution for Δ̂−1. A zero in the ijth component of Δ−1 implies that variables i and j are 

conditionally independent given the other variables. Thus, these penalized-maximum 

likelihood models with L1 penalties can be used to estimate sparse undirected graphs. With 

an L2 penalty, the problem has an analytical solution [22]. If we take the singular value 

decomposition (SVD) of X, X = UDVT, with d = diag(D), then

(2)

Thus, the inclusion of the L2 penalty simply regularizes the eigenvalues of the covariance 

matrix. When p > n and letting r be the rank of X, the final n − r values of θ are constant and 

are equal to . While a rank-k SVD approximation uses only the first k eigenvalues, 

the L2 RCM gives a covariance estimate with all non-zero eigenvalues. Regularized 

covariance models provide an alternative method of estimating the covariance matrix with 

many desirable properties [18].
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With this underlying model, we can form a new missing data imputation algorithm by 

maximizing the observed penalized log-likelihood of the regularized covariance model via 

the EM algorithm. Our method is the same as that of the EM algorithm for the multivariate 

normal described in Little and Rubin [16], except for an addition in the maximization step. 

In our M step, we find the MLE of the RCM covariance matrix instead of the multivariate 

normal MLE. Thus, our method fits into a class of penalized EM algorithms which give non-

singular covariance estimates [12], thus enabling use of the EM framework when p > n. We 

give full details of the algorithm, which we call RCMimpute, in Supplementary Materials. 

As we will discuss later, this imputation algorithm is a special case of our algorithm for 

transposable data and forms an integral part of our one-step approximation algorithm 

presented in Section 4.2.

3. Transposable Regularized Covariance Models

As previously mentioned, we model the possible dependencies between and within the rows 

and columns using the matrix-variate normal distribution. In this section, we first present a 

modification of this model, the mean-restricted matrix-variate normal distribution. We 

confine the means to limit the total number of parameters and to provide interpretable 

marginal distributions. We then introduce our transposable regularized covariance models 

by applying penalties to the covariances of our matrix-variate distribution. Finally, we 

present the penalized-maximum likelihood parameter estimates and illustrate the 

connections between these estimates and those of multivariate models, the singular value 

decomposition and graphical models.

3.1. Mean-Restricted Matrix-variate Normal Distribution

We introduce the mean-restricted matrix-variate normal, a variation on the matrix-variate 

normal, presented by Gupta and Nagar [13]. A restriction on the means is needed because 

the matrix-variate normal has a mean matrix, M, of the same dimension as X, meaning that 

there are n × p mean parameters. Since the matrix-variate normal is mostly applied in 

instances where there are several independent samples of the random matrix X [7], this 

parameter formulation is appropriate. We propose, however, to use the model when we only 

have one matrix X from which to estimate the parameters. Also, we wish to parameterize 

our model so that the marginals are multivariate normal, thus easing computations and 

improving interpret-ability.

We denote the mean-restricted matrix-variate normal distribution by X ~ Nn,p (ν, μ, Σ, Δ) 

with X ∈ ℜn × p, the row mean ν ∈ ℜn, the column mean μ ∈ ℜp, the row covariance Σ ∈ 

ℜn × n and the column covariance Δ ∈ ℜp × p. If we place the matrix X into a vector of length 

np, we have vec(X) ~ N (vec(M), Ω) where , and Ω = Δ ⊗ Σ. Thus, our 

mean-restricted matrix-variate normal model is a multivariate normal with a mean matrix 

composed of additive elements from the row and column mean vectors and a covariance 

matrix given by the Kronecker product between the row and column covariance matrices. 

This covariance structure can been seen as a tensor product Gaussian process on the rows 

and columns, an approach explored in [4, 23].
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This distribution implies that a single element, Xij has mean νi + μj along with variance Σii 

Δjj, a mean and variance component from the row and column to which it belongs. As 

pointed out by a referee, this can be viewed as the following random effects model: Xij = νi 

+ μj + εij, where εij ~ N(0, Σii Δjj), which has two additive fixed effects depending on the 

row and column means and a random effect whose variance depends on the product of the 

corresponding row and column covariances. This model shares the same first and second 

moments as elements from the mean-restricted matrix-variate normal. It does not, however, 

capture the Kronecker covariance structure between the elements of X unless both the row 

and column covariances, Σ and Δ are diagonal. This random effect model differs from the 

more common two-way random effects model with additive errors, which assumes that 

errors from the two sources are independent. Our model, however, assumes that the errors 

are related and models them as an interaction effect. A similar random effects approach was 

taken in [24], also using a Kronecker product covariance matrix.

To further illustrate the model, we note that the rows and columns are both marginally 

multivariate normal. The ith row, denoted as Xir, is distributed as, Xir ~ N (νi + μ, Σii Δ) and 

the jth column denoted by Xcj, is distributed as Xcj ~ N (ν + μj, Δjj Σ). The familiar 

multivariate normal distribution is a special case of the mean-restricted matrix-variate 

normal as seen by the following two statements. If Σ = I and ν = 0 then, X ~ N (μ, Δ), and if 

Δ = I and μ = 0 then, X ~ N (ν, Σ). Also, two elements from different rows or columns are 

distributed as a bivariate normal, 

. Thus, our model is more 

general than the multivariate normal, with the flexibility to encompass many different 

marginal multivariate models.

For completeness, the density function of this distribution is

where etr() is the exponential of the trace function. Hence, our formulation of the matrix-

variate normal distribution adds restrictions on the means, giving the distribution desirable 

properties in terms of its marginals and easing computation of parameter estimates, 

discussed in the following section.

3.2. Transposable Regularized Covariance Model (TRCM)

In the previous section, we have reformulated the distribution to limit the mean parameters 

and in this section, we regularize the covariance parameters. This allows us to obtain non-

singular covariance estimates which are important for use in any application, including 

missing data imputation.

As in the multivariate case, we seek to penalize the inverse covariance matrix. Instead of 

penalizing the overall covariance, Ω, we add two separate penalty terms, penalizing the 

inverse covariance of the rows and of the columns. The penalized log-likelihood is thus
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(3)

where  and qr and qc are either 1 or 2, i.e. the sum of the absolute value of 

the matrix elements or squared elements. ρr and ρc are the two penalty parameters. Note that 

we will refer to the four possible types of penalties as Lqr : Lqc. Placing separate penalties on 

the two covariance matrices is not equivalent to placing a single penalty on the Kronecker 

product covariance matrix Ω. Using two separate penalties gives greater flexibility, as the 

covariance of the rows and columns can be modeled separately using differing penalties and 

penalty parameters. Also, having two penalty terms leads to simple parameter estimation 

strategies.

With transposable regularized covariance models, as with their multivariate counterpart, the 

penalties are placed on the inverse covariance matrix, or concentration matrix. Estimation of 

the concentration matrix has long been associated with graphical models, especially with an 

L1 penalty which is useful to model sparse graphical models [11]. Here, a non-zero entry of 

the concentration matrix, Σij ≠ 0, means that the ith row conditional on all other rows is 

correlated with row j. Thus, a “link” is formed in the graph structure between nodes i and j. 

Conversely, zeros in the concentration matrix imply conditional independence. Hence, since 

we are estimating both a regularized row and column concentration matrix, our model can 

be interpreted as modeling both the rows and columns with a graphical model.

3.3. Parameter Estimation

We estimate the means and covariances via penalized maximum likelihood estimation. The 

estimates, however, are not unique, but the overall mean, M̂, and overall covariance Ω̂ are 

unique. Hence, ν̂ and μ̂ are unique up to an additive constant and Σ̂ and Δ̂ are unique up to a 

multiplicative constant. We first begin with the maximum likelihood estimation of the mean 

parameters.

Proposition 1—The MLE estimates for ν and μ are

(4)

where Xcj denotes the jth column and Xir the ith row of X ∈ ℜn × p.

Proof: See Supplementary Materials.

The estimates for ν and μ are obtained by centering with respect to the rows and then the 

columns. Note that centering by the columns first will change μ̂ and ν̂, but will still give the 

same additive result. Thus, the order in which we center is unimportant.
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Maximum likelihood estimation of the covariance matrices is more difficult. Here, we will 

assume that the data has been centered, M = 0. Then, the penalized log-likelihood, ℓ(Σ, Δ), 

is a bi-concave function of Σ−1 and Δ−1. In words, this means that for any fixed Σ−1′, ℓ(Σ′, 

Δ) is a concave function of Δ−1, and for any fixed Δ−1′, ℓ(Σ, Δ′) is a concave function of Σ−1. 

We exploit this structure to maximize the penalized likelihood by iteratively maximizing 

along each coordinate, either Σ−1 or Δ−1.

Proposition 2—Iterative block coordinate-wise maximization of ℓ(Σ, Δ) with respect to 

Σ−1 and Δ−1 converges to a stationary point of ℓ(Σ, Δ) for both L1 and L2 penalty types.

Proof: See Supplementary Materials.

While block coordinate-wise maximization (Proposition 2) reaches a stationary point of ℓ(Σ, 

Δ), it is not guaranteed to reach the global maximum. There are potentially many stationary 

points, especially with L1 penalties, due to the high-dimensional nature of the parameter 

space. We also note a few straightforward properties of the coordinate-wise maximization 

procedure, namely that each iteration monotonically increases the penalized log-likelihood 

and the order of maximization is unimportant.

The coordinate-wise maximization is accomplished by setting the gradients with respect to 

Σ−1 and Δ−1 equal to zero and solving. We list the gradients with L2 penalties. With L1 

penalties only the third term is changed and is given in parentheses.

(5)

Maximization with L1 penalties can be achieved by applying the graphical lasso algorithm to 

the second term with the coefficient of the third term the as the penalty parameter. With L2 

penalties, we maximize by taking the eigenvalue decomposition of the second term and 

regularizing the eigenvalues as in the multivariate case, (2). Thus, coordinate-wise 

maximization leads to a simple iterative algorithm, but it comes at a cost since it does not 

necessarily converge to the global maximum. When both penalty terms are L2 penalties, 

however, we can find the global maximum.

3.3.1. Covariance Estimation for L2 Penalties—Covariance estimation when both 

penalties of the transposable regularized covariance model are L2 penalties reduces to a 

minimization problem involving the eigenvalues of the covariance matrices. This problem 

has a unique analytical solution, and thus our estimates, Σ̂ and Δ̂, are globally optimal.

Theorem 1: The global unique solution maximizing ℓ(Σ, Δ) with L2 penalties on both 

covariance parameters is given by the following: Denote the SVD of X as X = UDVT with d 

= diag(D) and let r be the rank of X, then
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(6)

where β* ∈ ℜn+ and θ* ∈ ℜp+ given by

with coefficients

Proof: See Supplementary Materials.

With L2 penalties, maximum likelihood covariance estimates Σ̂ and Δ̂ have eigenvectors 

given by the left and right singular vectors of X respectively. To reveal some intuition as to 

how these covariance estimates compare to other possible eigenvalue regularization 

methods, we present the two gradient equations in terms of the eigenvalues β and θ. (These 

are discussed fully in the proof of Theorem 1).

These are two quadratic functions in β and θ, so the quadratic formula gives us the 

eigenvalues in terms of each other. We see that the eigenvalues regularize the square of the 

singular values by a function of the dimensions, the penalty parameters and the eigenvalues 

of the other covariance estimate. From Theorem 1, L2 : L2 covariance estimation has a 

unique and globally optimal solution, which cannot be said of the other combinations of 

penalties. We give numerical results comparing our TRCM covariance estimates to other 

shrinkage covariance estimators in Supplementary Materials.

Here, we also pause to compare our TRCM model with L2 penalties to the singular value 

decomposition model commonly employed with matrix data. If we include both row and 

column intercepts, we can write the rank-reduced SVD model as , 

where ui and vj are the ith and jth right and left singular vectors, Dr is the rank-reduced 

diagonal matrix of singular values and ε ~ N (0, σ2). Thus, the model appears similar to L2 

TRCM, which can be written as Xij = νi + μj + εij where 

. There are important differences between the models, 

however. First, the left and right singular vectors are incorporated directly into the SVD 

model whereas they form the bases of the variance component of TRCM. Secondly, a rank-

reduced SVD incorporates only the first r left and right singular vectors. Our model uses all 

the singular vectors as β and θ are of lengths n and p respectively. Finally, the SVD allows 

the covariances of the rows to vary with ui, whereas with TRCM the rows share a common 

Allen and Tibshirani Page 8

Ann Appl Stat. Author manuscript; available in PMC 2016 February 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



covariance matrix. Thus, while the SVD and TRCM share similarities, the models differ in 

structure and hence each offers a separate approach to matrix-data.

4. Imputation for Transposable Data

Imputation methods for transposable data are the main focus of this paper. We formulate 

methods based on the transposable regularized covariance models introduced in Section 3. 

Because computational costs have limited use of the matrix-variate normal in applications, 

we let computational considerations motivate the formulation of our imputation methods.

We propose a Multi-Cycle Expectation Conditional Maximization (MCECM) algorithm, 

given by Meng and Rubin [17], maximizing the observed penalized log-likelihood of the 

transposable regularized covariance models. The algorithm exploits the structure of our 

model by maximizing with respect to one block of coordinates at a time, saving considerable 

mathematical and computational time. First, we develop the algorithm mathematically, 

provide some rationale behind the structure of the algorithm via numerical examples, and 

then briefly discuss computational strategies and considerations.

In high dimensional data, however, the MCECM algorithm we propose for imputation is not 

computationally feasible. Hence, we suggest a computation-saving one-step approximation 

in Section 4.2. The foundation of our approximation lies in new methods, given in Theorems 

2 and 3, for calculating conditional distributions with the mean-restricted matrix-variate 

normal. We also demonstrate the utility of this one-step procedure in numerical examples. A 

Bayesian variation of the one-step approximation using Gibbs sampling is given in 

Supplementary Materials.

Prior to formulating the imputation algorithm for transposable models, we pause to address a 

logical question: Why do we not use the multivariate imputation method based on 

regularized covariance models, given that the mean-restricted matrix normal distribution can 

be written as a multivariate normal with vec(X) ~ N(vec(M), Ω)? There are two reasons why 

this is inadvisable. First, notice that TRCMs place an additive penalty on both the inverse 

covariance matrices of the rows and the columns. The overall covariance matrix, Ω, 

however, is their Kronecker product. Thus, converting the TRCM into a multivariate form 

yields a messy penalty term leading to a difficult maximization step. The second reason to 

avoid multivariate methods is computational. Recall that Ω is a np × np matrix which is 

expensive to repeatedly invert. We will see that the mathematical form of the ECM 

imputation algorithm we propose leads to computational strategies that avoid the expensive 

inversion of Ω.

4.1. Multi-Cycle ECM Algorithm for Imputation

Before presenting the algorithm, we first review the notation used throughout the remainder 

of this paper. As previously mentioned, we use i to denote the row index and j the column 

index. The observed and missing parts of row i are oi and mi respectively, and oj and mj are 

the analogous parts of column j. We let m and o denote the totality of missing and observed 

elements respectively. Since with transposable data there is no natural orientation, we set n 

to always be the larger dimension of X and p the smaller.
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4.1.1. Algorithm—We develop the ECM-type algorithm for imputation mathematically, 

beginning with the observed data log-likelihood which we seek to maximize. Letting 

,

(7)

One can show that this is indeed the observed log-likelihood by starting with the 

multivariate observed log-likelihood and using vec(X) and the corresponding vec(M) and Ω. 

We maximize (7) via an EM-type algorithm which, similarly to the multivariate case, gives 

the imputed values as a part of the Expectation step.

We present two forms of the E step, one which leads to simple maximization with respect to 

Σ−1 and the other with respect to Δ−1. This is possible because of the structure of the matrix-

variate model, specifically the trace term. Letting θ = {ν, μ, Σ, Δ}, the parameters of the 

mean-restricted matrix-variate normal, and letting o be the indices of the observed values, 

the E step, denoted by Q(θ|θ′, Xo), has the following form. Here, we assume that X is 

centered.

Thus, we have two equivalent forms of the conditional expectation which we give below.

Proposition 3: The E step is proportional to the following form

(8)

where X̂ = E(X|Xo, θ′) and
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Proof: See Supplementary Materials.

The E step in the matrix-variate normal framework has a similar structure to that of the 

multivariate normal (see Supplementary Materials) with an imputation step (X̂) and a 

covariance correction step (C(jj′) and D(ii′)). The matrices C(jj′) ∈ ℜn × n and D(ii′) ∈ ℜp × p, 

while G(Σ−1) ∈ ℜp × p and F(Δ−1) ∈ ℜn × n. Note that C(jj′) is sparse and only non-zero at 

 when xij and xi′j′ are both missing. C(jj′) is not symmetric, but C(jj′)T = C(j′j), hence 

G(Σ−1) is symmetric. The matrices D(ii′) and F(Δ−1) are structured analogously. Thus, we 

have two equivalent forms of the E step, which will be inserted between the two Conditional 

Maximization (CM) steps to form the MCECM algorithm.

The CM steps which maximize the conditional expectation functions, in Proposition 3, along 

either Σ−1 or Δ−1 are direct extensions of the MLE solvers for the multivariate RCMs. This 

is easily seen from the gradients. Note that we only show the gradients with an L2 penalty, 

since an L1 penalty differs only in the last term.

With an L2 penalty, the estimate is given by taking the eigenvalue decomposition of the 

second term and regularizing the eigenvalues as in (2). The graphical lasso algorithm 

applied to the second term gives the estimate in the case with an L1 penalty.

We now put these steps together and present the Multi-Cycle ECM algorithm for imputation 

with transposable data, TRCMimpute, in Algorithm 1. A brief comment regarding the 

initialization of parameter estimates is needed. Estimating the mean parameters when 

missing values are present is not as simple as centering the rows and columns as in (4). 

Instead, we iterate centering by rows and columns, ignoring the missing values by summing 

over the observed values, until convergence. Secondly, the initial estimates of Σ̂−1 and Δ̂−1 

must be non-singular in order to preform the needed computations in the E step. While any 

non-singular matrices will work, we find that the algorithm converges faster if we start with 

the MLE estimates with the missing values fixed and set to the estimated mean. Some 

properties and numerical comparisons of the MCECM algorithm are given in Supplementary 

Materials.

Algorithm 1

Imputation with Transposable Regularized Covariance Models (TRCMimpute)

1 Initialization:

a. Estimate ν̂ and μ̂ from the observed data.

b. If xij is missing, set xij = ν̂
i + μ̂

j.
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c. Start with non-singular estimates Σ̂ and Δ̂.

2 E Step (Δ): Calculate X̂T Σ̂−1X̂ + G(Σ̂−1).

3 M Step (Δ):

a. Update estimates of ν̂ and μ̂.

b. Maximize Q with respect to Δ−1 to obtain Δ̂.

4 E Step (Σ): Calculate X̂Δ̂−1X̂T + F(Δ̂−1),

5 M Step (Σ):

a. Update estimates of ν̂ and μ̂.

b. Maximize Q with respect to Σ−1 to obtain Σ̂.

6 Repeat Steps 2–5 until convergence.

4.1.2. Computational Considerations—We have presented our imputation algorithm 

for transposable data, TRCMimpute, but have not yet discussed the computations required. 

Calculation of the terms for the two E steps can be especially troublesome and thus we 

concentrate on these. Particularly, we need to find X̂ = E(X|Xo, θ′), and the covariance 

terms, C(jj′) = Cov (Xcj, Xcj′|Xo, θ′) and D(ii′) = Cov (Xir, Xi′r|Xo, θ′). The simplest but not 

always the most efficient way to compute these is to use the multivariate normal conditional 

formulas with the Kronecker covariance matrix Ω, i.e. if we let m be the indices of the 

missing values of vec(X) and o be the observed,

(9)

and, the non-zero elements of C and D corresponding to covariances between pairs of 

missing values come from

(10)

This computational strategy may be appropriate for small data matrices, but even when n 

and p are medium-sized, this approach can be computationally expensive. Inverting Ω can be 

of order O(n3p3), depending on the amount of missing data. So, even if we have a relatively 

small matrix of dimension 100 × 50, this inversion costs around O (1010)! Using Gibbs 

sampling to approximate the calculations of the E steps in either a Stochastic or Stochastic 

Approximation EM-type algorithm [6] is one computational approach (we present Gibbs 

sampling as part of our Bayesian one-step approximation in Supplementary Materials). A 

stochastic approach, however, is still computationally expensive and thus, an approximation 

to our MCECM algorithm is needed.

4.2. One-Step Approximation to TRCMimpute

For high-dimensional transposable data, the imputation algorithm, TRCMimpute, can be 

computationally prohibitive. Thus, we propose a one-step approximation which has a 

computational costs comparable to multivariate imputation methods.
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4.2.1. One-step Algorithm—The MCECM algorithm for imputation with transposable 

regularized covariance models iterates between the E step, taking conditional expectations, 

and the CM steps, maximizing with respect to the inverse covariances. Both of these steps 

are computationally intensive for high-dimensional data. While each iterate increases the 

observed log-likelihood, the first step usually produces the steepest increase in the objective. 

Thus, we propose an algorithm that instead of iterating between E and CM steps, 

approximates the solution of the MCECM algorithm by stopping after only one step.

Many have noted in other iterative maximum likelihood-type algorithms that a one-step 

algorithm from a good initial starting point often produces an efficient, if not comparable, 

approximation to the fully-iterated solution [15, 10]. Thus, for our one-step approximation 

we seek a good initial solution from which to start our CM and E steps. For this, we turn to 

the multivariate regularized covariance models. Recall that all marginals of the mean-

restricted matrix-variate normal are multivariate normal, and hence, if one of the penalty 

parameters for the TRCM model is infinitely large, we obtain the RCM solution (i.e. if ρr = 

∞, we get the RCM solution with penalized covariance among the columns). We propose to 

use the estimates from the two marginal distributions with penalized row covariances and 

penalized column covariances to obtain our initial starting point. This is similar to the 

COSSO one-step algorithm which uses a marginal solution as a good initial starting point, 

[15].

Since the final goal of our approximation algorithm is missing value imputation, and not 

parameter estimation, we then tailor our one-step algorithm to favor imputation. First, 

instead of using the marginal RCM covariance estimates as starting values for the 

subsequent TRCMimpute E and CM steps, we use the marginal estimates to obtain two sets 

of imputed missing values through applying the RCMimpute method to the rows and then 

the columns. We then average the two sets of missing value estimates and fix these to find 

the maximum likelihood parameter estimates for the TRCM model, completing the 

maximization step. In summary, our initial estimates are obtained by applying an EM-type 

method to the marginal models. Biernacki et al. [3] similarly use other EM-type algorithms 

to find good initial starting values for their EM mixture model algorithm. The final step of 

our algorithm is the Expectation step where we take the conditional expectation of the 

missing values given the observed values and the TRCM estimates. Note that the E step of 

the MCECM algorithm includes both an imputation part and a covariance correction part 

(see Proposition 3). For our one-step algorithm, however, the covariance correction part is 

unnecessary since our final goal is missing value imputation. We give the one-step 

approximation, called TRCMAimpute, in Algorithm 2.

Algorithm 2

One-step algorithm approximating TRCMimpute (TRCMAimpute)

1 Initial imputation:

a. Impute missing values with RCMimpute assuming Σ = I.

b. Impute missing values with RCMimpute assuming Δ = I.

c. Average the two estimates.
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2 Find the MLE’s of the transposable regularized covariance model, ν̂, μ̂, Σ̂ and Δ̂ with the imputed missing 
values fixed.

3 Set the missing values to their conditional expectation given these parameters: X̂
m = E (Xm | Xo, ν̂, μ̂, Σ̂, Δ̂).

Before discussing the calculations necessary in the final step of the algorithm, we pause to 

note a major advantage of our one-step method. If the sets of missing values from the 

marginal models using RCMimpute are saved in the first step, then TRCMAimpute can give 

three sets of missing value estimates. Since it is often unknown whether a given dataset may 

have independent rows or columns, cross validation, for example, can be used to determine 

whether penalizing the covariances of the rows, columns, or both is best for missing value 

imputation. This is discussed in detail in Supplementary Materials.

4.2.2. Conditional Expectations—We now discuss the final conditional expectation 

step of our one-step approximation algorithm. Recall that the conditional expectation can be 

computed via (9), but this requires inverting Ω and is therefore avoided. Instead, we exploit 

a property of the mean-restricted matrix-variate normal, namely that all marginals of our 

model are multivariate normal. This allows us to find the conditional distributions in a two 

step process given by Theorem 2.

Theorem 2: Let X ~ Nn,p (ν, μ, Σ, Δ), M = ν1T + μT1 and partition X, M, Σ, Δ as

where i and j denote indices of a row and column respectively, k and l are vectors of indices 

of length n − 1 and p − 1 respectively, and mi and oi denote vectors of indices within row i 

and mj and oj indices within column j.

Define

Partition ψ, η, Γ and Φ as , η = (ηmj ηoj),
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Then,

a.

b.

Proof: See Supplementary Materials.

Thus, from Theorem 2, the conditional distribution of values in a row or column given the 

rest of the matrix can be calculated in a two step process where each step takes at most the 

number of computations as required for calculating multivariate conditional distributions. 

The first step finds the distribution of an entire row or column conditional on the rest of the 

matrix, and the second step finds the conditional distribution of the values of interest within 

the row or column. By splitting the calculations in this manner, we avoid inverting the np × 

np Kronecker product covariance. This alternative form for the conditional distributions of 

elements in a row or column leads to an iterative algorithm for calculating the conditional 

expectation of the missing values given the observed values. We call this the Alternating 

Conditional Expectations Algorithm, given in Algorithm 3.

Algorithm 3

Alternating Conditional Expectations Algorithm.

1
Initialize X̂i, j

(0) = ν̂i + μ̂ j for Xi,j ∈ Xm.

2 For each row, i, with missing values:

a.
Set X̂i,mi

(k+1) = E(Xi,mi
| Xi,oi

(k ) , X≠i,r
(k ) ).

3 For each column, j, with missing values:

a.
Set X̂mj, j

(k+1) = E(Xmj, j | Xoj, j
(k ) , Xc,≠ j

(k ) ).

4 Repeat Steps 1 and 2 until convergence.

Theorem 3: Let X ~ Nn,p (ν, μ, Σ, Δ) and partition vec(X) = (vec(Xm) vec(Xo)) where m 

and o are indices partitioned by rows, (mi and oi) and columns, (mj and oj), so that a row, 

Xi,r = (Xi,mi Xi,oi) and a column . Then, the Alternating Conditional 

Expectations Algorithm, Algorithm 3, converges to E(Xm |Xo).
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Proof: See Supplementary Materials.

Theorem 3 shows that the conditional expectations needed in Step 3 of the one-step 

approximation algorithm can be calculated in an iterative manner from the conditional 

distributions of elements in a row and column, as in Algorithm 3. Thus, Theorems 2 and 3 

mean that the conditional expectations can be calculated by separately inverting the row and 

column covariance matrices, instead of the overall Kronecker product covariance. This 

reduces the order of operations from around O(n3p3) to O(n3 + p3), a substantial savings. In 

addition, if both the covariance estimates and their inverses are known, then one can use the 

properties of the Schur complement to further speed computation. For extremely sparse 

matrices or data with few missing elements, the order of operations is nearly linear in n and 

p (See Supplementary Materials). We also note that the structure of the Alternating 

Conditional Expectations Algorithm often leads to a faster rate of convergence as discussed 

in the proof of Theorem 3. For high-dimensional data, these two results mean that matrix-

variate models can be used in any application where multivariate models are 

computationally feasible, thus opening the door to applications of transposable models!

4.2.3. Numerical Comparisons—We now investigate the accuracy of the one-step 

approximation algorithm in terms of observed log-likelihood and imputation accuracy with a 

numerical example. Here, we simulate fifty datasets, 25 × 25, from the matrix-variate 

normal model with autoregressive covariance matrices.

• Autoregressive: Σij = 0.8|i−j| and Δij = 0.6|i−j|.

We delete values at random according to certain percentages and report the mean MSE for 

both the MCECM algorithm, TRCMimpute, and the one-step approximation, 

TRCMAimpute on the right in Figure 1. The one-step approximation performs comparably, 

or slightly better, in terms of imputation error to the MCECM algorithm for all percentages 

of missing values. We note that TRCMAimpute could give better missing value estimates if 

the MCECM algorithm converges to a sub-optimal stationary point of the observed log-

likelihood. For a dataset with 25% missing values, we apply the MCECM algorithm and 

also apply our approximation extended beyond the first step, but denote the observed log-

likelihood after the first step with a star on the right in Figure 1. This shows that using 

marginals to provide a good starting value, does indeed start the algorithm at a higher 

observed log-likelihood. Also, after the first step, the observed log-likelihood is very close 

to the fully-iterated maximum. Thus, the one-step approximation appears to be a comparable 

approximation to the TRCMimpute approximation which is feasible for use with high-

dimensional datasets.

5. Results and Simulations

The following results indicate that imputation with transposable regularized covariance 

models is useful in a variety of situations and data types often giving much better error rates 

than existing methods. We first assess the performance of our one-step approximation, 

TRCMAimpute, under a variety of simulations with both full and sparse covariance 

matrices. Authors have suggested that microarrays and user-ratings data, such as the Netflix 

movie-rating data are transposable or matrix-distributed [9], [1], hence, we also assess the 
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performance of our methods on these types of datasets. We compare performances to three 

commonly used single imputation methods - SVD methods (SVDimpute), k-nearest 

neighbors (KNNimpute), and local least squares (LLSimpute) [21], [14]. For the SVD 

method, we use a reduced rank model with a column mean effect. The rank of the SVD is 

determined by cross-validation; regularization is not used on the singular vectors so that 

only one parameter is needed for selection by cross-validation. For k-nearest neighbors and 

local least squares also, a column mean effect is used and the number of neighbors, k, is 

selected via cross-validation. If the number of observed elements is limited, the pairwise-

complete correlation matrix is used to determine the closest neighbors.

5.1. Simulations

We test our imputation method for transposable data under a variety of simulated 

distributions, both multivariate and matrix-variate. All simulations use one of four 

covariance types given below. These are numbered as they appear in the simulation table.

1. Autoregressive: Σij = 0.8|i−j| and Δij = 0.6|i−j|.

2. Equal off-diagonals: Σij = 0.5 and Δij = 0.5 for i ≠ j, and Σii = 1 and Δii = 1.

3. Blocked diagonal: Σii = 1 and Δii = 1 with off-diagonal elements of 5 × 5 blocks of 

Σ are 0.8 and of Δ, 0.6.

4. Banded off-diagonals: Σii = 1 and Δii = 1 with

The first simulation, with results in Table 1, compares performances with both multivariate 

distributions, only Σ given, and matrix-variate distributions, both Σ and Δ given. In these 

simulations, the data is of dimension 50 × 50 with either 25% or 75% of the values missing 

at random. The simulation given in Table 2 gives results for matrix-variate distributions with 

one dimension much larger than the other, 100 × 10 and 10% of values missing at random. 

The final simulation, in Table 3, tests the performance of our method when the data has a 

transposable covariance structure, but is not normally distributed. Here, the data, of 

dimension 50 × 50 with 25% of values missing at random, is either distributed Chi-square 

with three degrees of freedom or Poisson with mean three. The Chi-square and Poisson 

distributions introduce large outliers and the Poisson distribution is discrete. All three sets of 

simulations are compared to SVD imputation and k-nearest neighbor imputation.

These simulations show that TRCMAimpute is competitive with two of the most commonly 

used single imputation methods, SVD and k-nearest neighbor imputation. First, TRCM with 

L2 penalties outperforms the other possible TRCM penalty types. This may be due to the 

fact that the covariance estimates with L2 penalties has a globally unique solution, Theorem 

1, while the estimation procedure for other penalty types only reaches a stationary point, 

Proposition 2. The one-step approximation permits the flexibility to choose either 

multivariate or transposable models. As seen with smaller percentages of missing values, 

cross-validation generally chooses the correct model for the L1 : L1 penalty-type, but seems 
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to prefer the marginal multivariate models for the L2 : L2 penalties. However, with 75% of 

the values missing, the transposable model is often chosen even if the underlying 

distribution is multivariate. The additional structure of the TRCM covariances may allow for 

more information to be gleaned from the few observed values, perhaps explaining the better 

performance of the matrix-variate model. TRCMAimpute seems to perform best in 

comparison to SVD and k-nearest neighbor imputation for the full covariances with equal 

off-diagonal elements. Our TRCM-based imputation methods appear particularly robust to 

departures from normality and perform well even in the presence of large outliers, as shown 

in Table 3. Overall, imputation methods based on transposable covariance models compare 

favorably in these simulations.

5.2. Microarray Data

Microarrays are high-dimensional matrix-data that often contain missing values. Usually, 

one assumes that the genes are correlated while the arrays are independent. Efron questions 

this assumption, however, and suggests using a matrix-variate normal model [8]. Indeed, the 

matrix-variate framework, and more specifically the TRCM model seem appropriate models 

for microarray data for several reasons. First, one usually centers both the genes and the 

arrays before analysis, a structure which is built in to our model. Second, TRCMs have the 

ability to span many models which include a marginal model where the rows are distributed 

as a multivariate normal and the arrays are independent. Hence, if a microarray is truly 

multivariate, our model can accommodate this. But, if there are true correlations within the 

arrays, TRCM can appropriately measure this correlation and account for it when imputing 

missing values. Lastly, the graphical nature of our model can estimate the gene network and 

then use this information to more accurately estimate missing data.

For our analysis, we use a microarray dataset of kidney cancer tumor samples [25]. The 

dataset contains 14,814 genes and 178 samples. About 10% of the data is missing. For the 

following figures, all of the genes with no missing values were taken, totaling 1,031 genes. 

Missing values were then placed at random. Errors were assessed by comparing the imputed 

values to the true observed values.

We assess the performance of TRCM imputation methods on this microarray data and 

compare them to existing methods for various percentages of missing values, deleted at 

random, on the right in Figure 2. Here, we use L2 penalties since these are computationally 

less expensive for high-dimensional data. TRCMAimpute outperforms competing methods 

in terms of imputation error for all percentages of missing values. We note that cross-

validation exclusively chose the marginal, multivariate model from the one-step 

approximation. This indicates that the arrays in this microarray dataset may indeed by 

independent.

Often, microarray datasets are not missing randomly. Also, researchers are interested in not 

only the error in terms of MSE, but the individual errors made as well. To investigate these 

issues, we assess individual absolute errors of data that is missing in the same pattern as the 

original data. For each complete gene, values were set to missing in the same arrays as a 

randomly sampled gene from the original dataset. The right panel of Figure 2 displays the 

boxplots of the absolute imputation errors. Lines are drawn at quantiles to assess the relative 
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performances of each method. Here, TRCMAimpute has lower absolute errors at each 

quantile. Also, the set of imputed values has far fewer outliers than competing methods. The 

mean absolute error for TRCMAimpute is 0.37, far below the next two methods, LLSimpute 

and SVDimpute which have a mean absolute error of 0.46. Altogether, our results illustrate 

the utility and flexibility of using TRCMs for missing value imputation in microarray data.

5.3. Netflix Data

We compare transposable regularized covariance models and existing methods on the 

Netflix movie rating data [2]. The TRCM framework seems well-suited to model this user-

ratings data. As discussed in the introduction, our model allows for not only correlations 

among both the customers and movies, but between them as well. In addition, TRCM 

models the graph structure of the customers and the movies. Thus, we can fill in a 

customer's rating of a particular movie based on the customer's links with other customers 

and the movie's links with other movies. Also, many have noted that the unrated movies in 

the Netflix data are not simply missing at random and may contain meaningful information. 

A customer, for example, may not have rated a movie because the movie was not of interest 

and thus they never saw it. While it may appear that our method requires a missing at 

random assumption, this is not necessarily the case. When two customers have similar sets 

of unrated movies, after removing the means, our algorithm begins with the unrated movies 

set to zero. Thus, these two customers would exhibit high correlation simply due to the 

pattern of missing values. This correlation could yield an estimated “link” between the 

customers in the inverse covariance matrix. This would then be used to estimate the missing 

ratings. Hence, our method can find relationships between sets of missing values and use 

these to impute the missing values.

The Netflix dataset is extremely high-dimensional, with over 480,000 customers and over 

17,000 movies, and is very sparse, with over 98% of the ratings missing. Hence, assessing 

the utility of our methods from this data as a whole is not currently feasible. Instead, we rank 

both the movies and the customers by the number of ratings and take as a subset, the top 250 

customer's ratings of the top 250 movies. This subset has around 12% of the ratings missing. 

We then delete more data at random to evaluate the performance of the methods. In addition, 

for each customer in this subset ratings were deleted for movies corresponding to the 

unrated movies of a randomly selected customer with at least one rating out of the 250 

movies. This leaves 74% of ratings missing. Figure 3 compares the performances of the 

TRCM methods to existing methods for both subset with both missing at random and 

missing in the pattern of the original values.

Before discussing these results, we first make a note about the comparability of our errors 

rates to those for the Netflix Prize [2]. Because we chose the subset of data based on the 

number of observed ratings, we can expect the RMSE to be higher here than applying these 

methods to the full dataset. This method of obtaining a subset leaves out potentially 

thousands of highly correlated customers or movies that would greatly increase a method's 

predictive ability. In fact, the RMSE of the SVD method on the entire Netflix data is 0.91 

[20], much less than the observed RMSE of 1.084 for the SVD on our subset with 95% 
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missing. Thus, we can conjecture, that all of the methods we present would do better in 

terms of RMSE using the entire dataset than the small subset on which we present results.

The results indicate that TRCM imputation methods, particularly with L2 penalties, are 

competitive with existing methods on the missing at random data. At higher percentages of 

missing values, our methods perform notably well. With 95% missing values in our subset, 

TRCMAimpute has a RMSE of 1.049 compared to the SVD at 1.084 and 1.354 using the 

movie averages. This is of potentially great interest for missing data imputation on a larger 

scale where the percentage of missing data is greater than 98%. We note that at smaller 

percentages of missing values, marginal models penalizing the movies were often chosen by 

cross-validation, indicating that the movies may have more predictive power. Whereas, at 

larger percentages of missing values, cross-validation chose to penalize both the rows and 

the columns, indicating that possibly more information can be gleaned from few observed 

values using transposable methods.

Our methods also preform well when the data is missing in the same pattern as the original. 

The L2 : L2 method had the best results with a RMSE of 1.005 followed by L1 : L1 with 

1.029, SVD with 1.032 and k-nearest neighbors with 1.184. From the boxplots of absolute 

values Figure 3 (right), we see that the SVD has many large outliers in absolute value, while 

the L1 penalties led to the fewest number of large errors. Since leading imputation methods 

for the Netflix Prize, are ensembles of many different methods [1], we do not believe that 

TRCM methods alone would outperform ensemble methods. If, however, our methods 

outperform other individual methods, they could prove to be beneficial additions to 

imputation ensembles.

6. Discussion

We have formulated a parametric model for matrix-data along with computational advances 

that allow this model to be applied to missing value estimation in high-dimensional datasets 

with possibly complex correlations between and among the rows and columns.

Our MCECM and one-step approximation imputation approaches are restricted to datasets 

where for each pair of rows, there is at least one column in which both entries are observed 

and vice versa for each pair of columns. A major drawback of TRCM imputation methods is 

computational cost. First, RCMimpute using the columns as features costs O (p3). This is 

roughly on the order of other common imputation methods such as the SVDimpute which 

costs O (np2). Our one-step approximation, TRCMAim-pute, using the computations for the 

Alternating Conditional Expectations algorithm given in Supplementary Materials, costs 

, where |mi| and |oi| are the 

number of missing and observed elements of row i respectively.

The main application of this paper has been to missing value imputation. We note that this is 

separate from the matrix-completion methods via convex optimization of Candes and Recht 

[5], which focuses on matrix-reconstruction instead of imputation. Also, we have presented 

a single imputation procedure, but our techniques can easily be extended to incorporate 

multiple imputation. We present a repeated imputations approach by taking samples from 
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the posterior distribution [19] with the Bayesian one-step approximation in the 

Supplementary Materials. In addition, we have not discussed ultimate use or analysis of the 

imputed data, which will often dictate the imputation approach. Our imputation methods 

form a foundation that can be extended to further address these issues.

We also pause to address the appropriateness of the Kronecker product covariance matrix to 

model the covariances observed in real data. While we do not assume that this particular 

structure is suitable for all data, we feel comfortable using the model because of its 

flexibility. Recall that all marginal distributions of the mean-restricted matrix-variate normal 

are multivariate normal. This includes the distribution of elements within a row or column, 

or the distribution of elements from different rows or columns. All of the marginals of a set 

of elements are given by the mean and covariance parameters of the elements' rows and 

columns. belong. Thus, our model says that the location of elements within a matrix 

determine their distribution, often a reasonable assumption. Also, if either the covariance 

matrix of the rows or the columns is the identity matrix, then we are back to the familiar 

multivariate normal model. This flexibility to fit numerous multivariate models and to adapt 

to structure within a matrix is an important advantage of our matrix-variate model.

Transposable regularized covariance models may be of potential mathematical and practical 

interest in numerous fields. TRCMs allow for non-singular estimation of the covariances of 

the rows and columns, which is essential for any application. Adding restrictions to the 

mean of the TRCM, allows one to estimate all parameters from a single observed data 

matrix. Also, introduction of efficient methods of calculating conditional distributions and 

expectations make this model computationally feasible for many applications. Hence, 

transposable regularized covariance models have many potential future uses in areas such as 

hypothesis testing, classification and prediction, and data mining.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig 1. 
Comparison of the mean MSE with standard errors (left) of the MCECM imputation 

algorithm (TRCMimpute) and the one-step approximation (TRCMAimpute) for 

transposable data of dimension 25 × 25 with various percentages of missing data. Fifty 

datasets were simulated from the matrix-variate normal distribution with autoregressive 

covariances as given in Section 4.2.3. Observed log-likelihood (right) verses iterations for 

TRCMimpute and TRCMAimpute with 25% missing values. The one-step approximation 

begins at the TRCM parameter estimates using the imputed values from RCMimpute. The 

observed log-likelihood of one-step approximation is given by a star after the first step. All 

methods use L2 penalties with ρr = ρc = 1 for comparison purposes.
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Fig 2. 
Left: Comparison of MSE for imputation methods on kidney cancer microarray data with 

different proportions of missing values. Genes in which all samples are observed are taken 

with values deleted at random. TRCMAimpute, L2 : L2 and common imputation methods 

KNNimpute, SVDimpute and LLSimpute are compared with all parameters chosen by 5-

fold cross-validation. Cross-validation chose to penalize only the arrays for the one-step 

approximation algorithm, TRCMAimpute. Right: Boxplots of individual absolute errors for 

various imputation methods. Genes in which all samples are observed were taken and 

deleted in the same pattern as a random gene in the original dataset. Lines are drawn at the 

50%, 75%, 95%, 99%, and 99.9% quantiles. TRCMAimpute, L2 : L2 has a mean absolute 

error of 0.37 and has lower errors at every quantile than its closest competitor, SVDimpute 

which has a mean absolute error of 0.46.
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Fig 3. 
Left: Comparison of the root MSE (RMSE) for a subset of the Netflix data for 

TRCMAimpute, L2 : L2 and L1 : L1, to KNNimpute and SVDimpute. A dense subset was 

obtained by ranking the movies and customers in terms of number of ratings and taking the 

top 250 movies and 250 customers. This subset has around 12% missing and additional 

values were deleted at random, up to 95%. With 95% missing, the RMSE of TRCMAimpute 

is 1.049 compared to 1.084 of the SVD and 1.354 using the movie averages. Right: Boxplots 

of absolute errors for the dense subset with missing entries in the pattern of the original data. 

Customers with at least one ranking out of the 250 movies were selected at random and 

entries were deleted according to these customers leaving 74% missing. Quantiles of the 

absolute errors are shown at 50%, 75%, 95%, 99%, and 99.9%. The RMSE of the methods 

are as follows L2 : L2: 1.005, L1 : L1: 1.029, SVD: 1.032, KNN: 1.184.
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Table 2

Mean MSE with standard errors over 50 datasets of dimension 100 × 10 with 10% missing values simulated 

under the matrix-variate normal with covariances given in Section 5.1. The TRCM one-step approximation 

with L2 : L1 and L2 : L2 penalties was used as well as the SVD and k-nearest neighbor imputation. Parameters 

were chosen for all methods via 5-fold cross validation. Best performing methods are given in bold.

TRCMAimpute Others

L2 : L1 L2 : L2 SVD KNN

Σ1, Δ1 0.8227 (0.019) 0.7072 (0.016) 1.075 (0.024) 0.6971 (0.018)

Σ2, Δ2 1.019 (0.15) 0.9441 (0.13) 1.306 (0.23) 1.057 (0.17)

Σ3, Δ3 0.9372 (0.047) 0.841 (0.042) 1.121 (0.05) 0.9241 (0.042)

Σ4, Δ4 0.7044 (0.059) 0.6148 (0.049) 0.9751 (0.074) 1.118 (0.089)
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