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Abstract

Diffusion MRI is a useful probe of tissue microstructure. The conventional diffusion encoding 

sequence, the single pulsed field gradient, has recently been challenged as more general gradient 

waveforms have been introduced. Out of these, we focus on q-space trajectory imaging, which 

generalizes the scalar b-value to a tensor valued entity. To take full advantage of its capabilities, it 

is imperative to respect the constraints imposed by the hardware, while at the same time 

maximizing the diffusion encoding strength. We provide a tool that achieves this by solving a 

constrained optimization problem that accommodates constraints on maximum gradient 

amplitude, slew rate, coil heating and positioning of radio frequency pulses. The method's efficacy 

and flexibility is demonstrated both experimentally and by comparison with previous work on 

optimization of isotropic diffusion sequences.
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1. Introduction

Diffusion MRI probes the structure of biological tissue structure on a microscopic scale 

using the random translational motion of water molecules [1, 2, 3]. In the brain, tissue 

components—such as cell membranes, nerve fibers and macromolecules—impede the 

diffusion, making its characteristics different from that of freely diffusing water. In 

particular, the organization of white matter tracts into fiber bundles with preferential 

directions makes the diffusion anisotropic [4]. In diffusion tensor imaging (DTI), the 

diffusion in a voxel is described by a tensor with six degrees of freedom [5, 6]. 

Consequently, it requires the acquisition of at least six diffusion-weighted images. The trace 

of the diffusion tensor, which relates to the mean diffusivity (MD), is a useful biomarker e.g. 

when studying tumor cellularity [7] or diagnosing stroke [8]. In fact, the mean diffusivity 

can be determined by single-shot isotropic diffusion weighting [9], i.e. without doing full 

DTI. Although a good idea this has rarely been done in practice—until recently. The recent 

revival has been spurred by advancements on both the methodological and the technical 

sides. On the methodological side, isotropic diffusion weighting has been shown useful 

when studying microscopic diffusion anisotropy [10] and, in combination with directional 

diffusion weighting, it can be used to distinguish between microscopic anisotropy and 

orientational order [11, 12]. On the technical side, the limited gradient amplitudes 

achievable in clinical scanners have made it challenging to obtain sufficient diffusion 

weighting when using isotropic encoding. Rapid progress is being made on the hardware 

side [13, 14] but in the numerical optimization of gradient waveforms there is still room for 

improvement, although there has been some promising research in this direction [15, 16]. A 

gradient waveform that yields isotropic diffusion encoding can—in theory—easily be 

remapped to achieve a general diffusion encoding [17], which can be tuned to maximize 

sensitivity to the microstructure parameters of interest [18, 19].

In some of the earlier work [15, 16] the numerical optimization was strongly model driven, 

with constraints implicitly incorporated into a parametrization of the pulse sequence which 

was then optimized with respect to the parameters. This makes the obtained optimization 

less transparent and less adaptable to a new setting. Remapping a waveform with isotropic 

diffusion encoding into a generalized diffusion measurement [17] does not take the inherent 
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constraints into account. Subsequently adjusting the remapped gradient waveform to make it 

feasible comes at the cost of efficiency.

In this work, we propose a new optimization framework for these gradient waveforms that 

makes far less modeling assumptions than previous work while it is at the same time easily 

adaptable to hardware constraints on maximum gradient amplitude, slew rate, heating and 

positioning of RF pulses. Taking gradient heating into account is of particular interest for 

diffusion imaging where the power dissipation can otherwise hinder operation at a high duty 

cycle [13, 14]. A further generalization of our approach is that it allows arbitrary positioning 

of time intervals with zero gradients (or slice-selective gradients), during which an RF pulse 

can be applied, and not requiring a mirror-symmetric gradient waveform.

2. Optimization

The most common pulse sequence in diffusion MRI is single diffusion encoding (SDE) by a 

pair of short gradient pulses separated by a diffusion time [20]. Each repetition of such a 

measurement probes the diffusion in one direction. In this work we consider more general 

scenarios with time-varying gradients that probe trajectories in so-called q-space [17]. The 

q-space trajectory is determined by gradient waveforms g(t) = (gx(t),gy(t),gz(t))T according 

to

(1)

where γ is the gyromagnetic ratio. It is the q-space trajectories q(t) that constitute the 

degrees of freedom that we consider in the optimization.

Restricted diffusion does not follow the Gaussian behavior that is characteristic of free 

diffusion [1]. Nevertheless, the model of diffusion—on the voxel scale—as a mixture of 

Gaussians has found widespread use [21, 22, 23] and captures relevant information about the 

tissue microstructure [2].

Under the Gaussian approximation, the geometry of the diffusion encoding is captured by 

the measurement tensor [1, 17]

(2)

where τ is the echo time. The measurement tensor extends the conventional b -value to a 

matrix-valued entity (the conventional b -value is given by the trace of B). The rank of the 

measurement tensor depends on the q-space trajectory: it is one in the case of SDE, two for 

double diffusion encoding (DDE) [24], and three in the isotropic encoding case. Figure 1 

shows the correspondence between the graphical- and the matrix representations of 

measurement tensors used in this work.

By definition, isotropic diffusion encoding corresponds to a measurement tensor
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(3)

There is a direct link between the diffusion tensor in a voxel,

(4)

and the measurement tensor B; the normalized echo amplitude E(q) in a diffusion 

experiment is [1]

(5)

where α, β ∈ {x, y, z}. From the basics of the trace operator it follows that the attenuation is 

directly related to the sum of the eigenvalues of the matrix product DB. In particular B = 

Biso gives Tr(DB) = b(λ1 + λ2 + λ3)/3 = bD̄, where D̄ is usually referred to as the mean 

diffusivity.

It is convenient to define a general measurement tensor as B = bB̂, where Tr(B̂) = 1, because 

then b is the conventional b -value and Tr(DB) = b·Tr(DB̂). Combining this with equation 

(5) it is evident that—independent of the choice of B̂—maximizing the diffusion weighting 

amounts to maximizing b. However, the hardware imposes a multitude of constraints that 

prevents a universally optimal formula. It might seem a bit backwards to optimize b for a 

given echo time, instead of the converse, but in practice it is not an issue: using bisection the 

minimum echo time for a given b can be found in a small number of optimization runs. In 

return, the problem can be formulated as a constrained optimization problem in a more 

natural way.

2.1. Constraints

A pulse sequence optimization needs to respect a number of hardware dependent and 

sequence dependent constraints. We will describe these constraints in an idealized, 

continuous, scenario; implementation details can be found in appendix Appendix A. To 

facilitate the numerical treatment, we phrase the optimization problem in terms of q(t), 

rather than working directly with the gradient waveforms g(t). Converting in between is 

straightforward: it follows from eq. (1) that .

2.1.1. Sequence dependent constraints—There are three constraints specific to the 

sequence desired. First, we want to achieve a given diffusion encoding as described by a 

(normalized) measurement tensor B̂, i.e.
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(6)

Second, in order for the sequence to produce an echo at the desired echo time, τ, it must hold 

that

(7)

Third, it may be desirable to enforce the gradients to be zero (or active only in the slice 

encoding direction) during certain time intervals, It, to allow for RF pulses. Since the 

gradients are found by differentiating q(t) this is to say

(8)

In particular, we will impose throughout that the gradients are zero at the start and end of the 

pulse sequence.

2.1.2. Hardware constraints—The hardware constraints considered are the maximum 

gradient strength, slew rate and heating. The gradient amplitude, Gmax, is one of the most 

severe factors limiting the diffusion encoding strength [2, 14] and it is therefore important to 

account for it explicitly in the optimization. This is done through the constraint

(9)

where the norm is either the max-norm, ∥(x1, x2, x3)∥∞ = max(|x1|, |x2|, |x3|), or the 

Euclidean norm, . The first corresponds to actual scanner 

constraints whereas the latter can be used to obtain a rotationally invariant waveform (more 

on that in section 4.1).

A similar, but often not as severe, constraint is the maximum slew rate (rate of change), 

Rmax, of the gradients, which translates into

(10)

An additional—at times overlooked—part of an efficient pulse sequence is the ability to 

perform at a high duty-cycle without inactive cool-down periods. An intense diffusion 

encoding block often requires a rather long idle time, which reduces the number of samples 

per unit of time and thereby the effective signal-to-noise ratio. This means that there is much 

to gain by accounting for the heat dissipation when optimizing the pulse sequence. 

Assuming resistive heating [13], the heat dissipation in gradient coil α is proportional to the 

time integral of gα(t)2. This can be captured by the constraint
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(11)

where η ∈ [0, 1] is a dimensionless scalar. Varying the parameter η allows us to balance 

heat dissipation against diffusion encoding.

2.2. The optimization problem

Taken together, we arrive at the optimization problem

(12)

To solve this problem we discretize q(t) and replace the derivatives and integrals with finite 

difference approximations (see Appendix A). To achieve better convergence, we also relax 

the equality in the measurement tensor constraint by allowing a small violation ε in 

Frobenius norm. These steps turn the problem into a form in which it can be solved 

efficiently using sequential quadratic programming. This is a deterministic algorithm, 

meaning that it always returns the same solution for a given initial guess. Our experience is 

that a random initialization works best and, with large1 probability, results in one out of a 

number of different but equally good (same objective function value) solutions. To further 

increase this probability, it is of course possible to run the optimization multiple times, with 

different initial guesses, and choose the best solution. The numerical results presented in 

sections 4.1 and 4.2 all use the same random initial guess, i.e. a single starting configuration.

Incidentally, note that this optimization problem does not impose any particular shape on 

q(t), only that its diffusion encoding matches the desired measurement tensor. The shape can 

be important when considering restricted diffusion. However, if a particular shape is desired 

it is straightforward to check which constraint will be the limiting one and set the magnitude 

accordingly.

2.3. Evaluation

The performance of the different gradient waveforms can be compared with respect to their 

diffusion weighting and the amount of dissipated heat. In general, the b -value of any 

gradient waveform can be expressed as

1Running 100 optimizations with random initial guesses, isotropic diffusion encoding, and the remaining settings as in sections 4.1 
and 4.2 (the only difference being max-norm or Euclidean norm in the gradient amplitude constraint) the best objective function value 
was found in 54 and 86 cases, respectively. In all the remaining cases the objective function value was within 1% of the best one.
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(13)

where κ is a dimensionless efficiency factor that depends on the gradient waveform. For a 

single coil, the maximum efficiency, κ = 1/3, results from applying maximum gradient in 

one direction for half the echo time and in the opposite direction for the other half of the 

time. It thus requires an infinite slew rate. Only by applying this gradient sequence in the 

three coils simultaneously is it possible to attain κ = 1.

To capture the slew rate limitation we introduce another dimensionless parameter, ξ ∈ [0, 1], 

as

(14)

In other words, ξ is the fraction of the echo time it takes to increase the gradient amplitude 

from zero to max.

2.4. Heat dissipation and repetition times

The signal-to-noise ratio (SNR) of a measurement can be increased by repeating the 

measurement n times and averaging the results. A short repetition time TR allows more 

repetitions in a given time. A short and intense gradient sequence suffers less from 

transverse relaxation but dissipates more heat—and may therefore require longer TR—than a 

more gentle gradient sequence. A relevant question is therefore: provided a set amount of 

time, how to choose τ and TR to maximize the SNR?

We will answer this question by considering two gradient sequences referred to as A and B. 

Gradient sequence A, with corresponding τA and ηA, is held fixed while we change gradient 

sequence B and record the ratio of their SNRs. In general, for a repeated spin echo 

experiment

(15)

To proceed we make the following two assumptions: first, that equation (13), with κ = κ(η) 

(as will be shown in figure 5), holds as τ and η are varied. This is a reasonable 

approximation as long as the slew rate is not a major limitation (ξ small). Second, that the 

average heat dissipation per unit time is sufficient to represent the thermal dynamics and that 

the system adjusts  so that the average heat dissipation is precisely as high as 

acceptable. If this is not the case, it is best to simply use the most intense gradient sequence 

possible. As shown in Appendix B, the resulting ratio of the pulse sequences SNRs is
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(16)

where Ψ = (κ(ηA)/κ(ηB))1/3. The highest SNR can be found by maximizing the ratio with 

respect to ηB, which in turn yields τB and .

3. Experiments

We performed two types of experiments: the first, detailed in Appendix C, aimed to verify 

that optimized waveforms achieve isotropic diffusion encoding when intended to; the 

second, detailed below, considers the implementation of optimized waveforms on a clinical 

MRI scanner.

3.1. In vivo experiments

To demonstrate that the optimized waveforms could be implemented on a clinical scanner 

system, MRI data was acquired in 10 healthy volunteers (all male, mean age (standard 

deviation) was 30 (4) y, interval [24, 34] y), using a Siemens Skyra 3 T system, equipped 

with 43 mT/m gradients with a maximum slew rate of 200 mT/m/ms, and a 20-channel 

receiver head coil. Written consent was received from all volunteers prior to scanning. The 

diffusion experiments were based on those reported by Szczepankiewicz et al. [12], although 

using another sequence implementation. Briefly, the experiment combines equal amounts of 

images acquired with directional and isotropic diffusion encoding at b -values 100, 500, 

1000, 1500 and 2000 s/mm2. The directional encoding in each shell was performed in 6, 6, 

12, 20 and 48 directions, respectively, and the isotropic encoding was repeated the same 

number of times for each shell. The directions were optimized across all b -shells 

simultaneously using a charged container model [25]. All images were acquired in 11 

contiguous axial slices using an echo time (τ) of 130 ms, repetition time (TR) of 2500 ms, 

128 × 128 acquisition matrix, spatial resolution of 2 × 2 × 4 mm3 partial Fourier factor of 

6/8, bandwidth of 1500 Hz/voxel, and a GRAPPA factor of 2. The diffusion encoding was 

performed during 55.44 ms and 48.16 ms before and after the refocusing pulse, respectively; 

the duration of the refocusing pulse and slice-selection gradients was 7.76 ms. The 

waveform was optimized to this timing using 2-norm, η = 0.6, Gmax = 43 mT/m, Rmax = 130 

T/m/s and N = 200 discretization points. The maximum slew rate was limited to avoid 

peripheral nerve stimulation. Total scan time for the isotropic and anisotropic encoding 

sequences was 8:00 min. All data was smoothed with a 3D Gaussian kernel (FWHM 2 mm) 

to mitigate Gibbs ringing artefacts [26], and corrected for motion and eddy-current 

distortions using ElastiX [27] with extrapolated references [28]. Parameter maps of the mean 

diffusivity (MD) and microscopic fractional anisotropy (μFA), were calculated according to 

the framework suggested by Lasič et al. [11, 12]. The conventional fractional anisotropy 

(FA) was calculated from the directionally encoded data, using standard diffusion tensor 

analysis [29, 12]. The potential benefit of using optimized waveforms was evaluated by 
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comparing the maximal b -values that could be achieved by the qMAS waveforms, used in 

Szczepankiewicz et al. [12], to the optimized waveforms.

In addition to this, a separate investigation of the SNR was performed in a single volunteer 

where optimized waveforms were compared to qMAS. To this end, the in vivo protocol was 

modified to contain only isotropic encoding at a single b -value of 2000 s/mm2. The echo 

time was minimized and the repetition time was set to 4000 ms to not incur restrictions on 

the maximal echo time. This measurement was repeated 20 times and the SNR was 

calculated in each voxel as the mean signal divided by the signal's standard deviation across 

all repetitions.

4. Results

We first present results from numerical studies and then experimental results. The numerical 

studies consider, in turn, varying the measurement tensor, varying the heat dissipation and 

the heat dissipation's effect on the total SNR. Then, the results of the in vivo experiments 

follow. The result of the experiment aimed to verify the isotropic encoding of an optimized 

waveform is presented in Appendix C.

4.1. Optimization of axisymmetric measurement tensors

Axially symmetric tensors are of particular interest since they can be used to distinguish 

between prolate and oblate microscopic diffusion tensors with unknown orientation 

distribution [30].

Often, it is desirable to use a pulse sequence that can be rotated to achieve arbitrary 

directional encoding. This means that the total gradient magnitude can never exceed what a 

single gradient coil can generate, i.e. ∥g(t)∥2 ≤ Gmax. Geometrically, the gradient trajectory 

is then constrained to lie inside a sphere of radius Gmax. In what follows we will only 

consider diagonal measurement tensors; provided that the rotational dependence of the slew 

rate constraint can be neglected, this assumption incurs no loss of generality.

For comparison we consider a naïve approach: consecutive application of a conventional 

SDE sequence in each gradient direction as shown in figure 2. Assuming infinite slew rate 

and τx = ατ, τy = τz = (1 – α)/τ/2, where α ∈ [0, 1], this gives 

and a resulting efficiency

(17)

Figure 3 compares the efficiency of this approach compared to an optimization, as proposed 

in this work, for axially symmetric measurement tensors

(18)
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where λaxial ∈ [0, 1]. These optimizations were done using Gmax = 80 mT/m, Rmax = 100 

T/m/s (ξ = 0.016), η = 1, τ = 50 ms, ε = 10−4 and N = 100 discretization points. Figure 4 

shows five of the optimized trajectories. To achieve the same b -value, it follows from 

equation (13) that the optimized waveforms allow reductions in echo time by 16% and 22% 

in the double diffusion encoding (λaxial = 0) and triple diffusion encoding (λaxial = 1/3) 

cases, respectively.

4.2. The trade-off between heat dissipation and efficiency

We explored the trade-off between heat dissipation and efficiency by fixing the 

measurement tensor to be isotropic and varying the heat dissipation η. Again, we used the 

settings Gmax = 80 mT/m, τ = 50 ms, ε = 10−4 and N = 100. However, to investigate the 

influence of the slew rate, we repeated the experiment twice: first with Rmax = 100 T/m/s (ξ 

= 0.016) and then with Rmax = 20 T/m/s (ξ = 0.08). The resulting efficiencies as a function 

of the heat dissipation are shown in figure 5, which also shows the results from previous 

work and compares with a naïve sequence defined as in section 4.1 but with the gradient 

magnitudes scaled to meet the heat dissipation requirement. Figure 6 shows five trajectories 

optimized with ξ = 0.016 and different values of η. As the allowable heat dissipation is 

varied from low to high, the gradient waveforms transition from smooth, almost sinusoidal, 

to rectangular.

The fact that the gradient amplitude and slew rate apply to each coil separately means that 

the gradients are constrained by a cube with its sides at ±Gmax. The strongest diffusion 

encoding is achieved in the corners of this cube (recall that the b -value scales quadratically 

with the gradient). So, whenever heat dissipation can be neglected, this is where we expect 

to find the gradients. The slew rate then limits how fast the gradient trajectory transitions 

between corners. This behavior is clearly visible in figure 6e.

4.3. Heat dissipation and repetition times

To illustrate the heat dissipation's effect on SNR, as described in section 2.4, we consider the 

optimized sequences from section 4.2 with ξ = 0.016 that are shown in figure 5 and the 

corresponding naïve sequences. Figure 7 shows the ratio of SNRs, for 

, when gradient sequence A is taken to be the most intense 

one. Here, we used T1 = 1331 ms and T2 = 110 ms for gray matter (GM); T1 = 832 ms and 

T2 = 80 ms for white matter (WM) [31].

4.4. In vivo experiments

All volunteers were successfully scanned. A qualitative examination of the diffusion 

weighted images showed that the image quality was good, and that no prominent artefacts 

were introduced by the optimized waveforms. Parameter maps of a subject are shown in 

figure 8.

The maximal b -value achievable for isotropic encoding with τ = 130 ms (see section 3.1) 

was 3000 s/mm2 for the optimized waveforms, and 1050 s/mm2 for the qMAS waveforms, 

respectively. Thus, to achieve a b -value of 3000 s/mm2 the echo time could be reduced 

from 180 ms to 130 ms when employing the optimized waveforms.
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A b -value of 2000 s/mm2 was achievable with an echo time of 116 and 170 ms for the 

optimized waveform and qMAS waveforms, respectively. Due to transverse relaxation 

effects, the signal at b = 2000 s/mm2 is thus expected to increase by 63 % and 96 % for gray 

matter (T2 = 110 ms) and white matter (T2 = 80 ms), respectively. To make these statements 

more tangible, figure 9 shows an example of raw diffusion weighted images acquired with 

the different methods together with a histogram of the voxelwise SNR. As expected, the 

shorter echo time, facilitated by the optimized waveform, rendered a markedly higher SNR 

in the images.

5. Discussion

In optimization, a good practice is to formulate a problem that is a caricature of the real 

problem—capturing all the essential characteristics and ignoring the rest. This often makes 

solving the problem more reliable, thereby producing a better end result than a too detailed 

model. In addition, the problem formulation will be easier to adapt to a different setting.

An example of this is the model of the signal as a mixture of Gaussians, from which our 

objective function derives. This is not a physically well-founded model for restricted 

diffusion but it has found widespread use. With this work, we do not attempt to answer 

whether this is the most appropriate way of modeling the signal; instead our hope is to 

provide a tool that researchers in the field will find useful. Consequently, we have assumed 

that the object of interest is the measurement tensor, but we have left its application 

undetermined. On the other hand, we have placed virtually no other restrictions on the shape 

of the gradient waveforms other than those imposed by the hardware. This makes the model 

much more flexible than if deciding upon particular basis functions or similar. This means 

our formulation can, witout modifications, be used for a range of experiments—be it in 

NMR or in vivo diffusion MRI. Another example of this flexibility is the possibility to 

impose zero-gradient intervals, or intervals with specified slice encoding gradients, at 

arbitrary points in time, i.e. not requiring the gradient waveform to be symmetric. This was 

taken advantage of in our in vivo experiments and was one of the reasons why it was 

possible to reduce the echo time from 180 ms to 130 ms. It can, however, be expected that 

the slice selection gradient will perturb the obtained measurement tensor, but only by a little.

The importance of explicitly taking the hardware constraints into account can be appreciated 

from the q-space trajectories in figure 4, where the total gradient magnitude is limited by 

what a single gradient coil can generate (in order to allow arbitrary rotation of the resulting 

waveforms). The lack of dynamics in the color coding reflects that this constraint is active 

throughout almost the entire trajectory—an indication of the solutions high quality and a feat 

that would otherwise be very difficult to accomplish.

As another example, a more intense gradient sequence may reduce the echo time at the cost 

of prolonging the repetition time (to allow for cooling). A general procedure to maximize 

the SNR using the methods we have presented would be as follows. First, given a desired b -

value, use bisection to find— with no concern for heat dissipation (η = 1)—the shortest echo 

time possible. Then, test what the minimum repetition time allowed by the scanner is. If it 

appears that cooling is not a limitation then stop, else maximize equation (16) with respect 
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to ηB either numerically or graphically. Figure 7 suggests that beyond a certain value of the 

repetition time it becomes more efficient to decrease the pulse's heat dissipation than to use 

the most intense one. Incidentally, the figure also shows that compared with a naïve 

sequence for isotropic diffusion encoding, the optimized sequences can increase the SNR by 

about 60%.

Our experiments have shown that the optimized waveforms can achieve the expected 

isotropic encoding and that it is possible to implement optimized waveforms on a clinical 

MRI scanner with a drastically reduced echo time yet no prominent artefacts. The latter 

finding is in line with our theoretical comparison with naïve double diffusion encoding 

(DDE) and triple diffusion encoding (TDE), that showed that reductions in echo time by 16 

% and 22 %, respectively, are possible.

6. Conclusions

We have proposed a new framework for optimization of gradient waveforms that maximizes 

the b -value for a given measurement tensor and echo time. From this it is straightforward to 

obtain gradient waveforms that minimize the echo time for a given b. The formulation as a 

constrained optimization problem allows explicit control of hardware requirements, 

including maximum gradient amplitude, slew rate, heating and positioning of RF pulses.

Based on two reasonable assumptions, we have derived an expression for the signal-to-noise 

ratio's dependence on the heat dissipation and outlined how this can be used to strike a 

balance between gradient intensity and heat dissipation that maximizes the signal-to-noise 

ratio.

We have verified by experiments on a water/surfactant mixture that the method can achieve 

the desired diffusion encoding. By in vivo experiments and numerical comparisons with 

previous work, we have shown that substantial gains in terms of reduced echo times and 

better signal-to-noise ratio's can be achieved, in particular as compared with naïve double 

diffusion encoding (DDE) and triple diffusion encoding (TDE).
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Appendix A. Explicit problem formulation

In summary, we strive to find the q-space trajectory q(t) that maximizes b, everything else is 

considered fixed parameters. This is done by discretizing q(t) into N time steps of length Δt 

= τ/N, forming the N × 3 matrix

(A.1)
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where we have used the notation qα,k = qα((k – 1/2)Δt). To discretize the measurement 

tensor constraint in equation (6), we first introduce a diagonal “integration matrix” 

corresponding to the trapezoid rule

(A.2)

so that the discretized version of equation (6) reads

(A.3)

However, because nonlinear equality constraints should be avoided, we relax this and 

instead require

(A.4)

where we have introduced a tolerance ε on the isotropy violation.

Many of the remaining constraints involve the gradients; these are easily implemented 

through a finite difference scheme. We used a central difference scheme shifted by half a 

time step,

(A.5)

which can also be interpreted as the average value over the bin centered at kΔt. The 

boundary constraints on the gradients, which are of Dirichlet type, were implemented using 

ghost points. The (N – 1) internal derivatives were thus approximated using the (N – 1) × N-

matrix

(A.6)

Similarly, the second derivatives were approximated using the N × N-matrix

(A.7)

In Euclidean norm, a constraint on the gradient amplitude can thus be written as the 

nonlinear inequality constraints (interpreted componentwise)
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(A.8)

In contrast, max-norm constraints on the gradient amplitude and slew rate can be translated 

into linear inequality constraints

(A.9)

(A.10)

Similarly, a constraint on the gradients being zero during an interval It can be written

(A.11)

The heat dissipation constraint, equation (11), can be approximated as

(A.12)

In conclusion, following the discretization scheme above, the explicit formulation of the 

constrained optimization problem in equation (12) is:

(A.13)

where the constraints are understood to apply to each coil separately (α = x, y, z). If the 

Euclidean version of the gradient constraint is desired, one just has to replace the 

corresponding max-norm expression with that in equation (A.8). In addition to that 

nonlinear inequality, there are two more: the measurement tensor constraint, equation (A.4), 

and the heat dissipation constraint, equation (A.12). The cross-terms in the measurement 

tensor constraint make the problem non-convex. Nevertheless, Sequential Quadratic 

Programming (SQP) [32] seems to produce a good local optimum reasonably fast—typical 

computation times on a modern laptop are about 30 s for N = 100 and 15 min for N = 200.

Appendix B. Derivation of the ratio of SNRs

Here we will show how the assumptions in section 2.4 lead to equation (16) for the ratio of 

the SNRs of pulse sequences A and B.

Requiring equal b -values and using the first assumption gives
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(B.1)

where we for convenience have introduced the function Ψ = (κ(ηA)/κ(ηB))1/3.

From the second assumption and equation (11) it follows that the maximum heat dissipation 

per unit time is

(B.2)

For gradient sequence B to have the same heat dissipation per unit time it must hold that

(B.3)

Of course, , which means that

(B.4)

The number of repetitions n (neglecting round-off) is

(B.5)

where we used equation (B.3) in the second expression. The ratio is

(B.6)

From equation (15) it follows that

(B.7)

(B.8)

(B.9)
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Appendix C. Experimental verification of isotropic encoding

To experimentally verify that the optimization produces a waveform that achieves isotropic 

diffusion encoding we prepared a sample consisting of a non-ionic surfactant mixed with 

water, as in [33]. This sample is characterized by the formation of concentric cylindrical 

layers throughout the test tube, which in this case had an inner diameter of 4 mm. The mean 

diffusivity in each domain is expected to be the same, but the orientations different.

In section 2 we saw that, under the assumption of Gaussian diffusion, the normalized echo 

amplitude E(q) = Tr(BD). Consequently, an isotropically encoding pulse results in log 

(Eiso(b)) = −bD̄, where D̄ is the mean diffusivity. A conventional SDE sequence applied in 

the direction n̂ corresponds to a measurement tensor Bn̂ = bn̂n̂T. So, it gives rise to a 

normalized echo amplitude

(C.1)

For a system consisting of multiple non-interacting compartments, the total signal is the sum 

of the signals from each compartment. Assuming that the experimental conditions are such 

that the diffusion in each compartment can be approximated as Gaussian, the resulting echo 

amplitudes using SDE and an isotropically encoding pulse are,

(C.2)

where pi is the fraction of protons in compartment i. If the mean diffusivity in every 

compartment is the same, then . To derive a rotationally invariant 

quantity from SDE measurements one may average the signal over all directions. This is 

sometimes referred to as the powder average and can be approximated as [11]

(C.3)

(C.4)

where K̄ is the kurtosis of the powder-averaged data [34]. The approximation (C.4), which 

coincides with the cumulant expansion [35], follows from a Taylor expansion of the 

logarithm.

Experiments were performed on a 11.74 T Bruker AVII-500 spectrometer equipped with a 

MIC-5 probe capable of delivering 3 T/m gradients in three orthogonal directions. We 

optimized an isotropically encoding waveform with Gmax = 0.3 T/m, Rmax = 1000 T/m/s, 

echo time τ = 20 ms, no heating constraint (η = 1), max norm constraint on the gradients and 

used N = 200 discretization points. The pulse sequence was the same as in figure 4 of [11], 
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i.e. spin-echo diffusion encoding with RARE image read-out, wherein the optimized 

gradient waveform was inserted before and after the first 180° RF pulse. The directional 

measurements were done with a waveform for which the magnitude of q(t) was the same as 

for the isotropic waveform [10]. The optimized waveform and resulting measurements, in a 

representative pixel, are shown in figure C.10 together with powder averaged measurements. 

The expected behavior is clearly visible: a straight line for the optimized isotropic waveform 

(Eiso = e−bD̄
) and a curved line for the powder average, corresponding to equation (C.3).

Figure C.10. 
(a) Waveform optimized to achieve isotropic diffusion encoding for an NMR experiment. 

See caption of figure 4 for figure details. (b) Normalized signal E(b) = S(b)/S0 vs. 

normalized diffusion weighting bD̄ for a representative pixel in an NMR experiment on a 

water/surfactant mixture. Powder-averaged measurements are shown with open blue circles, 

the measurements using the optimized waveform are shown with solid red circles. The blue 

and red lines show the corresponding fits of equation (C.3). The dashed black line is the 

single-exponential E(b) = e−bD̄
. The overlapping of the solid red and dashed black lines 

shows that the optimized waveform achieves the expected encoding.
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Highlights

• We describe a framework for optimization of gradient waveforms for diffusion 

MR.

• To maximize diffusion encoding it is imperative to respect hardware constraints.

• Our framework accommodates constraints on gradient magnitude and coil 

heating.

• We provide both experimental results and numerical comparisons with previous 

work.
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Figure 1. 
Measurement tensors: the top row is the graphical representation of the corresponding 

matrix representations in the bottom row. In the graphical representation, the magnitudes of 

the eigenvalues are mapped to red-green-blue. Note that in this case the b -value of the 

rightmost tensor is three times as high as that of the leftmost one.
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Figure 2. 
An example of a naïve gradient waveform used for comparison throughout this work. From 

left to right: the x-y-z gradients in red-green-blue; gradient trajectory; q-space trajectory and 

the resulting measurement tensor (isotropic in case).
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Figure 3. 
Efficiency κ for sequences with diagonal, axially symmetric, measurement tensors as the 

eigenvalue along the symmetry axis is varied.
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Figure 4. 
Optimized gradient waveforms and trajectories. Columns from left to right: gradients, 

gradient trajectory, q-space trajectory and measurement tensor. The trajectories are color 

coded according to rate of change: from slow (red), through intermediate (green) to fast 

(blue). The fourth column shows the resulting measurement tensor; the magnitudes of the 

eigenvalues are mapped to red-green-blue.
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Figure 5. 
Sequence efficiency factor κ and relative heat dissipation η for isotropically encoding 

sequences optimized in this work and in previous work. The larger η is the more heat is 

generated by the sequence. Two sets of optimizations were done using different slew rates, 

as specified by the dimensionless constant ξ.
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Figure 6. 
Gradient waveforms optimized with ξ = 0.016 and different values of η. Columns from left 

to right: gradients, gradient trajectory, q-space trajectory and measurement tensor. Color 

coding as in figure 4.
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Figure 7. 
Comparison of signal-to-noise ratio in gray matter (GM) and white matter (WM) as the heat 

dissipation of the gradient sequences from section 4.2 is varied. The baseline, gradient 

sequence A, is the most intense gradient sequence and is assumed to require a repetition 

time  to reach a sustainable average heat dissipation. The naïve gradient sequence 

consists of consecutive SDE sequences in each gradient direction and the resulting heat 

dissipation can thus be at most ηB = 1/3.
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Figure 8. 
Parameter maps in axial slice through the corpus callosum in a healthy volunteer. Data 

quality for all volunteers was qualitatively good, and no additional artefacts were observed 

as a result of employing the optimized waveforms. As previously reported by 

Szczepankiewicz et al. [12], the μFA map is homogeneous in regions of white matter, and 

the difference between the μFA and FA maps is most prominent in regions where complex 

white matter architecture is expected, such as in crossing white matter pathways.
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Figure 9. 
Raw diffusion weighted images in an axial slice through the corpus callosum in a healthy 

volunteer. The encoding strength is b = 2000 s/mm2 in both images. The measured signal is 

markedly higher in the images encoded with the optimized waveform (A, echo time 116 ms) 

compared to the qMAS waveform (B, echo time 170 ms) suggested by Topgaard et al. [15]. 

The histogram shows the distribution of voxelwise SNR from brain tissue located within the 

imaging slab. There is a clear tendency towards higher SNR for the optimized waveform, 

due to the shorter echo time.
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