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ABSTRACT We describe a suite of predictive models, coined FASTmC, for nonreference, cost-effective
exploration and comparative analysis of context-specific DNA methylation levels. Accurate estimations of
true DNA methylation levels can be obtained from as few as several thousand short-reads generated from
whole-genome bisulfite sequencing. These models make high-resolution time course or developmental and
large diversity studies practical regardless of species, genome size, and availability of a reference genome.
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Advances in high-throughput sequencing has allowed for single-base
resolution analysis of DNA methylation at cytosines across an entire
genome. This was first applied to the model plant Arabidopsis thaliana
(Cokus et al. 2008; Lister et al. 2008) and, since then, has been applied to
numerous species, including protists, fungi, insects, anthozoa, tuni-
cates, fish, and mammals (Lister et al. 2009; Feng et al. 2010; Zemach
et al. 2010). Currently, DNA methylation is profiled genome-wide by
deep, whole-genome bisulfite sequencing (WGBS). The use of a refer-
ence genome is essential to inform the methylation status at each
cytosine reference position, where a thymine in lieu of cytosine indi-
cates an unmethylated cystosine (Urich et al. 2015). Thus, absence of a
reference genome has prevented rapid, genome-wide analysis of DNA
methylation for the majority of known species, and is cost-prohibitive

for high-resolution developmental or time-course studies in species
with large genomes. To date, several methods exist to accommodate
the challenges associated with non-reference-based analysis of DNA
methylation, but they lack cytosine context sequence specificity (Kuo
et al. 1980; Fraga et al. 2002; Karimi et al. 2006).

Here we present FASTmC, a suite of predictive models that can be
used to estimate genome-wide DNA methylation levels at all cytosine
sequence contexts without the use of a reference genome. These models
assumed a relationship between DNA methylation levels calculated
from alignment of WGBS reads to a reference genome (target; m)
and from direct assessment from raw WGBS reads (i.e., no alignment
to a reference genome) (estimator; F̂) (Supporting Information, Table
S1). Methylation levels are calculated as the proportion of methylated
cytosines to the total number of possible methylated cytosines. The
difference between the two variables exists at unmethylated cytosines;
the estimator value includes unmethylated cytosines and true thymines
when calculating the DNA methylation level. Estimator DNA methyl-
ation levels were compared to target levels to determine a relationship,
and the strength of which, to confidently predict/extrapolate genome-
wide DNA methylation levels for any sample regardless of the avail-
ability of a reference genome.

Using publicly available data, for species with reference genomes,
actual and estimatorDNAmethylation levels for 44 specieswere used to
construct models capable of predicting genome-wide levels of DNA
methylation for species without a sequenced genome. Using additional
publiclyavailabledata frommutants andcell-typesknowntobedifferent
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fromwild-typesamples,wediscuss the sensitivity, robustness, andutility
of the models in terms of CpG DNA methylation, followed by plant-
(CHG and CHH) and mammal-specific (CH) DNA methylation.

MATERIALS AND METHODS
WGBSdataweredownloaded from the ShortReadArchive (SRA)/Gene
Expression Omnibus (GEO) or sequenced in-house (Table S1). WGBS
data were aligned using methods described in (Schultz et al. 2015) to
generate “allC” files. The allC files were used to determine target DNA
methylation levels, and can be downloaded from GEO under accession
number GSE72155. Prior to estimation of predictor DNA methylation
levels, WGBS data were trimmed of adaptor sequences using Cutadapt
v1.9 (Martin 2011), end-trimmed using Trimmomatic (Bolger et al.
2014), and quality filtered using FASTX-toolkit (http://hannonlab.
cshl.edu/fastx_toolkit/). Reads of at least 30 bp in length with $ 20%
of nucleotides having a quality score $ 75% were retained. Random
sampling without replacement was performed with increasing fold-
change from 1 to 105 reads using the program fastq-tools (http://
homes.cs.washington.edu/~dcjones/fastq-tools/). Custom Perl scripts
were used to sum the number of Cm and C? sites for each randomly
sampled read, and subsequently to estimate the predictor DNAmeth-
ylation level at CpG, CHG, CHH, and CH sites (Table S1). A char-
acteristic shared among all studies utilizingWGBS data is the inability
to distinguish between 5-methylcytosine and 5-hydroxymethylcytosine
(5hmC) (Huang et al. 2010). Therefore, levels of DNA methylation re-
present both forms of methylated cytosines, although it should be noted
there is no evidence for 5hmC in plant genomes (Erdmann et al. 2014).

Predictive modeling is used to find the mathematical relation be-
tween a target, (dependent variable) and various estimators (indepen-
dent variables); subsequent values of an estimator(s) are used to predict
the target variable using the established mathematical relation-
ship between them. The goal of the FASTmCmodels was to predict
reference-based (target) from non-reference-based (estimator) DNA
methylation levels. These models assume that in MethylC-Seq data
(Urich et al. 2015): (i) all cytosines at CpG, CHG, CHH, and CH sites
are methylated; (ii) all thymines at TpG, THG, THH, and TH sites are
converted unmethylated cytosines or true thymines; and (iii) all nu-
cleotides are randomly distributed in the genome. Our goal is to
estimate the proportion of Cs in potential target sites that are in fact
methylated, m, which is

m ¼
P

Cm
PðCm þ CuÞ; ðEquation 1Þ

where
P

Cmand
P

Cu are the total number of methylated and unme-
thylated target sites in the genome, respectively. The standard method
to estimate m is to determine the values of

P
Cm and

P
Cu by

mapping bisulfite sequence reads to a reference genome. Mapping
to a reference allows unmethylated Cs, which are converted to Ts
during bisulfite sequencing, to be distinguished from true Ts. Our
method estimates m using only bisulfite sequence reads. From the
bisulfite sequencing data we calculate F̂, which is:

F̂ ¼
P

sC
m

P
sðCm þ C?Þ ; ðEquation 2Þ

where
P

sC
m is the total number of methylated target sites in the

sample and
P

sC
? is the sum of unmethylated target sites,

P
sC

u, plus
sites that are equivalent to unmethylated target sites,

P
sT , after bi-

sulfite sequencing in the sample, e.g., all TG dinucleotides in the case
of CpG methylation. With our assumptions, if p is GC content, then

for CpG methylation, in a sample of n sequenced bases
P

sC
m is

expected to equal
�
1
4 p

2m
�
n (i.e., the product of the frequency of

CpG sites, the probability of methylation, and the number of bases
sequenced),

P
sC

u is expected to equal
�
1
4 p

2ð12mÞ�n (i.e., the prod-
uct of the frequency of CpG sites, the probability of no methylation,
and the number of bases sequenced), and

P
sT is expected to equal�

1
4 pð12 pÞ�n (i.e., the product of the frequency of TG dinucleotides
and the number of bases sequenced). Substituting in Equation 2 im-
plies that the expected value of F̂ is mp. With our assumptions, F̂ is
thus an estimate of the product of the methylation frequency of CpG
sites and the GC content of the genome. It follows that F̂ divided by
the estimated genomic GC content, p̂, is an estimate of m. For the
other three targets of methylation (CH, CHH, and CHG), it can be
similarly shown that F̂p̂ is also an estimate of m at those target sites. We
estimate GC content from the frequencies of G nucleotides in the
sample because these sites are unaffected by bisulfite treatment. The
difference between estimates of GC content fromWGBS reads are on
average within 4.56% 6 3.52% standard deviations of the true GC
content. FASTmC calculates F̂

p̂ from a whole-genome bisulfite sample
as an estimate of m the fraction of Cs that are methylated.

Violation of the assumptions can cause inaccuracies in estimating F̂.
We discuss some of these violations in Results and Discussion. In ad-
dition, we note that when additional genomic short read data
($ 500,000 bp) are available, GC content and the frequency of the
target site in the genome, e.g., the frequency of CpG dinucleotides, can
be directly measured. This can then be used to directly calculate the
proportion of target sites that are methylated, m, using the frequency
of intact target sites, e.g., CpG, that remain in the bisulfite genome
data. These are sites that were methylated and thus escaped C to T
conversion.

Data availability
All data used in this study can be found on the SRA/GEO webpages.
Accession identifiers can be found in Table S1.

RESULTS AND DISCUSSION
FASTmC is able to detect intraspecific differences in DNA methylation
(Figure 1). In the plant A. thaliana, mutants exist that are defective for
enzymes that are required for maintenance of CpG DNAmethylation
– met1, met1+cmt3, and vim1+vim2+vim3 – as they have reduced
CpG methylation levels compared to wild-type (Stroud et al. 2013).
Also, several mutant genotypes formet1 show different degrees of loss
of CpG DNA methylation compared to each other: (i) an original
met1 mutant genotype (high loss); (ii) a met1 heterozygous mutant
genotype (met1+/2) (intermediate loss); and (iii) a recovered geno-
type (MET1+/+) from a MET1+/+ and met1+/2 backcross. The re-
covered MET1+/+ is wild-type for MET1 function but has lost CpG
methylation in some regions of the genome (low loss). FASTmC is able
to capture the differences between these different genotypes (Figure
1A). Additionally, the slight (�3%) difference betweenMET1+/+ and
the met1+/2 mutant can be distinguished, demonstrating the sensi-
tivity of FASTmC (Figure 1A).

FASTmC is also capable of capturing natural epigenetic variation
exhibited by changes in levels of CHHmethylation due to temperature
in A. thaliana (Figure 1B). Levels of CHH methylation are affected by
temperature such that a higher level is observed at higher temperatures
as opposed to lower temperature treatments (Dubin 2015). Applying
FASTmC to these published data (Dubin 2015) using a fraction of the
original WGBS data recapitulated these findings (Figure 1B). Thus,
studies investigating natural epigenetic variation can be performed at
a fraction of the cost.
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In mammals, epigenetic reprogramming, including CpG demethy-
lation, is required to eraseDNAmethylation imprints and epimutations
established in the previous generation (Reik et al. 2001). Following
demethylation, DNAmethylation patterns are reestablished at imprinted
loci and transposable elements (TEs) during gametogenesis by the de
novomethyltransferases DNMT3A and a noncatalytic paralog, DNMT3-
like (DNMT3L) (reviewed by Law and Jacobsen 2010). The reductions in
CpG DNA methylation caused by epigenetic reprogramming in pri-
mordial germ cells (PGCs) or by mutations in DNMT3L (dnmt3L)
compared to somatic tissues are captured by FASTmC (Figure 1A)
(Popp et al. 2010; Kobayashi et al. 2012; Seisenberger et al. 2012).
Additionally, increased levels of CpG DNA methylation in the brain
(e.g., NeuN+ and glia cells) (Lister et al. 2013) can be differentiated
from other somatic tissues (Figure 1A and Table S1) (Hon et al. 2013).
Overall, as demonstrated in A. thaliana and Mus musculus, FASTmC
can be used to detect intraspecific differences of DNA methylation
levels at CpG sites (Figure 1A).

We determined natural interspecific variation of DNAmethylation
at CpG sites across 44 different species (Figure 2). However, unlike
intraspecific comparisons between mutants or cell types, nucleotide
biases, such as genomic GC content differences, can over- or underes-
timate the estimator value for the CpG sequence contexts. The estima-
tor (see Equation 2) is estimating the product of the methylation
frequency of CpG sites and the GC content of the genome, and is thus
confounded. This bias can be overcome in all species investigated but
mammals (Homo sapiens,M. musculus, and Canis lupus familiaris) by
dividing the estimator value by an average GC content of the genome,
which corrects the relationship between target and estimator to �1:1.

GC content can be approximately estimated from WGBS reads (see
Materials and Methods) or additional genomic sequence data – 10,000
50-bp reads (500,000 bp) – can be used to directly estimate GC content
(Table S1).

Nucleotide biases in genomes – such as the depletion of CpG dinu-
cleotides to localized “CpG islands” in mammalian genomes – may
interfere when estimating F̂. CpG dinucleotides can be directly mea-
sured from 10,000 50-bp genomic sequencing reads (Table S1), and this
can then be used to directly calculate the proportion of target sites that
are methylated, m, using the frequency of intact target sites, e.g., CpG,
that remain in the bisulfite sequencing data. These are sites that were
methylated and thus escaped C to T conversion. Accommodating for
nucleotide biases inmammalian genomes does not improve assessment
of DNA methylation levels by FASTmC (Table S1). However, treating
mammals separately from other species with CpG DNA methylation
(i.e., phylogenetic correction) produces an improved, mammal-specific
model with similar accuracy – measured as the Mean Absolute Per-
centage Error (MAPE) – to the remaining species (Table S1). Addi-
tionally, only a modest increase in model improvement was observed
for nonmammalian species (Table S1). Overall, GC content correction
(F̂=p̂) and treating mammalian species separately improves model ac-
curacy without introducing additional genomic sequencing data.

FASTmC also tolerates high contamination and error rates associ-
ated with sodium bisulfite conversion. We used WGBS data from
A. thalianamet1mutants (Stroud et al. 2013), which showminor (�3%)
to large (�14%) differences in CpG DNA methylation compared to
wild-type A. thaliana. By artificially introducing unmethylated chlo-
roplast reads to 10,000 reads tomet1 andmet1+/2mutant genotypes,

Figure 1 Detection of intraspecific DNA methylation levels by FASTmC. (A) Linear models (LMs) for estimated levels of methylation, i.e., F̂=p̂, (Y-axis)
vs. actual levels (X-axis) determined by reference mapping of WGBS reads. Estimated levels of methylation were based on 10,000 random WGBS
reads. DNA methylation differences between A. thaliana mutants, mouse mutants/cell-types/tissues, and increasing CH methylation throughout
brain development are captured with FASTmC. Shaded area represents the 95% confidence interval. (B) Environmental (temperature) effects on
CHH DNA methylation in A. thaliana is also recapitulated using FASTmC. Left panel (“FASTmC”) represents FASTmC methylation estimates for
individual lines based solely on the WGBS reads using the “plant”model from http://fastmc.genetics.uga.edu. Right panel (“True”) represents the
methylation values from standard WGBS read alignment to the A. thaliana reference genome. Red lines are averages of all lines. Data from Dubin
et al. 2015.
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and MET1+/+ and A. thaliana wild-type genotypes, we were able to
demonstrate that an �3% difference in DNA methylation can still be
detected with , 10% chloroplast contamination, and a difference of
13%–14% with 40%–50% chloroplast contamination (Table S1). Sim-
ilarly, nonconversion rates. 3% still allow for detection of differences
between samples (Table S1). It should be noted that the met1 mutants
and A. thaliana samples had nonconversion rates of 0.50%, 0.82%,

1.86%, and 0.56% for met1, met1+/2, MET1+/+, and wild-type
A. thaliana, respectively. The artificially introduced error rates are ex-
tremely high, but possible. For example,, 1% of reads typically map to
the chloroplast genome, and nonconversion rates are typically , 2%
(data not shown). However, it is recommended that Lambda DNA be
sequenced for each batch of WGBS libraries prepared to estimate the
rate of sodium bisulfite nonconversion. Reducing technical error is

Figure 2 Detection of interspecific DNA methylation levels by FASTmC. Linear models (LMs) for estimator (F̂) vs. target (m) CpG, CHG, CHH, and
CH DNA methylation levels using 10,000 reads corrected for estimated GC content (p̂).
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especially important for identifying differences between species with
small amounts of or no DNA methylation like insects (Table S1).
Regardless, the FASTmC method is robust as it is able to tolerate
technical and biological contamination.

The number of short-reads ($ 30 bp) required to make accurate
estimations is low, and we have determined that a few thousand reads
produce high-confidence estimates of genome-wide methylation levels
(Figure S1). Additionally, very little variation in predicted DNA meth-
ylation level is observed [standard error (se) = 0.0013] between 20
replicates of 10,000 randomly sampled reads (Table S1). Thus, these
models can be used to accurately and cost-effectively identify differ-
ences of DNA methylation levels for any species regardless of the
availability of a reference genome assembly.

Non-CpG DNA methylation can also be confidently predicted
within and between species using FASTmC. InA. thaliana, the majority
of DNA methylation at CHG sites is maintained by chromomethylase
CMT3 through a reinforcing loop with H3K9me2 methylation cata-
lyzed by the KRYPTONITE (KYP)/SUVH4 protein (Jackson et al.
2002; Du et al. 2012, 2014). Similarly to MET1, mutations in CMT3
cause reductions in CHGDNAmethylation (Stroud et al. 2013), which
are accurately detected by FASTmC (Figure 1A). Also, in A. thaliana,
cell-type specific levels of CHH DNA methylation in the sperm cell
(SC) (i.e., hypo-CHH DNA methylation) and vegetative nucleus (VN)
(i.e., hyper-CHH DNA methylation), and depletion of CHH DNA
methylation in mutants in the de novo DNA methylation pathway
(e.g., the DNA-dependent RNA polymerase, POLIV) were recapitulated
(Figure 1A) (Calarco et al. 2013; Stroud et al. 2013).

Inmammals, non-CpGDNAmethylation can be found at CH sites.
A previous study demonstrated an overall increase of CH DNA meth-
ylation during brain development inM.musculus andH. sapiens (Lister
et al. 2013). FASTmC was able to capture the overall trend of increasing
CHmethylation through brain development inH. sapiens (Figure 1A).
Furthermore, despite only small differences in brain CHmethylation in
the intervals from 2 to 5 yr (0.068%), and from 55 to 64 yr (0.062%) of
age, the FASTmC model accurately detected these changes (Figure 1A)
(Lister et al. 2013).

In conclusion, we propose several models that capture the variation
of, and can accurately predict, genome-wide DNA methylation levels
between species to represent FASTmC, and these can be found at http://
fastmc.genetics.uga.edu. Additionally, the web-based interface makes
FASTmC universally accessible, and models will be continuously
updated when new whole genome and methylome data are analyzed
and become available. Although genome content biases interfere with
the accuracy of FASTmC, treating mammalian species separately for
CpG DNA methylation overcame this obstacle. FASTmC makes pre-
viously intractable studies practical (e.g., high-resolution time course,
developmental, and large diversity panels) regardless of species, ge-
nome size, and availability of a reference genome. Furthermore, these
models will greatly contribute to high-resolution screening of either
developmentally or environmentally induced epigenomic reprogram-
ming events. FASTmC is a suite of powerful models that can aid
researchers to make better investments in more comprehensive, fruit-
ful studies.
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