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Abstract The aim of logistic regression is to estimate

genetic effects on disease risk, while survival analysis aims

to determine effects on age of onset. In practice, genetic

variants may affect both types of outcomes. A cure survival

model analyzes logistic and survival effects simultane-

ously. The aim of this simulation study is to assess the

performance of logistic regression and traditional survival

analysis under a cure model and to investigate the benefits

of cure survival analysis. We simulated data under a cure

model and varied the percentage of subjects at risk for

disease (cure fraction), the logistic and survival effect

sizes, and the contribution of genetic background risk

factors. We then computed the error rates and estimation

bias of logistic, Cox proportional hazards (PH), and cure

PH analysis, respectively. The power of logistic and Cox

PH analysis is sensitive to the cure fraction and background

heritability. Our results show that traditional Cox PH

analysis may erroneously detect age of onset effects if no

such effects are present in the data. In the presence of

genetic background risk even the cure model results in

biased estimates of both the odds ratio and the hazard ratio.

Cure survival analysis takes cure fractions into account and

can be used to simultaneously estimate the effect of genetic

variants on disease risk and age of onset. Since genome-

wide cure survival analysis is not computationally feasible,

we recommend this analysis for genetic variants that are

significant in a traditional survival analysis.

Keywords Proportional hazards model � Logistic
regression � Cox regression � Accelerated failure time

model � Simulation study

Introduction

In the last decade many genome-wide association (GWA)

studies have been published. The GWAS catalog currently

contains 1924 GWA studies (www.genome.gov/gwas

tudies, accessed June 27, 2014) (Welter et al. 2014). For

example, in the field of psychiatry, the Psychiatric Geno-

mics Consortium (PGC) has reported GWA analyses on

diseases such as ADHD (Neale et al. 2010), bipolar dis-

order (Sklar et al. 2011), major depressive disorder (Ripke

et al. 2012), and schizophrenia (Schizophrenia Working

Group of the Psychiatric Genomics Consortium 2014).

These studies typically include thousands or tens of thou-

sands of subjects with the aim of identifying genetic vari-

ants that affect the risk of developing a disorder.

Alternatively, researchers have aimed to identify genetic

variants that affect age of onset of a disease. For example,

Bergen et al. (2014) investigated which genetic variants

affect age of onset in 2762 schizophrenia patients but did

not find genome-wide significant SNPs, possibly due to

lack of power. Identifying genetic variants which con-

tribute to disease risk and age of onset are both legitimate

research goals for which different analysis methods are
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typically applied. Risk of disorder is typically analyzed

using logistic regression, while time to onset is often

analyzed using survival analysis. In previous studies, the

focus has been on the analysis of either disease risk or age

of onset as separate outcome measures, while in reality a

genetic variant may influence both types of outcome. In

this study, we will evaluate the possibility of incorporating

genetic effects on disease risk and age of onset within a

single analysis using data simulation. We aim to investi-

gate the implications of performing a traditional analysis in

which genetic variants are assumed to show only a single

type of genetic effect, while both types of effects are in fact

present. Results will be compared with those of a more

complex type of survival analysis, allowing for simulta-

neous estimation of disease risk and age of onset effects.

As the name implies, survival analysis can be applied to

analyze survival times or, equivalently, age of death.

However, the event of interest need not be death, but can be

of any type, including timing of disease onset and disease

relapse. In genetic survival analysis we may be interested

in estimating genetic effects on time of disease onset. This

type of analysis addresses the question whether risk allele

carriers develop a disease at an earlier age than non-

carriers.

For many diseases, the majority of subjects in a sample

will not develop the disease during their lifetime. The fact

that some subjects may never be affected by the disease of

interest poses a problem for survival analysis. Traditional

survival analysis treats all unaffected subjects similarly.

However, there may be a qualitative difference between

subjects that have not yet experienced the event and those

that never will. Cure models can accommodate this by

modelling disease risk (i.e., lifetime affected vs. lifetime

unaffected) with a logistic model and only for lifetime

affected cases the time to event is modeled with a survival

model (Othus et al. 2012). The name ‘cure’ refers to the

original development of the model in the context of long-

term survival of cancer patients after treatment. In that

context cure models explicitly model a subset of cured

cancer patients, called the cure fraction, that die at ages more

similar to healthy people compared to patients who are not

cured (Prasad 2014). However, cure models can be applied to

any context in which a subset of subjects is not affected by

the event of interest. In this article, a cure model assumes

populations are a mixture of subjects who will never develop

the disorder of interest and those who will. In this case the

proportion of subjects who will never develop the disorder

would be the ‘cure’ fraction as for this group survival effects

and time to disease onset are not applicable.

In this simulation study we apply the cure model to

introduce both logistic and survival effects for a genetic

variant. We investigate the bias in parameter estimation

when performing a traditional survival analysis while

including two types of genetic effects in the simulation

model. Additionally, we investigate the implications of

ignoring genetic background risk on the estimates. Heri-

table phenotypes often show a complex genetic architec-

ture, meaning that many genetic variants contribute to the

phenotype (Gratten et al. 2014). Since genetic variants are

typically analyzed one at a time, the genetic background

risk from other genetic variants is ignored. This can result

in biased effect estimates (Gail et al. 1984; Stringer et al.

2011). Therefore we will simulate cure model data with

and without the presence of genetic background risk.

In this study we aim to address the following two

research questions. The first question regards the influence

of a cure fraction on parameter estimation in traditional

logistic analysis and survival analysis. The second question

concerns the feasibility of analyzing data using the exten-

ded cure survival model. We will investigate whether the

cure model offers advantages over traditional survival

analysis. To answer these questions we look at several

characteristics of the analysis models: test characteristics

such as type-1 error rate and power, bias in the effect size

estimates, sensitivity to ignored genetic background risk,

and practical considerations such as running time of the

fitting procedure.

Methods

Simulation model

Data were simulated according to a cure model with a

logistic component and a survival component. The logistic

component models the probability of being affected by

disease. It divides the population in two distinct subpopu-

lations: subjects at risk and subjects not at risk. The pro-

portion of subjects not at risk is the cure fraction. Cure

fractions range from 0 to 1, with 1 representing a situation

in which no subject will be affected during their lifetime

and 0 representing a situation in which all subjects will

become affected eventually. While a cure fraction of 1 is

not very useful to consider, because there would be no

variation in the data, a cure fraction of 0 is effectively a

traditional survival model, since all subjects will in prin-

ciple develop the disease during their lifetime. In that case

the logistic part of the model is not defined. The cure

fraction is mostly determined by the intercept of the

logistic model. An intercept of minus infinity (or simply an

extremely large negative value) corresponds to a cure

fraction of zero. In that case all subjects are at risk. The

logistic effect parameter (i.e., the log(odds ratio)) models

the contribution of a risk allele to disease risk.

On the other hand, the survival component of the cure

model models the age of onset for subjects who will
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develop the disease. A popular survival model is the Cox

proportional hazard (PH) model. The Cox PH model

assumes that the hazard ratio is constant over time. The

hazard is a measure of how likely it is that an event will

happen at a particular time given that it has not yet hap-

pened. For example, if 0.9 % of people die exactly at age

60 and 90 % of people die at 60 or older, then the hazard of

dying at age 60 is approximately 0.9 %/90 % = 1 %.

Although the hazard of dying may change over time, the

proportional hazards assumption implies that the ratio of

hazards between risk allele carriers and non-carriers is

constant over time. The Cox PH model is elegant in that it

does not make any assumptions about the hazard function

itself, but only about the proportion of two hazard

functions.

Although the Cox PH model is useful for analyzing

survival data, it cannot be used to simulate data as it is a

semi-parametric model and does not specify the hazard

function. Therefore we have chosen the parametric Weibull

accelerated failure time (AFT) model to model age of onset

in our cure model, since it meets the proportional hazard

assumption of the Cox PH model (Kleinbaum and Klein

1996). Moreover, the AFT parameter of the Weibull AFT

model and the hazard ratio of the Cox PH model provide

different interpretations on the same survival effect, since

both parameters can be converted into each other. There-

fore we can choose a hazard ratio, convert it into an AFT

parameter and use the Weibull AFT model to simulate age

at event for subjects who are at risk. The Weibull AFT

model has three parameters: the survival SNP effect size

and a scale and rate parameter of the Weibull distribution.

Depending on the interpretation, the survival SNP effect

size models the contribution of a risk allele to the hazard

[log(hazard ratio)] or the expected age of initiation

[log(AFT parameter)]. The scale and rate parameter of the

Weibull distribution determines the distribution of age of

onset for subjects carrying no risk allele at that SNP. Since

we will not study the effect of the scale and rate parame-

ters, we arbitrarily fixed both parameters at twenty. This

corresponds to a median age of onset of 19.6 years and a

variance of 1.56 years.

For the SNP of interest (i.e., the SNP to be analyzed

while ignoring all other background SNPs) we modeled

two allelic effect size parameters: an odds ratio (OR) for

the logistic allelic effect and a hazard ratio (HR) for the

survival allelic effect. In addition to these SNP parameters,

we also simulated a logistic and survival effect for genetic

background risk. The genetic background risk is the

cumulative genetic risk of all other SNPs that are not

currently analyzed. Although we include the background

risk as a covariate in our simulation model, we will omit

the covariate in the analysis models to approximate a tra-

ditional GWA analysis, in which each SNP is analyzed

independently, while ignoring other SNPs. In the simula-

tion model, the genetic background risk is normally dis-

tributed with mean zero. In other words, an individual with

a genetic background risk of zero represents an average

amount of genetic background risk. In our simulations, we

set the background heritability to 0 % (no background risk)

or 50 % (background risk) respectively, for both logistic

and survival effects. The background heritability is defined

as:

h2bg ¼
b2bgVar Xbg

� �

b2bgVar Xbg

� �
þ Var eð Þ

where Var is variance, e is the error defined on a linear

scale (log(OR) or log(age of onset) respectively), bbg is the
background effect size, and Xbg is a random variable rep-

resenting the genetic background risk.

To facilitate comparison of SNP effect sizes, we define

the SNP heritability as:

h2SNP ¼ b2SNPVar XSNPð Þ
b2SNPVar XSNPð Þ þ b2bgVar Xbg

� �
þ Var eð Þ

where SNP is the SNP to be analyzed, bSNP its effect size

on a linear scale [log(OR) or log(age at event) respec-

tively], and XSNP a random variable representing the

number of risk alleles present. In the model we set

Var(Xbg) = 37,500 and Var(XSNP) = 0.375, correspond-

ing to allele frequencies of 0.25 and 100,000 background

SNPs. Finally, we set Var(e) to the standard variance of the

error distribution corresponding to the type of effect (i.e.,

logistic or survival). Fixing these parameters for all simu-

lation models results in a one to one correspondence

between effect size (i.e., OR and HR) and heritability.

Survival data typically involves censoring: the unavail-

ability of age of onset for some subjects. For example,

subjects who have not been affected by disease at the time

of their assessment have an unknown age of disease onset

and are therefore referred to as censored. An important

assumption in survival analysis is uninformed censoring.

This means that whether or not a subject is censored is

unrelated to age of onset. In other words, censored subjects

should on average develop the disease at the same time as

uncensored subjects. We assumed uninformed censoring in

our simulation model. To simulate censoring we assumed

uniform right-censoring between the ages of 15 and

25 years. This interval covers the range of plausible values

for age of onset in our simulation model. In other words,

each subject drops out of the study randomly at an age

between 15 and 25 years old. If, by that time, the subject

has not contracted the disease of interest, he or she is

censored and age of onset is unknown.

The above model results in the simulation of essential

characteristics of survival GWA data with logistic and/or
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survival SNP effects, at varying cure fractions, and at a

particular genetic background risk.

Analysis model comparison

To investigate the implications of analyzing data using

traditional survival or logistic analysis, while the data is in

fact generated according to a cure model, we have simu-

lated 10,000 data sets of 500 subjects for 152 parameter

combinations. We varied the following parameters: (1)

logistic SNP heritability [0, 1 %], (2) survival effect SNP

heritability [0, 1 %], (3) background heritability for logistic

and survival effects [0, 50 %], and (4) cure fraction

0–90 % with steps of 5 %. For each simulated data set, we

have estimated the odds ratio using a logistic regression

model and the hazard ratio using a semi-parametric Cox

PH model. We will report type-1 error rate, power, and bias

of effect sizes.

To investigate the value of using a cure analysis model

to estimate the logistic and survival effect simultaneously,

we have also analyzed a subset of the simulated data with a

cure Cox PH model instead of the traditional Cox PH

model. In the cure analysis a semi-parametric PH mixture

cure model was fitted using the expectation–maximization

(EM) algorithm (Dempster et al. 1977). Since the lifetime

disease status of currently healthy subjects is unknown, this

status can be considered a latent variable. In the EM

algorithm parameters are first initialized arbitrarily and

then refined iteratively in a two-step approach. First the

expected cure status (the latent variable) of all subjects is

computed based on the current model parameter estimates

(E-step). This expected cure status is subsequently used to

readjust the cure model parameters by maximizing the

(partial) log likelihood of the traditional Cox survival

model (M-step). Although this procedure is guaranteed to

converge to a local optimum, convergence of the EM

algorithm in mixture models can be relatively slow. For

further details about the estimation method used we refer to

Cai et al. (2012).

Since fitting the cure Cox PH model was computation-

ally demanding, we restricted the analysis to the following

20 parameter combinations: (1) logistic and survival SNP

heritability both 0 % or 1 %, (2) background heritability

0 % or 50 %, and (3) cure fraction [10, 30, 50, 70, 90 %].

In addition to type-1 error, power, and bias, we will also

report the running time for the cure PH analysis, since this

type of analysis is expected to be computationally more

demanding.

All results are reported as median values based on

10,000 simulations. We used a significance threshold of 0.1

instead of the traditional threshold of 0.05 to increase the

reliability of the type-1 error rate estimates. This choice

does not affect our qualitative conclusions. All statistical

analyses were performed in R version 3.1.0 using the glm,

survival, and smcure packages respectively (R Core Team

2012). Data simulation was performed in R as well.

Results

Traditional analysis of cure data

Type 1 error

The type-1 error rate of both logistic regression and Cox

PH analysis is controlled at the specified alpha level. Fig-

ure 1 shows the type-1 error rate (alpha = 0.1) as a func-

tion of cure fraction. Figure 1a shows results based on a

simulation model without genetic background risk (0 %),

while Fig. 1b is based on a model with 50 % background

heritability for both the logistic and survival effect. The

results indicate that neither the introduction of cure frac-

tions nor genetic background risk inflate the type-1 error

rate of logistic and Cox PH analysis.

Power

The power to detect either type of genetic effect with tra-

ditional logistic and survival analysis depends on the types

of genetic effect that are present in the simulated cure data.

We distinguish three types of genetic variants: (1) variants

with only a logistic effect, (2) variants with only a survival

effect, and (3) variants with both a logistic and a survival

effect. Figure 2 shows the power of logistic regression and

Cox PH analysis as a function of cure fraction for each of

these three combinations of genetic effects. As mentioned

before, a cure fraction of 0 corresponds to a traditional

survival model where no logistic effect is defined, while a

cure fraction of 1 corresponds to a situation in which none

of the subjects will ever contract the disease and neither a

logistic effect nor a survival effect can be defined. We

therefore focus mostly on cure fractions between 0 and 1.

The first type of variant only exhibits a logistic effect

(Fig. 2a, b). If no genetic background risk is present, power

initially increases with cure fraction, but decreases again as

the cure fraction approaches 1 (Fig. 2a). This is true for both

the logistic and the Cox PH analysis. Because the logistic

effect is not defined at a cure fraction of 0, the power to detect

a logistic effect starts at type-1 error rate. Note that the Cox

PH analysis is sensitive to logistic effects, since no survival

effect is actually present. In fact, the power of Cox PH

analysis to detect logistic effects is higher than that of the

logistic analysis, which can be explained by the fact that the

latter does not account for uninformed censoring.

The results in the previous paragraph are based on a

simulation model without genetic background risk. When
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we introduce genetic background heritability (50 %) in the

model, the power profile changes in a similar way for the

Cox PH and logistic analysis (Fig. 2b). First of all, the

difference in power between the two analyses decreases.

Furthermore, the introduction of genetic background risk

decreases the power for both analyses for most cure frac-

tions (\0.8).

The second model only exhibits a survival effect

(Fig. 2c, d). If no genetic background risk is present

(Fig. 2a), the power of the Cox PH analysis is optimal if

the cure fraction is zero. Its power decreases and approa-

ches the type-1 error rate as the cure fraction approaches

one, because less and less subjects will ever experience the

event. This is why data with a cure fraction close to one

(i.e., very few subject ever experience the event) cannot be

analyzed. Compared to Cox PH analysis, logistic analysis

has much lower power, because no logistic effect is pre-

sent. However, logistic analysis is somewhat sensitive to

the survival effect, since the power is larger than the type-1

error rate at low cure fractions (\0.5).

The power curves of logistic and survival analysis are

qualitatively similar for models with background heri-

tability (50 %) (Fig. 2d). However, compared to models

without genetic background risk, the power of survival

analysis is lower, while that of logistic regression is higher.

The third type of model exhibits both a survival effect

and a logistic effect of equal size (h2 = 1 %) (Fig. 2e, f).

The power to detect either type of genetic effect is there-

fore a function of the power to detect logistic only effects

and survival only effects The results indicate that in a

model with no genetic background risk the power of Cox

PH analysis remains high for cure fractions\0.5 (Fig. 2e).

This can be explained by the fact that at low cure fractions

(\0.25) the analysis is sensitive to logistic effects, while at

higher ([0.25) cure fractions Cox PH analysis is sensitive

to survival effects. On the other hand, the power of logistic

analysis to detect either type of genetic effect is very

similar to the power to detect a logistic only effect, since

logistic analysis has low power to detect survival effect.

Again, the power curves for both types of analysis are

qualitatively similar if we introduce background heritabil-

ity (50 %) (Fig. 2d). Compared to models without genetic

background risk, the power of survival analysis is lower in

models with genetic heritability, while the power of

logistic regression is higher.

Bias

We also investigated the bias in parameter estimates when

performing logistic regression and Cox PH analysis with

cure model data. First we compare the odds ratio estimate

of the logistic analysis for data including only a logistic

effect with the estimate for data with both a logistic and a

survival effect. Figure 3a shows the median estimated odds

ratio of 10,000 simulations as a function of cure fraction if

no genetic background risk is present. We consider two

situations: analyzing simulated data including only a

logistic effect and analyzing simulated data including both

a logistic and a survival effect. The estimated odds ratio in

both situations slightly increases with cure fraction at first

(cure fractions\0.5), before it decreases again as the cure

fraction approaches 1 (cure fractions [0.5). However, in

Fig. 1 Type-1 error rate (alpha = 0.1) as function of cure fraction for

logistic and Cox PH analysis coefficients. a Simulation data without

background heritability. b Simulation data with 50 % background

heritability for both logistic and survival effects. The SNP heritability

of logistic and survival effect is 0 %
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Fig. 2 Power as function of cure fraction for logistic and Cox PH

analysis. a, b Logistic SNP heritability 1 %. c, d Survival SNP

heritability 1 %. e, f Logistic and survival SNP heritability 1 %. Left

simulation data without background heritability. Right simulation data

with 50 % background heritability for both logistic and survival

effect. Horizontal line represents type-1 error rate (0.1)
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both situations the odds ratio is greatly underestimated.

Again this is due to the fact that a logistic analysis does not

account for uninformed censoring. Since all censored cases

are considered controls in the logistic analysis, the logistic

effect is underestimated. This underestimation is somewhat

less if the analyzed genetic variant exhibits both a logistic

and a survival effect.

A similar picture emerges if we introduce background

heritability (50 %) into the model (Fig. 3b). The main

difference is that the odds ratio used to simulate the data is

larger. This is because in both models the explained vari-

ance of the logistic effect is set to 1 %. Therefore,

increasing the background heritability results in an increase

of the simulated odds ratio.

Next we compare the median hazard ratio estimates of

the Cox PH analysis for simulated data including only a

survival effect with estimates for simulated data including

a survival effect and a logistic effect. The results in the

absence of background heritability are shown in Fig. 3c. If

only survival effects are present, the median estimated

hazard ratio decreases with cure fraction. If the cure frac-

tion is 0, the assumptions of the Cox PH analysis are met

and the estimate of the hazard ratio is unbiased. However,

as the cure fraction increases the assumption of uninformed

censoring no longer holds, since clearly unaffected subjects

will be more likely to be never affected by disease than

affected subjects, resulting in increased bias. On the other

hand, if both logistic and survival effects are present, the

estimated hazard ratio increases with cure fraction. The

sensitivity to detect the logistic effect not only offsets the

underestimation, but even results in overestimation if the

cure fraction is larger than 0.

The same qualitative pattern is observed for data with

genetic background risk (Fig. 3d). However, due to an

Fig. 3 Median effect size estimate of 10,000 simulations as a

function of cure fraction for logistic (a, b) and Cox PH analysis (a, b).
Left plots simulation data without background heritability. Right plots

simulation data with 50 % background heritability for both logistic

and survival effect. The horizontal line represents the simulated effect

size
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overall decrease of the estimated hazard ratio and an

increase of the simulated hazard ratio, all analyses result in

underestimation.

Cure analysis of cure data

The bias in traditional analyses of cure survival data is

caused by model misspecification. Alternatively, we could

apply a cure survival analysis. Contrary to the traditional

logistic and Cox PH analysis, the cure PH analysis simul-

taneously estimates both the odds ratio and the hazard

ratio. In the following section we report the type-1 error,

power, and bias in parameter estimation of a cure survival

analysis compared to the traditional analyses.

Type 1 error

As in the traditional analyses, the type-1 error rate for the

estimated odds ratio and hazard ratio of the cure PH model

is controlled at the specified significance threshold (al-

pha = 0.1) for all cure fraction in models without back-

ground heritability (Fig. 4a). In fact the type-1 error rate

for the estimated cure HR seems somewhat lower than that

of the traditional estimates at cure fractions near 0 and 1.

The type-1 error rate is closer to alpha for models in which

background heritability is present for both the logistic and

the survival effect (h2 = 50 %) (Fig. 4b).

Power

Figure 5a shows the power for all four estimates (i.e., Cox

PH hazard ratio, cure hazard ratio, logistic odds ratio, and

cure odds ratio) as a function of cure fraction in a model

with both logistic and survival effects. The power curves

for the cure model have a shape similar to the power curves

of their respective traditional analyses. However, the power

of the cure analysis is lower. The traditional analyses are

sensitive to both types of effects, which results in increased

power to detect either type of effect. In contrast, the two

estimates of the cure PH model are only sensitive to the

odds ratio or hazard ratio respectively. In other words, the

power curves of the cure PH analysis provide a more

accurate picture of the power to detect the type of effect

corresponding to the type of effect size (i.e., OR or HR).

While there is no model misspecification for models

with no background heritability, misspecification is a

problem for models with genetic background heritability.

Figure 5b shows that the power to detect a survival effect

decreases considerably in models with 50 % background

heritability compared to models without genetic back-

ground risk. This drop in power is larger for the cure PH

analysis than for the traditional Cox PH analysis. On the

other hand, the power to detect a logistic effect with a cure

PH analysis increases if genetic heritability is introduced

compared to a model without genetic background risk.

Bias

Finally, we compare the bias of traditional estimates and

the cure PH estimates of the odds ratio and hazard ratio

respectively. Figure 6a shows that the estimated odds ratio

of the cure PH analysis is unbiased for a large range of cure

fractions, while the estimate of the logistic analysis is

severely underestimated as we have seen before. However,

when we introduce genetic background risk the odds ratio

of the cure PH analysis is underestimated as well, although

not as much as the estimate of the logistic regression

(Fig. 6b).

Fig. 4 Type-1 error rate (alpha = 0.1) as a function of cure fraction

for the cure model OR and HR coefficients compared to traditional

logistic and Cox PH analysis coefficients. The SNP heritability of

logistic and survival effect is 0 %. a Simulation data without

background heritability. b Simulation data with 50 % background

heritability for both logistic and survival effects
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The estimate of the hazard ratio of the cure PH analysis

is also relatively unbiased across cure fractions compared

to the estimate of the Cox PH analysis if no genetic

background risk is assumed. (Figure 6c). However, in the

model with 50 % background heritability, both Cox PH

analysis and cure PH analysis results in underestimated

hazard ratio for varying cure fractions.

Analysis runtime

The fitting procedure for the cure PH model is computa-

tionally intensive. The median time over 10,000 simula-

tions for fitting a cure PH model increased from 26 to 40 s

as the cure fraction varied from 0.9 to 0.1 (data not shown).

As the cure fraction approaches 0, convergence of the fit-

ting procedure gets more difficult, since the odds ratio is

not identified if the cure fraction is zero.

Discussion

In this simulation study, we have compared different

analysis methods to identify genetic effects in genome-

wide survival data. Our first aim was to investigate the

influence of a cure fraction on parameter estimation in

traditional logistic analysis and survival analysis. Although

logistic regression is typically used to detect genetic vari-

ants that affect disease risk, and Cox PH regression is used

to detect variants that affect time to disease onset, our

simulation results show that, in the presence of a cure

fraction, both types of analysis can be sensitive to either

type of effect. When performing a genome-wide Cox PH

analysis to identify genetic variants that affect time to

disease onset, the estimated hazard ratios may be inflated if

the genetic variants also affect disease risk. In fact, if

genetic variants only influences disease risk, but not age of

onset, a traditional survival analysis may erroneously

conclude that an age of onset effect is present. Moreover,

performing a logistic analysis to estimate the genetic effect

on disease risk is even more problematic, since logistic

analysis does not take into account the censoring typically

observed in survival data. Our results indicate that in this

context the power of logistic analysis to detect a logistic

effect is even lower than that of Cox PH analysis. In

summary, when a cure fraction is present both logistic

regression and Cox PH regression result in biased estimates

of genetic effect sizes. Note that due to model misspecifi-

cation it is to be expected that logistic analysis or Cox

survival analysis are suboptimal when applied to cure

model data. However, our results show that under a cure

model the traditional Cox survival model is not just biased,

but that it can identify age of onset effects that do not exist.

Whether or not a cure model is applicable depends on the

genetic architecture of the data at hand. Some genetic

variants may influence either disease risk or age of onset,

while others may influence both.

Our second aim was to investigate whether the cure

model offers advantages over traditional survival analysis.

We have applied a relatively unknown model that allows

for the estimation of both logistic and survival effects: the

cure survival model. Under a cure model, cure survival

analysis leads to unbiased estimates, but only in the

Fig. 5 Power as function of cure fraction for cure model OR and HR

coefficients compared to traditional logistic and Cox PH analysis.

Logistic and survival SNP heritability 1 %. a Simulation data without

background heritability. b Simulation data with 50 % background

heritability for both logistic and survival effect. Horizontal line

represents alpha level (0.1)

Behav Genet (2016) 46:269–280 277

123



absence of background genetic risk. It is not surprising

that survival data simulated with a cure survival model is

best analyzed with a cure survival analysis, as our results

imply. So why not always use a cure survival analysis if

we suspect a cure fraction? Unfortunately, the cure sur-

vival mixture model is computationally too demanding to

apply at a genome-wide scale. A running time of 25 s per

SNP for analyzing 5 million SNPs would amount to 1446

computing days on a single core for only 500 subjects.

This is prohibitively long for most GWA studies. Fur-

thermore, the logistic effect of the cure model is

unidentified if the cure fraction is zero or one and there-

fore if the cure fraction is close to either boundary the

running time increases further or even worse, the algo-

rithm does not converge. On the other hand, the above

running times do allow a post hoc analysis of a limited

number of potentially interesting findings. Similarly, cure

survival analysis can be used in candidate gene or repli-

cation analyses, in which a relatively small number of

genetic variants are typically tested.

Although cure survival analysis removes bias in

parameter estimation due to cure fractions, it does not

remove bias due to genetic background risk. This latter bias

also occurs in traditional case–control GWA studies (Gail

et al. 1984; Stringer et al. 2011). Since large amounts of

background heritability is typical in complex diseases

(Gratten et al. 2014), cure analysis will result in biased

estimates of both the logistic and the survival effect. Our

results suggest that a cure survival analysis will underes-

timate both effects and that this underestimation is rela-

tively independent from the cure fraction. Although the

odds ratio of a cure survival analysis is less biased than that

of a traditional logistic regression, its hazard ratio is more

biased than that of a Cox PH regression.

Fig. 6 Median effect size estimate of 10,000 simulation of cure

survival model and traditional model as a function of cure fraction for

odds ratio (OR) (a, b) and hazard ratio (HR) (a, b). Left panels

simulation data without background heritability. Right panels simu-

lation data with 50 % background heritability for both logistic and

survival effect. Horizontal line represents the simulated effect size
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In many genome-wide survival studies of mental or

physical disorders, we do not expect that all subjects will

eventually develop the disease of interest. Based on our

results, we therefore provide three recommendations for

genetic analysis of diseases or other phenotypes that will

not affect the entire population.

Our first recommendation is to follow-up significant

hits resulting from a Cox PH analysis with a cure PH

analysis. Cure survival analysis allows separation of

genetic variants which primarily influence the time of

disease onset from those variants that primarily influ-

ence disease risk. Distinguishing these two types of

genetic variants may provide valuable insight into the

biological processes behind a disease. However, as our

results suggest, cure survival analysis should be only

considered if the cure fraction in the sample is suffi-

ciently large (e.g. [0.1), but not too large (e.g. \0.9).

This means for a population cohort that the disease of

interest should have a lifetime prevalence between 10

and 90 %. Since most disease prevalences are \10 %,

sampling from a high-risk population could be consid-

ered to decrease the cure fraction in the sample.

Although in principle cure analysis is likely to improve

prediction of both disease risk and age of onset in

independent samples under a cure model, in practice

outcome prediction using a small number of genetic

variants is difficult in complex traits that are influenced

by many variants across the genome.

We also recommend that if distinguishing the type of

genetic effect (logistic vs survival) is not a primary con-

cern, a genome-wide Cox PH analysis should be used to

maximize the power to detect either type of genetic effect.

Our results show that the power of a Cox PH analysis to

detect either type of genetic effect is larger than that of the

cure survival analysis.

Our third recommendation is that power analyses of

genome-wide survival studies should account for cure

fraction, logistic and survival effect sizes, and background

heritability. Ignoring these factors will greatly influence the

estimated power. A reasonable assumption for the cure

fraction is 1 – lifetime prevalence. Effect sizes are difficult

to predict in advance and ideally power is calculated for a

range of potential effect sizes for both the logistic and the

survival effect. Finally, for complex diseases it is safe to

assume that the background heritability will be close to the

disease heritability. Although general power calculators for

survival analysis exist, such as the genetic power calculator

for case–control and quantitative trait GWA studies (Pur-

cell et al. 2003), we are not aware of programs or web tools

that are tailored towards genome-wide survival studies.

However, power analysis through a simplified simulation

of GWA data is a viable alternative as exemplified by this

simulation study.

The results of this simulation study should be interpreted

in the context of two limitations. First, it was not compu-

tationally feasible to vary all relevant model parameters.

For example, we used a small sample of 500 subjects in all

our simulations and investigated only a limited number of

combinations of effect sizes. Second, data were simulated

according to a single distribution: the Weibull distribution.

In reality, survival data may be distributed differently. The

implications and recommendations of this study are

therefore more qualitative than quantitative in nature.

The primary focus of this study was to investigate the

impact of cure fractions and genetic background risk on bias

in genome-wide survival analysis. However, other factors

may introduce bias in a genome-wide survival analysis. For

example, the assumption of uninformed censoring may not

hold, resulting in underestimated or overestimated hazard

ratios depending on the type of informed censoring. Simi-

larly, a GWA sample may include multiple family members

of a family. In that case sandwich estimation can be used to

account for the correlations caused by family relations within

a sample (Borecki and Province 2008; Diggle et al. 2002).

This type of estimation increases the standard error of the

estimate to correct for dependence due to familial related-

ness. Studying the effects of different types of censoring and

presence of familial relatedness on bias and power was

beyond the scope of this study, but these effects warrant

further research.

In conclusion, cure fractions introduce the possibility of

investigating the impact of both logistic and survival

effects of a single genetic variant. Cure survival analysis

takes this complexity into account. Although the applica-

tion of cure survival analysis is not feasible at a genome-

wide scale, we have shown that follow-up of a specific

subset of SNPs may provide information about logistic and

survival effects in a relatively unbiased way. Distinguish-

ing genetic variants affecting disease onset and those

affecting disease risk is an important step in understanding

the nature of genetic effects in (neuro)psychiatric disorders.
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