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Abstract

It was recently shown that the brain-wide cerebrospinal fluid (CSF) and interstitial fluid exchange 

system designated the ‘glymphatic pathway’ plays a key role in removing waste products from the 

brain, similarly to the lymphatic system in other body organs1,2. It is therefore important to study 

the flow patterns of glymphatic transport through the live brain in order to better understand its 

functionality in normal and pathological states. Unlike blood, the CSF does not flow rapidly 

through a network of dedicated vessels, but rather through para-vascular channels and brain 

parenchyma in a slower time-domain, and thus conventional fMRI or other blood-flow sensitive 

MRI sequences do not provide much useful information about the desired flow patterns. We have 

accordingly analyzed a series of MRI images, taken at different times, of the brain of a live rat, 

which was injected with a paramagnetic tracer into the CSF via the lumbar intrathecal space of the 

spine. Our goal is twofold: (a) find glymphatic (tracer) flow directions in the live rodent brain; and 

(b) provide a model of a (healthy) brain that will allow the prediction of tracer concentrations 

given initial conditions. We model the liquid flow through the brain by the diffusion equation. We 

then use the Optimal Mass Transfer (OMT) approach3 to derive the glymphatic flow vector field, 

and estimate the diffusion tensors by analyzing the (changes in the) flow. Simulations show that 

the resulting model successfully reproduces the dominant features of the experimental data.
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1. Introduction

Clearance of interstitial waste products is essential to normal brain function. Hence, 

disturbances in waste removal of toxic products such as amyloid beta (Aβ) and tau proteins 

Correspondence to: Vadim Ratner, vadim.ratner@stonybrook.edu.

HHS Public Access
Author manuscript
Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2016 February 12.

Published in final edited form as:
Proc SPIE Int Soc Opt Eng. 2015 February 21; 9413: . doi:10.1117/12.2076289.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



are implicated in the pathogenesis of Alzheimer's disease9. In most organs lymphatic vessels 

provide for the drainage of waste proteins, antibodies and solutes, however, the brain is 

unique in this regard because it lacks a conventional lymphatic drainage system10. In the 

central nervous system (CNS), clearance and/or transport of protein and excess solutes from 

the interstitial fluid (ISF) space is less well understood but is thought to be governed in part 

by cerebrospinal fluid (CSF) exchanging with ISF via para-arterial conduits (Virkow-Robin 

spaces)1. In recent studies using optical imaging in combination with fluorescently tagged 

tracers injected into the intrathecal space, this CSF-ISF exchange system was further 

characterized in the live rodent brain2. Specifically, it was demonstrated that small 

molecular weight (MW) tracers injected into the subarachnoid CSF move rapidly into the 

brain along both penetrating cortical and basal arteries (but not veins) to reach the capillary 

beds and associated interstitial compartments 2 (Fig.1). It is confirmed that the fluorescently 

tagged tracers administered into CSF are cleared from the brain along the same pathways as 

intra-parenchymally injected tracers, accumulating primarily along large draining veins. It 

was also discovered that astrocytes play a pivotal role in linking the para-arterial inflow and 

the para-venous efflux pathways2. In mice harboring the deletion of the astroglial aquaporin 

4 (AQP4) water channels, tracer influx along para-arterial routes and through the brain 

interstitium was sharply reduced suggesting that fluid is mass transported through the 

astrocytic network. Together, the paravascular influx and clearance routes, coupled by trans-

astroglial fluid mass transport, constitute a brain-wide waste clearance pathway, which is 

designated the ‘glymphatic system’2.

To translate the glymphatic pathway findings observed with fluorescently tagged tracers and 

optical imaging towards a relevant preclinical test-bed, intrathecal injection of paramagnetic 

contrast molecules was combined with dynamic T1-weighted 3D brain MRI on a 

9.4TmicroMRI instrument in rodents11.

In the rodent brain, the primary, most rapid glymphatic inflow (defined as total normalized 

uptake >100) occurs at the level of the hypothalamus, olfactory, retrosplenial cortex, pons, 

amygdala, cerebellum and the hippocampus. Slower influx and clearance of Gd-DTPA is 

observed in the entorhinal cortex, insula and more remote brain regions such as caudate 

putamen, midbrain and thalamus. Importantly, the contrast-enhanced MRI technique for 

quantifying glymphatic pathway function was validated using conventional ex vivo optical 

imaging and fluorescently tagged tracers of same molecular weight11. These studies show 

that we can quantify and capture both influx and efflux components of glymphatic transport 

the live rodent brain using contrast-enhanced MRI11.

Driven by the initial image data of flow in the glymphatic system, use optimal mass 

transport to try to estimate the velocity vector field, and in turn use this to derive better 

computational fluid models, especially modelling the diffusion and advection fluxes at 

various point in the brain. Having a mathematical model would give us a better physical 

understanding of what occurs in the glymphatic systems, will allow us to propose further 

experiments, and allow us to predict how changes in the parameters (e.g., cell volume, 

pulsatility, AQP4 channels, and supine/prone positions) effect the overall flow.
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The purpose of this research is to derive an analytic model of the transport through the 

glymphatic system of the brain, based upon a dynamic series of contrast-enhanced MRI 

images.

2. Algorithmic Details

2.1 Assumptions about the Data

The data is collected as a time series of T1-weighted MRI images taken after administration 

of paramagnetic contrast (Gd-DTPA, molecular weight 938 Da) into the lumbar intrathecal 

space of an anesthetized rat. The dynamic acquisition of data depicts a gradual propagation 

of the tracer into the brain. Based on anatomical mapping of signal changes induced by Gd-

DTPA on the MRI images over time we assume (assumption 1) that the tracer is transported 

via the glymphatic pathway. We further assume (assumption 2) that brain-wide glymphatic 

transport can be described by the diffusion equation with anisotropic tensor coefficients that 

do not change with time (or change very slowly). The problem of flow estimation and 

modeling is then translated into the inverse problem of estimating the diffusion coefficients 

from concentration data. The model estimation process consists of two steps: an optical flow 

computation and diffusion tensor estimation; each of which are described below.

We finally assume (assumption 3) that the total mass of the tracer agent in the brain is 

almost constant (mass preservation) between consecutive time points. This assumption was 

made in order to simplify the optical flow estimation (and because modeling the tracer 

inflow and decay is not an easy task). A new model that takes tracer mass changes into 

account is currently being developed.

2.2 Optical Flow

At first, optical flow is computed between each pair of consecutive MRI images4,5. One of 

the simplest flow models is based on optimal mass transport (OMT) also known as the 

Monge-Kantorovich problem3,6. It is based on an energy minimization principle with a mass 

conservation constraint. Let Ω0 and Ω1 denote two subdomains of Rd, having smooth 

boundaries, each with a positive density function, μ0 and μ1, respectively. We assume ∫Ω0 μ0 

= ∫Ω1 μ1 = 1 so that the same total mass is associated with Ω0 and Ω1 (assumption 3). We 

consider diffeomorphisms ϕ from (Ω0, μ0) to (Ω1, μ1), which map one density to the other in 

the sense that

(1)

(Jacobian equation). A mapping ϕ that satisfies the Jacobian equation is said to have the 

mass preservation (MP) property, written as ϕ ∈ MP. Here |∇ϕ| denotes the determinant of 

the Jacobian map ∇ϕ. A mapping ϕ that satisfies this property may be considered as a 

redistribution of the mass of material from one distribution μ0 to another distribution μ1. 

There may be many such mappings, and we want to pick out an optimal one. Accordingly, 

the optimization in the Lp Kantorovich – Wasserstein metric
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(2)

seeks an optimal MP map which, when it exists, minimizes a cost functional. This functional 

is seen to place a penalty on the distance the map ϕ moves each bit of material, weighted by 

the material's mass. The cases p = 1, 2 has been extensively studied. For p = 2, a 

fundamental result is that there is a unique optimal ϕ ∈ MP transporting μ0 to μ1, and that 

this ϕ is the gradient of a convex function u, i.e., ϕ = ∇u. Thus, the Kantorovich-

Wasserstein metric defines as distance between two mass densities the cheapest way to 

transport one mass distribution to the other. The optimal transport map, denoted by ϕMK in 

the p = 2 case, can be computed by solving a PDE3.

2.3 Diffusion and the Analytical Model of the Brain

Let μ(t, x) be a nonnegative function describing the density of the tracer over the 3D brain 

domain, in time. We assume that tracer propagation through the brain tissue can be 

described by the diffusion equation (assumption 2):

(3)

where ∇ · and ∇ denote divergence and gradient with respect to spatial coordinates, 

respectively, and D is a (spatially varying) symmetric 3×3 matrix (diffusion tensor). The 

eigenvectors of D point in the main diffusion directions, with the eigenvalues denoting the 

diffusivity (diffusion strength) in those directions. Our goal is to find D, given the transfer 

speeds defined for each MRI time sample by the mass transport maps ϕMK. Once D is 

known, we can compute tracer concentration at any point in time and space given any initial 

(and boundary) conditions.

Given a single transport map, we can only find the strength, k, of diffusion in the direction 

of the transport vector, w, in each voxel as follows:

(4)

This single direction-value combination does not provide sufficient information about the 

diffusion tensor. An analysis of all such combinations, however, reveals a more complete 

picture. At first, we construct a set Σ for each pixel, composed of vectors whose directions 

are those of the transport vectors (w) originating from that pixel at different times, and their 

magnitudes – the corresponding scalar diffusivities (k). For every v ∈ Σ, we also add −v ∈ Σ, 

since the diffusion direction is unsigned (i.e. diffusivity in one direction is the same as that 

in the opposite direction). The principal components of Σ are therefore parallel to the 

eigenvectors of the (approximated) diffusion tensor D, and their variances are the 

corresponding eigenvalues.
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3. Results

We performed two experiments on the existing datasets. Firstly, we computed the CSF flow 

using OMT. We evaluated the results with the help of a medical expert; we also checked if 

the computed flow can accurately predict the behavior of the real system, by deriving an 

estimate of an image at a given time using the image at a previous time-frame and the 

computed flow (Fig. 2). Secondly, we estimated the diffusion tensors, and simulated the 

diffusion process using the first time slice of the real data as the initial conditions (Fig. 4).

The computed flow field (Fig. 3) is consistent with the current understanding of the 

glymphatic system2. Furthermore, using the flow to warp data from previous time frames 

yields a very good approximation of the real data in the current time-frame (Fig. 2). The 

diffusion model derived from the flow field yields a reasonable approximation of the real 

data (Fig. 4). The approximation is smoother than the original, however it contains most of 

the original features.

4. Discussion

A number of other researchers have modeled liquid propagation by diffusion equations 

including those in hydrogeology and brain research7,8. Most of these studies attempt to solve 

the estimation problem for a domain with constant, or locally constant coefficients. In the 

present work, we present the first attempt (to our knowledge) to fully solve the inverse 

problem of dense estimation of coefficients that are either anisotropic or spatially-varying or 

both, from concentration measurements. Also, none of the previous attempts to solve the 

inverse problem (assuming simpler, homogeneous models) utilized OMT.

OMT provides a good estimate of the actual glymphatic flow. Despite its simplicity, the 

proposed model mimics the real data closely, with some errors arising from the difficulty of 

the inverse problem. Some refinement of the diffusion model, such as including additional 

terms in the diffusion equation and compensating for the mass source (and loss of mass) 

while computing the OMT flow, should improve its accuracy.
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Figure 1. 
Schematic of the glymphatic pathway in rodent brain. Para-arterial inflow of cerebrospinal 

fluid (CSF) enters the brain tissue faciliated by astrocytic AQP4 water channels. The CSF 

mixes with the interstitial fluid (ISF) and propels the waste products of neuronal metabolism 

into the para-venous space, from which they are directed into cervical lymphatic vessels and 

ultimately returned to the general circulation for clearance by the liver.
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Figure 2. 
Modeling brain-wide glymphatic transport of Gd-DTPA using optimal mass transport 

(OMT). Comparison of the original locally enhanced T1-weighted MRI images (top row), 

and optimal mass transport reconstruction results (bottom row) from a rat receiving Gd-

DTPA into the CSF at time-frames 1-5. The enhanced brain regions are enclosed by red 

contours. The brightness corresponds to the amount of Gd-DTPA induced signal change in 

the current cross-section. The reconstruction uses the previous timeframe of the real data 

and the computed flow between current and previous time-frames to estimate data at the 

current time-frame. As we see, the reconstructed images are very close to the originals.

Ratner et al. Page 8

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2016 February 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Top row: y, z, and x slices of a rat brain at a given time with color showing the 

concentration of a tracer (red – high concentration, blue – low concentration). Bottom row: 

Tracer flow through the respective slices depicted in the top row, presented as a LIC (Line 

Integral Convolution) image. Intensity lines are tangential to the computed flow direction 

over the slice, with arrows pointing in the actual flow direction. The color information 

depicts the strength of the flow component that is tangential to the slice plane (red – strong 

tangential component, i.e. the flow vector mostly lies within the slice plane; blue – weak 

tangential component, i.e. the flow vector is orthogonal to the slice plane). Most of the flow 

estimate agrees with the current understanding of the brain-wide glymphatic transport 

patterns (i.e. validated by optical imaging experiments). In some areas the estimate failed 

because the tracer has not reached them during the simulation time, therefore, the 

computation was mostly affected by the regularization (smoothness term) and not by the 

data.
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Figure 4. 
Simulation of tracer propagation through the brain using computed diffusion tensors. a – 

initial tracer concentration (time point 13), used as the initial conditions for the diffusion 

simulation; b – final (real) tracer concentration (time point 21); c – final tracer concentration 

simulated by a diffusion equation with the proposed tensor calculation scheme (PCA-based); 

d – final tracer concentration simulated by diffusion in the direction of the mean transport 

(over time) at each pixel. While the proposed method yields a somewhat smoothened 

estimate, it manages to capture many of the features of the real data, compared to the more 

primitive estimate (d).
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