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Abstract
Resting-state fMRI (rs-fMRI) is receiving substantial attention for its sensitivity to functional

abnormality in the brain networks of people with psychiatric and neurological disorders.

However, because of the variety of rs-fMRI processing methods, the necessity of rs-fMRI

quality assurance is increasing. Conventionally, the temporal signal-to-noise ratio (tSNR) is

generally adopted for quality examination, but the tSNR does not guarantee reliable func-

tional connectivity (FC) outcomes. Theoretically, intrinsic FC is supposed to reflect the

spontaneous synchronization of neuronal basis, rather than that from thermal noise or non-

neuronal physiological noise. Therefore, we proposed a new quality-assurance index for rs-

fMRI to estimate the physiological contributions in spontaneous oscillations (PICSO). The

PICSO index was designed as a voxel-wise measure for facilitating practical applications to

all existing rs-fMRI data sets on the basis of two assumptions: Gaussian distributions in tem-

poral fluctuations and ultra-slow changes of neural-based physiological fluctuations. To

thoroughly validate the sensitivity of the proposed PICSO index to FC, we calibrated the

preprocessing steps according to phantom data and verified the relationship between the

PICSO and factors that are considered to affect FC in healthy participants (n = 12). Our

results demonstrated that FC showed a significantly positive correlation with the PICSO.

Moreover, for generating robust FC outcomes, directly acquiring data at a relatively large

voxel size was more effective than performing smoothness on high-resolution data sets. In

conclusion, compared with tSNR, the PICSO index is more sensitive to the resulting FC,

providing a practical quality-assurance indicator for all existing rs-fMRI data sets.
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Introduction
The brain at rest is composed of multiple functional networks that have been extensively
explored using connectivity approaches. Resting-state functional connectivity (rsFC) measures
the synchronization of low-frequency blood-oxygen-level dependent (BOLD) oscillations [1],
which are presumed to be the surrogate of spontaneous neuronal cross-talks [2–4]. Although
scientists do not fully understand the intrinsic essence of resting-state fMRI (rs-fMRI) signals,
numerous studies have demonstrated that rsFC can be altered by several neurological, psychiat-
ric, and neurodegenerative diseases (e.g., Alzheimer's disease, Parkinson’s disease, depression,
dementia, and schizophrenia) and can be dynamic among physiological conditions (e.g., anes-
thesia or sleep) [5–7]. A current trend in the proliferation of rs-fMRI investigations is to per-
form data mining from multi-center data sets for large samples (e.g., The Alzheimer’s Disease
Neuroimaging Initiative, 1000 Functional Connectomes Project, and Human Connectome Proj-
ect) [8]. However, because of the various types of data acquisition and experimental conditions,
a promising quality-evaluation strategy is warranted for producing reliable rsFC outcomes.

Currently, a common measure of rs-fMRI data quality is the temporal signal-to-noise ratio
(tSNR), which is the ratio of the mean signal over its temporal standard deviation (SD) [9–12].
Triantafyllou et al. tested the dependence of the tSNR on scanning parameters, such as magnetic
field strength, flip angle (FA), image resolution, and echo time (TE) [9], and suggested the opti-
mal conditions for enhancing the tSNR [13]. Although the tSNR provides an initial indication
of rs-fMRI data quality, tSNR changes are not directly reflected in rsFC alterations [9,13,14]. In
other words, a high tSNR does not guarantee reliable connectivity strength (CS). An extreme
example of this is that the fMRI data from the phantom possess a high tSNR, but these data do
not result in long-distance connectivity. This is because, by definition, the tSNR emphasizes the
baseline average of rs-fMRI time courses. However, this baseline information does not contrib-
ute to rsFC; instead, the temporal fluctuations take the major contribution to rsFC outcomes.
More specifically, the temporal fluctuations in rs-fMRI signals can be regarded as a combination
of spontaneous neural activities, non-neuronal fluctuations (i.e., respiration and cardiac pulsa-
tion), and thermal noise from scanner electronics. Conceptually, rsFC results from the synchro-
nization of spontaneous neural activities, whereas non-neuronal fluctuations and thermal noise
are irrelevant to neuronal synchronization but are inevitably involved in rs-fMRI signals. There-
fore, the physiological contributions in spontaneous oscillations, once quantified, should be a
meaningful candidate for measuring the sensitivity of functional connectivity.

However, quantifying the physiological contributions in spontaneous activities is not a triv-
ial task. Apart from hardware imperfections [15], the physiological contributions in rs-fMRI
signals were first addressed by the Krüger physiological noise model [9,12]. This model
assumes that the noise variance in the imaging voxels is composed of thermal noise, non-neu-
ronal fluctuations, and spontaneous fluctuations of a potentially neuronal origin. Therefore, if
the thermal noise could be estimated according to rs-fMRI signals, then the physiological con-
tributions over thermal noise could be defined as a quality measure for rs-fMRI. This concept
has previously been addressed, demonstrating the dependence of physiological contributions
on the acquisition parameters. Triantafyllou et al. investigated the improvement of physiologi-
cal contributions at a high field strength, large FA, and low spatial resolution [9]. Bodurka et al.
suggested the optimal fMRI voxel size when the thermal noise matches the physiological fluc-
tuations [10]. Additionally, Gonzalez-Castillo presented that the physiological contributions
were more sensitive to the FA than the tSNR was [16]. Although these studies have emphasized
the importance of physiological contributions for fMRI signals, their quantification strategies
are time-consuming and unrealistic for application to existing rs-fMRI data sets and clinical
routines.
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Conceptually, a practical measure for quantifying physiological contributions should be
voxel-wise, free from region of interest (ROI) selection, and without changing parameters in
imaging acquisition. In Krüger’s model, the total fluctuation level is directly measured accord-
ing to the SD of reconstructed fMRI images over time [12]; however, consensus on estimating
thermal noise is difficult to achieve because this metric depends on how and where the thermal
noise is defined. Two methods that are generally used for estimating thermal noise are measur-
ing the spatial noise from a noise-only region or measuring the temporal noise without radio-
frequency (RF) excitation. The first approach is more widely used than the second, but its
applicability to rs-fMRI data is limited for three reasons: (a) manual selection of the noise
region outside of the image object is required for calculating the background noise level; (b)
regardless of imaging artifacts, hundreds of pixels are required in order to obtain a reasonable
estimate of background noise because the precision of the noise estimation is proportional to
the square root of the number of pixels in the ROI; (c) the suitability of manual ROI selection is
questionable in parallel imaging because each channel contributes differently across the entire
field of view. Compared with the first approach, the second approach without RF excitation is
a more straightforward estimation method for assessing pure thermal noise over time. How-
ever, it requires hardware, pulse sequence editing, longer acquisition time, and a special recon-
struction algorithm [17,18]. Although the second approach is robust and precise, it is still
generally unfeasible as a practical estimation surrogate for existing rs-fMRI data sets.

To address these concerns, we propose a new voxel-wise method for estimating the PhysIo-
logical Contributions in Spontaneous Oscillations (PICSO) of the acquired rs-fMRI data sets.
With this method, the thermal noise over time of the rs-fMRI signals is estimated in approxima-
tion by subtracting the imaging signals between each pair of adjacent time points; this is an
extended version of the difference method [17,19]. This subtractive strategy enables high-fre-
quency signals to be emphasized and low-frequency signals to be attenuated. In such an estima-
tion, the physiological contributions are assumed to be negligible after the voxel-wise
subtraction, and the resultant residues can be regarded as the source of thermal noise because
the spontaneous rs-fMRI signals generally fluctuate at very low frequencies (<0.1 Hz), close to a
time-invariant characteristic for every pair of adjacent time points. To validate the applicability
of the proposed method in thermal noise estimation, we first verified that fMRI signals acquired
from the phantom possessed a zero PICSO value after we performed the calibration procedure.
Subsequently, we observed a positive relationship between the CS and PICSO at various image
resolutions because the image resolution has been reported as the major factor affecting the CS
[9,13,14]. Moreover, we conducted various degrees of spatial smoothing on the rs-fMRI data to
confirm that the alteration in the CS can be directly reflected by the PICSO. This new approach
produces several advantages for quantifying the physiological contributions in fMRI signals
such as the applicability to parallel MRI [19] and to all rs-fMRI data sets for quality assurance.

Material and Methods

Theory
All rs-fMRI signals can be regarded as a superposition of the intrinsic baseline signal and signal
fluctuations. The quality of rs-fMRI data is typically measured using the tSNR, which is defined
as the ratio of the baseline average ð�sÞ to its SD over time (σ):

tSNR ¼ �s

σ
ð1Þ

Assuming that the rs-fMRI signals are free from non-neuronal fluctuations (i.e., respiration
and cardiac pulsation), the signal variance can be separated into thermal noise and the desired

PICSO: Approximate Quality Assurance Index for rs-fMRI

PLOS ONE | DOI:10.1371/journal.pone.0148393 February 12, 2016 3 / 18



physiological fluctuations of neural origin [20–23]. According to Krüger’s model, the total signal
fluctuations in the fMRI signal (σ) are the square-law sum of the Gaussian thermal noise (σ0)
and physiological fluctuations (σp), expressed in equation form as σ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2
0 þ σ2

p

p
[12], where

σ0 is independent of the fMRI signal intensity and σp is scaled relative to the image intensity.
Estimating the variance of both total fluctuation level and thermal noise facilitates calculating
the ratio of physiological fluctuations to thermal noise, which is determined using Eq (2):

σp

σ0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ

σ0

� �2

�1

s
ð2Þ

where the
σp

σ0
ratio represents the fMRI PICSO and can be regarded as the sensitivity surrogate in

the rs-fMRI signals. Additionally, for any non-ideal circumstance that causes the ratio of total
fluctuation level over thermal noise to be less than unity, the PICSO value would be set to zero.

Image Acquisition
A total of 12 right-handed healthy volunteers (age: 26.4 ± 2.1 y, females/males: 6/6) were
enrolled in this study. All participants declared that they fully understood the experimental pro-
cedure and provided written informed consent. The entire procedure was approved by the Insti-
tutional Review Board of National Yang-Ming University. Data were acquired using a Siemens
3T Trio system with a 12-channel head coil. To verify the accuracy of the thermal noise estima-
tion in the PICSO, a spherical water phantom consisting of 1.25 g of NiSO4�6H2O per 1000 g of
distilled water was scanned using identical imaging protocols. T1-weighted structural images
were obtained using the MP-RAGE sequence (TE = 2.27 ms, repetition time [TR] = 1.9 s, inver-
sion time [TI] = 900 ms, FA = 9°, 176 slices with 1 × 1 × 1 mm3 voxels without an interslice
gap). Given the fact that the weightings of thermal noise deviate with voxel sizes [14], we
acquired the rs-fMRI signals at various image resolutions as the dominant factor to manipulate
the PICSO values for each single subject. Thereafter, the single-shot gradient-echo echo planar
imaging (GE-EPI) sequence was adopted to acquire rs-fMRI data at four voxel sizes
(1.3 × 1.3 × 2, 2 × 2 × 2, 3 × 3 × 3, and 5 × 5 × 5 mm3) by using the parameters shown in
Table 1. Each session contained 150 time points and three dummy scans with a total acquisition
time of 7 min 38 s. The scanning order of the four EPI sessions was counterbalanced in a Latin-
square manner to reduce the systematic bias resulting from the scanning order of the EPI ses-
sions. Because of the limited brain coverage for sessions at the highest spatial resolution
(1.3 × 1.3 × 2 and 2 × 2 × 2 mm3), we assigned a slice orientation along the anterior and poste-
rior commissure lines with the midline of the slab reaching the bottom edge of the corpus callo-
sum to cover the thalamus (THAL) and posterior cingulate cortex (PCC). For the other
sessions, we maintained the same slice orientation and ensured the coverage of the entire brain.

Table 1. Acquisition parameters for the EPI with four spatial resolutions.

Acquired Voxel Size (mm3) FOV (mm) Matrix Size

1.3 × 1.3 × 2.0 162 × 162 128 × 128 × 27

2.0 × 2.0 × 2.0 256 × 256 128 × 128 × 27

3.0 × 3.0 × 3.0 192 × 192 64 × 64 × 35

5.0 × 5.0 × 5.0 320 × 320 64 × 64 × 24

TR = 3000 ms, TE = 35 ms, flip angle = 87°,

Partial Fourier = 6/8, bandwidth = 1260 Hz/px, Echo spacing = 0.86 ms.

doi:10.1371/journal.pone.0148393.t001
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The participants’ heads were immobilized using cushions to minimize motion during image
acquisition. During the rs-fMRI sessions, the participants were instructed to open their eyes,
relax, and not think of anything specific. To minimize the contributions of non-neuronal
sources embedded in the rs-fMRI signals, simultaneous cardiac and respiratory recordings were
acquired using a built-in pulse oximeter and pneumatic belt, respectively (sampling rate = 50
Hz). A B0 field map was acquired using a dual-echo gradient echo sequence (TE1 = 10 ms, TE2
= 12.46 ms, TR = 600 ms, FA = 70°, 33 slices with 1.5 × 1.5 × 4 mm3 voxels) to correct image dis-
tortions caused by the inhomogeneity of B0. The total acquisition time was 38 min 38 s.

fMRI Preprocessing
All scanning images were preprocessed using AFNI [24] and FSL [25]. During preprocessing,
spatial smoothing is a crucial factor that affects the tSNR [13] and CS [26]; thus, to prevent
the additional smoothing induced by spatial normalization, all functional images were ana-
lyzed in the native space, including both preprocessing and the seed-correlation analysis, and
finally transformed into the MNI space for group analysis. Fig 1 demonstrates the workflow of
phantom—human preprocessing. The phantom data set first underwent standard preprocess-
ing (Fig 1) including motion correction, field map correction, and despiking. Subsequently,
different detrending orders were performed to verify the signal drift induced by system insta-
bility. The detrending order was then determined when the thermal noise was equal to the
total fluctuation level because the phantom possessed the stationary baseline signal and lacked
physiological fluctuations. For the human data, the effects of cyclic cardiac pulsation and res-
piration were first removed using RETROICOR with second-order Fourier series expansion
(3dretroicor in AFNI) [20]. Motion correction was then performed using FSL (mcflirt) to
minimize possible head movement for each rs-fMRI time series. Retrospective field-map cor-
rection was then conducted using FSL (fugue) to eliminate the image distortions caused by the
field inhomogeneity. The spike (3dDespike in AFNI) and estimated polynomial trends were
removed from the time series. Moreover, because head motion at both the individual and
group levels can contribute to spurious correlations [27,28], we examined the motion by using
mean framewise displacement (FD) for the entire rs-fMRI data set. All rs-fMRI data fulfilled
the motion criteria (i.e., mean FD< 0.3 mm). To further examine the effects of head motion
on the PICSO, we performed a correlation analysis between the PICSO and mean FD for
comparison.

Estimating the Thermal Noise and PICSO
After the preprocessing, for a given voxel, the tSNR was determined using Eq (1) according to
the ratio of the mean signal intensity s to the SD σ of a series of 150 functional images. Because
the rs-fMRI signals were modeled as the sum of true BOLD intensity and the superimposed
temporal noise, which following a Gaussian distribution [29], the slow fluctuations in rs-fMRI
in adjacent acquisitions were assumed to be canceled out by subtraction, resulting in Gaussian-
noise residue. Therefore, the voxel-wise thermal noise σ0 was determined by calculating the SD

of a series of subtractive images between adjacent scans and divided by
ffiffiffi
2

p
because the SD of

the subtracted Gaussian noise is theoretically increased by
ffiffiffi
2

p
[19]. After the maps of thermal

noise σ0 and total noise σ were calculated, the PICSO map was determined as the ratio of the
variance of the total fluctuation level to the thermal noise, as shown in Eq (2). Subsequently,
the tSNR and PICSO values were averaged within the predefined ROIs for a given data set at
various spatial resolutions. For the phantom results, we expected the thermal noise to be identi-
cal to the total fluctuation level, and the PICSO index to be zero.

PICSO: Approximate Quality Assurance Index for rs-fMRI
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Fig 1. Flowchart of the rs-fMRI preprocessing procedure and PICSO estimation approach.

doi:10.1371/journal.pone.0148393.g001
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Seed-Based Correlation Analysis for Functional Connectivity
We conducted a seed-based correlation analysis by using the THAL to represent the subcortical
structures and the PCC to signify the cortex representative. According to the data sets of four
resolutions, the seed regions were identified in the native space through the following three
steps: (1) The seed points of the left THAL and PCC were first defined using the MNI coordi-
nates (−7, −16, 6) and (2, −51, 27), respectively [30,31]. (2) These seed points were inversely
transformed from the MNI space back to the reference data set (3 × 3 × 3 mm3) in the native
space, and the native seed regions were then prescribed a sphere with a 5-mm radius on the ref-
erence data set. (3) The native seed regions of the other resolutions (i.e., 1.3 × 1.3 × 2, 2 × 2 × 2,
and 5 × 5 × 5 mm3) were transformed from the native seed region on the reference data set to
match the image resolutions by using FSL (flirt). Following these steps ensured that the native
seed regions were identical among the various imaging sessions to prevent the bias of seed size
and the resulting CS.

Prior to FC calculation, we conducted nuisance regression by using the following 10 covari-
ables: six affine motion parameters, two temporal variations of the respiration volume and heart
rate [22], and the mean time series of white matter (WM) and cerebrospinal fluid (CSF). The
WM and CSF masks were generated from the segmented T1 anatomical image by using FSL fast
with a threshold 50% probability, and transformed to match the image resolutions. Subse-
quently, the FC maps were obtained through a seed-regression analysis in the native space by
extracting the average residual time series from the resolution-matched seed regions and using it
as the regressor against every voxel in the brain by AFNI (3dDeconvolve). The correlation maps
from the regression model were then converted to Fisher’s z maps. For each seed, the same pro-
cedures for seed prescription and seed correlation were applied to the four image resolutions
and four smoothing levels, resulting in 16 FCmaps for each participant. Setting the smoothing
levels lower than the acquired image resolution did not affect the data sets; therefore, we report
only 10 FCmaps corresponding to the effective changes in spatial resolution. For the group anal-
ysis, the resulting z maps were normalized to the MNI space for a one-sample t test (3dttest++);
the significance level was set to FDR-corrected p< 0.01 (3dFDR) with an explicit common
mask among the participants. The normalization process is detailed in the following subsection.

Normalization after Functional Connectivity
To avoid imposing extra smoothing effects on PICSO estimations, we only applied spatial nor-
malization for visualizing group-level index maps. The first volume of the functional data sets
in the four acquired voxel sizes was used as the reference scan to estimate the transformation
matrix. Spatial normalization was applied to transform the FC maps in the native space to the
MNI space by using the predefined transformation matrix. The predefined transformation
matrix that was used to transform the FC maps from the native space to the MNI space was
produced using a two-stage (the reference scan with 3 × 3 × 3 mm3 spatial resolution) or three-
stage process (the scans with other spatial resolutions). For the reference data set with an
acquired voxel size of 3 × 3 × 3 mm3, the reference scan was aligned with the T1 image (bound-
ary-based registration). This aligned image was then nonlinearly warped to the MNI space by
using the warping matrix, which was determined by warping the native T1 image to the MNI
T1 image (fnirt). Next, the transformation matrices from the previous two stages were com-
bined into a two-stage reference scan matrix to minimize the interpolation effect during spatial
normalization. The other functional scans with the acquired voxel size beyond 3 × 3 × 3 mm3

were registered to the reference scan (flirt) prior to the two-stage process to produce a three-
stage transformation matrix. Finally, all the FC maps were warped to the MNI space with a spa-
tial resolution of 2 × 2 × 2 mm3 by using the two- or three-stage transformation matrices.

PICSO: Approximate Quality Assurance Index for rs-fMRI
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Resolution and Spatial Smoothing
To investigate whether the CS alterations could be directly reflected by the quality measure-
ments (tSNR and PICSO), we manipulated multiple noise levels by processing the data sets
with various degrees of smoothness. The smoothness of each preprocessed fMRI data set was
controlled by applying a smoothing kernel until the predefined uniform full-width-at-half-
maximum (FWHM) (measured in millimeters) was reached, matching the spatial resolutions
of the acquired images (i.e., 2 × 2 × 2, 3 × 3 × 3, and 5 × 5 × 5 mm3). Notably, the FWHM is the
inverse of the shortest distance that discriminates two points, and is determined according to
the acquired voxel size and applied smoothing level. We did not apply the conventional
smoothing method with a fixed Gaussian kernel because of the uncontrolled FWHMs; instead,
we expanded the point spread function to specific levels to compensate for the intrinsic point
spread functions of image acquisition, which might have differed among the participants.

ROI Analysis
To investigate whether the effect of the spatial resolution on the CS was consistent with that on
both quality measurements (tSNR, and PICSO), Pearson’s correlation analysis was conducted
among the CS, tSNR, and PICSO in both the cortical and subcortical areas. The left THAL (L
THAL) and PCC were chosen for studying the local rsFC within the thalamic network and
default mode network (DMN), and the right THAL and medial prefrontal cortex (MPFC) were
set as proxies for examining the strength of distant rsFC within these networks. The selected
ROIs of the thalamic network were obtained from the MNI template embedded in FSL and
those of the DMN were obtained from a previous study [32]. All ROIs defined in the MNI
space were warped to the native space corresponding to each acquired voxel size through
inverse spatial normalization. The ROI analysis was performed to quantify the mean PICSO
index, tSNR values, and CS in the native space. In addition, at the same FWHM, repeated-mea-
sures analysis of variance (ANOVA) was employed to compare the averaged PICSO values
among the data sets in various voxel sizes, and Pearson’s correlation analysis was used to exam-
ine the relationship between the quality measurements (tSNR and PICSO) and CS. Addition-
ally, to further examine whether RETROICOR and imaging resolution affected the noise
estimation, the average of both σ0 and σ within the predefined ROIs was examined using two-
way repeated-measures ANOVA (a 2 × 4 design, Factor 1: with and without applying RETROI-
COR, Factor 2: the four acquired imaging resolutions).

Results

PICSO Calibration and Estimation
Phantom data were used in the first step of calibration; Fig 2a depicts the total fluctuation level
as a function of thermal noise under different voxel sizes of acquisition (1.3 × 1.3 × 2, 2 × 2 × 2,
3 × 3 × 3, and 5 × 5 × 5 mm3) and various detrending orders in preprocessing. The total fluctu-
ation level decreased as the detrending order was set from linear, quadratic to cubic polyno-
mial, whereas the thermal noise was free from the effect of detrending, indicating that signal
trends contributed dominantly to the estimation of total fluctuation level. The influence of
detrending on the fMRI time series is shown in Fig 2b for different acquired voxel sizes. With
the detrending order as cubic polynomial, the scatter points in Fig 2a are located on the identity
line (PICSO = 0) among different acquired resolutions, verifying the reliability of thermal noise
estimation on the basis of the subtracting procedure [18,19,33].

Using the human data set as the second step of calibration, we attempted to validate that σ
is sensitive to physiological noise, but σ0 is not. We conducted a repeated-measure two-way
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ANOVA to test the RETROICOR effect on both thermal noise and total fluctuation level
within the predefined seed-side ROI. For the L THAL, the σ estimation of data processed with
RETROICOR differed significantly from that processed without RETROICOR (F(1, 10) =
30.12, p< 0.05), whereas the RETROICOR process did not significantly affect the estimation
of σ0 (F(1, 10) = 0.87, p = 0.37). In the PCC, the σ estimation of data processed with RETROI-
COR differed significantly from that processed without RETROICOR (F(1, 10) = 32.34,
p< 0.05), whereas the data processed with RETROICOR did not significantly affect the esti-
mation of σ0 (F(1, 10) = 0.02, p = 0.88). For testing this concept throughout the brain, we
adopted the same test for multiple ROIs in the MNI template embedded in FSL (Harvard—
Oxford Subcortical Structural Atlas). Because of the limited spatial coverage of the acquired
images, the ROIs could be used for testing only the bilateral cerebral cortex, THAL, caudate,
putamen, and pallidum. The results are included in this manuscript as supplementary informa-
tion (S1 Table). The observations indicated that the σ0 estimation is appropriate for estimating
the noise, which is irrelevant to physiology. Considering the influence of head motion on the
PICSO estimation, we performed a correlation analysis to test the association between the
PICSO values in the predefined ROIs and mean FD. No significant correlations were detected
between the mean FD and PICSO for any ROIs, including the bilateral THAL, PCC, and
MPFC (p> 0.35).

Fig 3 shows the PICSO map from a single subject as a function of the acquired voxel sizes
(1.3 × 1.3 × 2, 2 × 2 × 2, 3 × 3 × 3, and 5 × 5 × 5 mm3, without smoothing). The PICSO value
increased with the acquired voxel size and presented the spatial specificity. The PICSO value in
the neocortex was higher than that in the subcortical region. For all cortical regions, the PICSO
value in the posterior brain was higher than that in the anterior brain, suggesting relatively
high physiological contributions in the posterior brain.

Fig 2. PICSO calibration using phantom data. (a) Total fluctuation level and the estimated thermal noise depend on the acquired spatial resolution and the
preprocessing steps. The solid line represents the identity line (i.e., PICSO = 0). The solid black rectangle represents the results processed by motion
correction (M) and field-map correction (F). Results with different levels of detrending (D) orders are denoted as D1, D2, and D3. The thermal noise and total
fluctuation level showed identical changes when the detrending order was set as a cubic polynomial. (b) Corresponding time series without detrending and
with different detrending orders among the four acquired voxel sizes. Time series processed without detrending and processed with the first, second, and
third detrending orders are represented by the black, red, blue, and green lines, respectively. The numbers that appear on the left side of the time series
represent the average signal intensity. Each line space indicates an intensity increment of 10.

doi:10.1371/journal.pone.0148393.g002
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PICSOModulated by the Acquired Voxel Size
The diagonal pictures of the upper panels in Figs 4 and 5 depict the FC as a function of the
acquired voxel sizes in the thalamic network and DMN, respectively. In both networks, the
mean CS increased monotonically with the voxel size (p< 0.05). As the voxel size increased,
the mean CS (±SD) in the L THAL increased from 0.06 (±0.03) to 0.16 (±0.09), 0.28(±0.10),
and 0.40 (±0.09), and the corresponding PICSO increased from 0.00 (±0.00) to 0.21 (±0.14),
0.41 (±0.21), and 0.79 (±0.24). In the PCC, as the voxel size increased, the mean CS increased
from 0.09 (±0.01) to 0.19 (±0.01), 0.27 (±0.02), and 0.32 (±0.03), and the corresponding
PICSO increased from 0.22 (±011) to 0.49 (±0.15), 0.70 (±0.20), and 0.95 (±0.22).

PICSOModulated by the Smoothness
The off-diagonal pictures in the upper panels of Figs 4 and 5 show the smoothing effects of the
FC maps on the acquired voxel sizes in the thalamic network and DMN, respectively. For any
fixed voxel size in acquisition, spatial smoothing substantially enhanced the CS and spatial
extent within the network. However, when the FWHMwas controlled after smoothing, the
impact of the acquired voxel size on the CS was more substantial than the impact of smoothing.
For example, the CS of the data acquired at 2 × 2 × 2 mm3 was significantly stronger than that of
the data acquired at 1.3 × 1.3 × 2 mm3 and smoothed to the uniform FWHM of 2 × 2 × 2 mm3

(FDR-corrected p< 0.01). The lower panels of Figs 4 and 5 show the relationships between the
PICSO values and the fixed FWHMs after smoothing; the bars represent the multiple voxel sizes
in acquisition. The transparent bars indicate incidences where the expected FWHMs after
smoothing were less than the acquired spatial resolution, indicating that the smoothness had no
effect. For the fixed FWHM, both the red and blue lines indicate a significant difference among

Fig 3. Voxel-wise PICSOmap from a single subject. The PICSO value increases as a function of the acquired voxel sizes (1.3 × 1.3 × 2, 2 × 2 × 2, 3 × 3 ×
3, and 5 × 5 × 5 mm3, without smoothing). Additionally, the PICSO value also possesses spatial specificity; the PICSO value of the posterior brain is generally
larger than that of the anterior brain.

doi:10.1371/journal.pone.0148393.g003
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acquired voxel sizes at the significance level of a Fisher’s least significant difference (LSD)-cor-
rected p< 0.01. For example, for the final FWHM of 3 mm in the lower panel of Fig 4, the data
with acquired voxel sizes of 2 × 2 × 2 and 3 × 3 × 3 mm3 had higher PICSO values than those
with an acquired voxel size of 1.3 × 1.3 × 2 mm did, and no significant difference in the PICSO
values was observed between the data with acquired voxel sizes of 2 × 2 × 2 and 3 × 3 × 3 mm.

Relationship between the PICSO and CS
To verify the efficacy of using the PICSO or tSNR as quality measures for rs-fMRI, we con-
ducted a correlation analysis to quantify the association between the CS and the two quality

Fig 4. Group-level thalamic connectivity as a function of spatial resolution. (Upper) The thalamic connectivity varies with smoothness (FWHMs = 1.3, 2,
3, and 5 mm) under the four acquired voxel sizes. Although the spatial extent of FC is preserved among the various voxel sizes, the CS increases with the
smoothness. (Lower) Bar chart illustrating the corresponding PICSO value for each smoothness level of the acquired voxel sizes. Both the red and blue lines
indicate significant differences in the paired comparisons (LSD-corrected p < 0.01).

doi:10.1371/journal.pone.0148393.g004
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measurements after we controlled the smoothness. According to the data of three voxel sizes
(1.3 × 1.3 × 2, 2 × 2 × 2, and 3 × 3 × 3 mm3, which are conventionally adopted in human stud-
ies, all of which were smoothed to a fixed FWHM of 3 mm), Fig 6 shows the relationship
between the CS and both quality measurements (PICSO and tSNR) within the predefined seed
ROIs. Each point in Fig 6 indicates an individual subject, and the trend lines denote the cou-
pling between the quality measurements and the CS among the three data sets. The PICSO and
CS demonstrated a large significantly positive correlation within the L THAL (r = 0.82,
p< 0.05) and a medium significantly positive correlation with the PCC (r = 0.33, p< 0.05).
However, the tSNR, which is commonly adopted to test fMRI quality, showed a nonsignificant

Fig 5. Group-level DMN connectivity as a function of spatial resolution. (Upper) DMN connectivity varies with smoothness (FWHMs = 1.3, 2, 3, and 5
mm) under the four acquired voxel sizes. (Lower) Bar chart illustrating the corresponding PICSO values for each smoothness level of the acquired voxel
sizes. Both the red and blue lines indicate significant differences in the paired comparisons (LSD-corrected p < 0.01).

doi:10.1371/journal.pone.0148393.g005
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correlation with the CS. These phenomena indicated the high sensitivity of the PICSO index to
the FC in the rs-fMRI signals.

Discussion
Recently, data quality in rs-fMRI has received substantial attention because different imaging
centers often adopt different rs-fMRI protocols. In principle, tSNR could be used as a quick
measure of rs-fMRI data quality, but it does not guarantee reliable rsFC outcomes. Previous
studies have emphasized the temporal fluctuations in fMRI signals and the potential of

Fig 6. Relationship between both quality measurements (PICSO and tSNR) and the CS in the rs-fMRI data sets within the L THAL and PCC. At a
fixed FWHM of 3 mm, each point in the scatter plot indicates an individual subject, and the linear trend line denotes the coupling among the three data sets of
the acquired voxel sizes of 1.3 × 1.3 × 2, 2 × 2 × 2, and 3 × 3 × 3 mm3. Only the trend lines between the PICSO and CS correlate significantly within the L
THAL (r = 0.82) and PCC (r = 0.33).

doi:10.1371/journal.pone.0148393.g006
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physiological contributions to serve as a sensitivity indicator of rs-fMRI quality [9]. Neverthe-
less, current quality-evaluation strategies that involve manual ROI selection for determining
physiological contributions are time-consuming and unrealistic when processing rs-fMRI data
sets derived from a large sample [9,13,14]. Because of practical concerns, we first proposed a
novel approach for estimating the physiological contributions in rs-fMRI signals under the
assumption that the ultra-slow trends and low-frequency neuronal fluctuations can be mini-
mized using temporal subtraction. We titled this estimation index as the PICSO for rs-fMRI,
similar to the notion of the contrast-to-noise ratio in the stimuli-evoked fMRI signals. Cru-
cially, the reliability of the proposed approach was verified through the phantom data with
four frequently adopted voxel sizes (Fig 2), and the PICSO index was shown to be more sensi-
tive to the resulting rsFC than the tSNR was. Second, our analysis of the various spatial resolu-
tion revealed that reducing the acquired image resolution or adopting a large smooth kernel
increased the rsFC and physiological contributions, which is consistent with previous reports
[9,13,14]. In brief, we achieved the following three aims of this study: (1) calibrating the PICSO
estimation procedures by using a phantom, (2) verifying the high sensitivity of PICSO for
detecting the CS (Fig 6), and (3) determining that the acquired voxel size had a larger effect on
the PICSO than the smoothness did (lower panels in Figs 4 and 5). Moreover, the PICSO index
has the advantages of avoiding additional acquisition, facilitating a practical quality evaluation
for existing fMRI databases derived from a large sample, and enhancing the rs-fMRI reliability
of future clinical investigations. Notably, however, the PICSO represent the weighting of physi-
ological fluctuations over the thermal noise of a single voxel, whereas the CS is the temporal
correlation between two voxels or regions. They differ conceptually, and their relationship is
described as follows. High CS outcomes in regions must result from the sufficient PICSO (high
physiological contribution) values in these regions; however, regions with high PICSO values
do not directly indicate their FC. Accordingly, the linear correlation between the CS and
PICSO (Fig 6) was medium to large when different noise levels were modulated (by imaging
resolution or spatial smoothing), but in actuality (with a fixed noise level), the PICSO can only
be regarded as the prior reliability measure for the rsFC.

According to the physiological noise model in BOLD-fMRI [9,12], the PICSO index was
proposed to approximately estimate the contribution of intrinsic spontaneous activities by esti-
mating the ratio of σp over σ0 in a voxel-wise manner without additional sequence editing.
Between these two parameters, estimating σ0 is more uncertain and difficult due to the exis-
tence of multiple approaches for doing so. The approach of estimating σ0 without RF excitation
has recently been well adopted because it is a straightforward concept, but its requirements of
extra sequence editing and image reconstruction greatly lengthen the time required for experi-
ments and analysis, rendering it almost impossible to apply to existing RS-fMRI data sets
[17,18]. For image processing, a general method for estimating σ0 is to calculate the spatial var-
iance within a selected ROI outside of the brain region, and a subtractive imaging method was
employed to subtract images from the selected two adjacent images and estimate the thermal
noise in an ROI manner [19]. However, these ROI-based methods are not designed for generat-
ing a voxel-wise map and lack temporal information for rsFC. By contrast, we used a series of
subtractive images from every two adjacent time points to enable accurate measurement of
local σ0, regardless of the image spatial noise, and to enable the practical application of the pro-
posed method to existing rs-fMRI data sets. This subtractive strategy was based on two
assumptions: (1) the temporal thermal noise follows a Gaussian distribution [29], and (2) the
resting-state spontaneous activity does not change quickly for each pair of adjacent time point.
If either assumption is violated by the rapid signal changes because of a subject’s head motion,
then the robustness and accuracy of the PICSO estimation might decrease. Thus, for prepro-
cessing, the rs-fMRI data were processed using motion correction and despiking to minimize
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the motion impact prior to the PICSO calculation. Although no existing motion correction
methods could guarantee that the data were completely free from motion, the residual motion
effect in our approach would be considered as the thermal noise because of the high-frequency
enhancement by the subtractive strategy, thus reducing the PICSO value. Under the general
inclusion criteria with the mean FD of less than 0.3 in our data set, the PICSO value showed no
correlation with the mean FD, suggesting that head motion does not affect the PICSO.

Moreover, any slight signal drift during image acquisition also affects the PICSO estimation;
hence, this drift should be corrected using the detrending procedure, the order of which might
differ among scanners. In our preprocessing, the detrending order was set to the third order on
the basis of the phantom verification because, in the phantom data, when the total fluctuation
level is equal to the thermal noise; this indicates no physiological fluctuation contributions.
Our phantom results (Fig 2a, with various acquired voxel sizes) verified the assumptions in the
plot of σ versus σ0 that followed the identity line after detrending, and the thermal noise deter-
mined by the proposed approach showed high stability under various acquired resolutions,
demonstrating the reliability of the subtractive procedure [18,19,33]. Moreover, Fig 6 illustrates
that the PICSO and CS were positively correlated, but the tSNR and CS did not show a signifi-
cant correlation. Therefore, according to the two assumptions, PICSO estimation can be a con-
venient quality-assurance measure in the preprocessing procedure for rs-fMRI data sets.
Notably, a higher PICSO value was displayed in the visual cortex compared with that in the
THAL (Fig 3), which is consistent with the findings of Bianciardi et al. (2009). They also
reported that the visual cortex showed higher sensitivity to the spontaneous activity than the
entire gray matter did [23]. Because the rs-fMRI signals are based on the BOLD mechanism,
the PICSO inhomogeneity among the brain regions implied a regional disparity in the cerebro-
vascular structure.

The off-diagonal upper panels in Figs 4 and 5 reveal the substantial influence of the spatial
resolution on the rsFC, showing that the PICSO (lower panels in Figs 4 and 5) is an effective
index for reflecting the FC changes. The results indicate that the brain areas with low PICSO
values were confounded by thermal noise, causing a low CS and reducing the spatial extent.
This may explain why studies have seldom reported high-resolution rsFC results without spa-
tial smoothing. Although the relationship between the PICSO and CS was explicit, the PICSO
values were lower than anticipated (approximately 0.00–0.95). To ascertain the confidence
level, as a reference in the PICSO estimation, we examined the data sets of Bianciardi, who esti-
mated the contributions of various noise sources in rs-fMRI data by using regression
approaches [23]. After the signal drift and nonneuronal fluctuations were removed, the fMRI
variance of Bianciardi’s 7T data sets resulted in a PICSO value of 0.6 in the whole brain gray
matter and 1.7 in the visual cortex, indicating the spatial specificity of the PICSO value among
brain regions. Similarly, according to their image resolution (1.25 × 1.25 × 2 mm3), the PICSO
in the visual cortex was approximately 0.8 in the visual cortex of our high-resolution 3T data
set (1.27 × 1.27 × 2 mm3). We concluded that this PICSO value was reasonable because the
PICSO index is linearly proportional to the field strength, which is consistent with Huettle’s
statement that “while thermal noise increases linearly with increasing field strength, physiolog-
ical noise increases quadratically with the field strength” [34]. In current hardware settings,
although the PICSO value in subcortical regions is low compared with the thermal noise level,
this difficulty can be alleviated through spatial smoothing (Fig 4) or elevating the field strength.

Traditional spatial smoothing in fMRI preprocessing involves applying a smooth kernel
with a fixed kernel size rather than smoothing until a uniform point-spread-function is
reached, a procedure that was performed in this study. However, uniform smoothing was nec-
essary in the current study to control the effective spatial resolution (i.e., the FWHM level) and
to compare the PICSO and CS with the same criteria. Moreover, the artificial connectivity
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induced by head motion has attracted global attention in the rs-fMRI field [35]; applying uni-
form smoothness facilitates minimizing the motion-induced variability among participants
[36]. The intrinsic blurring factors related to motion were minimized because the uniform
smoothing performed using 3dBlurToFWHM entailed employing an iterative estimation
scheme until an approximation of the desired smoothness was reached.

The PICSO value was inversely related to the effective spatial resolution and was affected by
the acquired voxel size and the applied spatial smoothing. We defined the spatial resolution of
the acquired voxel size (SRv) according to the intrinsic FWHM before smoothing, whereas the
spatial resolution of smoothing (SRs) was associated with the final elevated FWHM (after the
smoothing was executed) to a predefined level, regardless of high-resolution acquisition. Com-
paring the two factors at the same effective spatial resolution revealed that the SRv reduced σ0
substantially more than the SRs did. In addition, increasing the voxel size increased the σ/σ0
ratio, thus enhancing the PICSO value. At the same FWHM, spatial smoothing did not
enhance the PICSO as significantly as the voxel size effect did. These results accord with those
of a previous study, in which the significance of the acquired spatial resolution to the σ/σ0 ratio
exceeded that of the smoothing [13].

Consistent with a previous study [13], spatial smoothing greatly enhanced the tSNR, partic-
ularly for the data acquired at a high spatial resolution. For example, before spatial smoothing,
the average tSNR (±SD) in the PCC increased from 32.8 (±1.9) to 60.5 (±7.4) and to 79.9
(±11.2) as the voxel size was increased from 1.3 × 1.3 × 2 to 2 × 2 × 2 mm and to 3 × 3 × 3
mm3, respectively. After data sets were spatially smoothed to a fixed FWHM of 5 mm, the aver-
age tSNR was 110.3 (±17.0), 115.4 (±22.6), and 105.0 (±19.3) under the aforementioned three
acquired voxel sizes, respectively. However, after the data sets were smoothed to a fixed
FWHM of 3 mm (Figs 4 and 5), the group-level rsFC with an acquired resolution of 2 × 2 × 2
mm3 was significantly higher than that with an acquired resolution of 1.3 × 1.3 × 2 mm3 in the
voxel-wise paired t test (uncorrected p< 0.01), suggesting that the rsFC was more enhanced by
increasing the acquired voxel size than by increasing the smoothness. Visual inspection
revealed that, when the effective spatial resolution was set at 3 × 3 × 3 mm3, as shown in Fig 4,
the group-level rsFC with an acquired voxel size of 2 × 2 × 2 mm3 was slightly higher than that
with an acquired voxel size of 3 × 3 × 3 mm3. This could be due to the strategy of smoothing to
a predefined FWHM compensating for the confounding factors caused by head motion, which
reduced variability among participants and thus enhanced the statistical results [36]. Although
the group-level connectivity maps from both acquired voxel sizes appeared to differ, no signifi-
cant difference was observed in the voxel-wise paired t test (uncorrected p< 0.01). Overall, we
suggest acquiring data at the desired resolution, rather than smoothing the high-resolution
fMRI data to produce reliable rsFC.

Conclusion
We present the PICSO index as an approximate index for estimating the contributions of phys-
iological fluctuations in spontaneous rs-fMRI oscillations without requiring additional
sequence editing or time-consuming ROI selection. In this study, we carefully calibrated the
PICSO index by using the phantom data sets at the first step. Second, the resulting PICSO and
CS exhibited a high correlation in the thalamic network and DMN. Finally, at a fixed effective
spatial resolution, the PICSO values were more enhanced by increasing the acquired voxel size
than by increasing the smoothness. These results suggest that, for producing robust rs-fMRI
outcomes, directly acquiring functional data at a low spatial resolution is more effective than
performing smoothing after acquiring high-resolution data sets. Caution should be exercised
when conducting high-resolution acquisition of rs-fMRI signals. In summary, we propose that
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the PICSO index is an effective sensitivity indicator for rs-fMRI signals, which can be inte-
grated with existing preprocessing procedures to enable quality assurance for future rs-fMRI
studies.
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