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Abstract
The wealth of sensory data coming from different modalities has opened numerous opportu-

nities for data analysis. The data are of increasing volume, complexity and dimensionality,

thus calling for new methodological innovations towards multimodal data processing. How-

ever, multimodal architectures must rely on models able to adapt to changes in the data dis-

tribution. Differences in the density functions can be due to changes in acquisition

conditions (pose, illumination), sensors characteristics (number of channels, resolution) or

different views (e.g. street level vs. aerial views of a same building). We call these different

acquisition modes domains, and refer to the adaptation problem as domain adaptation. In
this paper, instead of adapting the trained models themselves, we alternatively focus on

finding mappings of the data sources into a common, semantically meaningful, representa-

tion domain. This field ofmanifold alignment extends traditional techniques in statistics

such as canonical correlation analysis (CCA) to deal with nonlinear adaptation and possibly

non-corresponding data pairs between the domains. We introduce a kernel method for man-

ifold alignment (KEMA) that can match an arbitrary number of data sources without needing

corresponding pairs, just few labeled examples in all domains. KEMA has interesting prop-

erties: 1) it generalizes other manifold alignment methods, 2) it can align manifolds of very

different complexities, performing a discriminative alignment preserving each manifold

inner structure, 3) it can define a domain-specific metric to cope with multimodal specifici-

ties, 4) it can align data spaces of different dimensionality, 5) it is robust to strong nonlinear

feature deformations, and 6) it is closed-form invertible, which allows transfer across-

domains and data synthesis. To authors’ knowledge this is the first method addressing all

these important issues at once. We also present a reduced-rank version of KEMA for

computational efficiency, and discuss the generalization performance of KEMA under

Rademacher principles of stability. Aligning multimodal data with KEMA reports outstanding

benefits when used as a data pre-conditioner step in the standard data analysis processing

chain. KEMA exhibits very good performance over competing methods in synthetic con-

trolled examples, visual object recognition and recognition of facial expressions tasks.

KEMA is especially well-suited to deal with high-dimensional problems, such as images

and videos, and under complicated distortions, twists and warpings of the data manifolds. A

fully functional toolbox is available at https://github.com/dtuia/KEMA.git.
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Introduction
Domain adaptation constitutes a field of high interest in pattern analysis and machine learn-
ing. Classification algorithms developed with data from one domain cannot be directly used
in another related domain, and hence adaptation of either the classifier or the data represen-
tation becomes strictly imperative [1]. For example, there is actually strong evidence that a
significant degradation in the performance of state-of-the-art image classifiers is due to test
domain shifts, such as changing image sensors and noise conditions [2], pose changes [3],
consumer vs. commercial video [4], and, more generally, datasets biased due to changing
acquisition procedures [5].

Adapting (modifying) the classifier for any new incoming situation requires either compu-
tationally demanding retraining, passive-aggressive strategies, online filtering, or sample-rele-
vance estimation and weighting. These approaches are algorithm-dependent, often resort to
heuristic parameters, require good estimates of sample relevance and information content. The
ever-evolving classifier is also very hard to analyze. Alternatively, one may also try to adapt the
domain representations to a single latent space, and then apply a unique single classifier in that
semantically meaningful feature space. In this paper, we focus on the latter pathway. Adapting
the representation space has been referred in the literature to as feature representation transfer
[6] or feature transformation learning[7].

Related works
The literature of feature representation transfer can be divided into three families of adaptation
problems, depending on the availability of labels in the different domains. They are briefly
reviewed hereafter and their main properties are summarized in Table 1. We discuss on the

Table 1. Properties of feature representation transfer methods.

DA type Properties

Method Unsup. Semis. Sup. D � 2 Unpaired dS 6¼ dT Nonlinear

PCA [24]
p p

KPCA [25]
p p p

TCA [10]
p p p

SSTCA [10]
p p p

JDA [26]
p

ŷ
p p

CCA [22]
p p p

kCCA [9]
p p p p

MA [20] p
p

GM [27]
p p

OT-lab [15]
p p p

SGF [12]
p p p p p

GFK [13]
p p p p p

MMDT [18]
p p

SSMA [23]
p p p p

KEMA
p p p p p

D: number of domains.

dS, dT: number of features in source and target.

ŷ : semilabels predicted by a classifier.

p: known corresponding samples, but no labels.

doi:10.1371/journal.pone.0148655.t001
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main the type of domain adaptation method (supervised, unsupervised or semisupervised), the
capability to align several domains or possibly unpaired examples, and eventually of different
dimensionality, and the linear or nonlinear nature of the transformation.

Unsupervised adaptation. First attempts of unsupervised domain adaptation are found in
multiview analysis [8], and more precisely in canonical correlation analysis (CCA) and kernel
CCA (KCCA) [9]. Despite their good performance in general, they still require points in differ-
ent sources to be corresponding pairs, which is often hard to meet in real applications. Think,
for example, of exploiting images, text and video in Wikipedia for document categorization,
trying to align images with different geometrical resolutions containing similar (not necessarily
the same) objects, or comparing commercial product images with consumer snapshots of the
same product. These real applications seldom provide datasets with corresponding pairs and/
or features. Alternative methods seek for a set of projectors that minimize a measure of discrep-
ancy between the source and target data distributions, such as the MaximumMean Discrep-
ancy (MMD) [10] or the recent geodesic distance between distributions [11]. However, to
compare distributions, the data are supposed to be represented by the same features in all
domains. The idea of exploiting geodesic distances along manifolds was also considered in
[12], where a finite set of intermediate transformed data distributions are sampled along the
geodesic flow (SGF) between the linear subspaces. The intermediate features are then used to
train the classifier. The idea was extended in [13], where a Geodesic Flow Kernel (GFK) was
constructed by considering the infinity of transformed subspaces along the geodesic path.
However, both SGF and GFK assume input data space of the same dimensionality.

Semi-supervised adaptation with labels in the source domain only. A second family of
methods exploits the wealth of unsupervised information along with the limited amount of
labeled data in the source domain to guide the adaptation. Actually, some of the above-men-
tioned methods can incorporate the information of labeled samples in the source domain: the
Transfer Component Analysis [10] becomes semi-supervised by maximizing the Hilbert-
Schmidt Independence Criterion (HSIC) [14] between a kernel on features and a kernel on
labels in the source domain, while SGF [12] and GFK [13] become semi-supervised if the eigen-
vectors of the source domain are found with a discriminative feature extractor such as partial
least squares (PLS). Another family of methods, collectively known as Optimal Transport (OT)
techniques, can use labeled samples in the source domain to maximize coherence in the trans-
portation plan of masses between source and target domains [15]. For this last method, the
transformation is defined such that the transformed source distribution has ideally the same
probability density as the target one, and simultaneously the labeled examples in the source
domain remain grouped together.

Supervised adaptation with labels in all domains. SGF and GFK can be also defined for
the case in which all the domains are labeled. Saenko et al. [2] learned transformations between
the domains as a dot product between the (linearly) transformed source samples. The method
was extended in [16] to domains of different dimensionality, and in [17] to problems with mul-
tiple domains. Alternative approaches try to align target and source features while simulta-
neously moving labeled examples to the correct side of a decision hyperplane (MMDT) [18].
Donahue et al. extended this reasoning by including Laplacian regularization [19]. A last family
of supervised methods is known asmanifold alignment, and aims at concurrently matching the
corresponding instances while preserving the topology of each input domain, generally using a
graph Laplacian [20, 21]. Roughly speaking, aligning data manifolds reduces to finding projec-
tions to a common latent space where all datasets show similar statistical characteristics. Mani-
fold alignment (MA) is a new form of multivariate analysis that dates back to the work of
Hotelling in 1936 on canonical correlation analysis (CCA) [22], where projections try to corre-
late the data sources onto a common target domain. While appealing, these methods still
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require specifying a small amount of cross-domain sample correspondences. The problem was
addressed in [23] by relaxing the constraint of paired correspondences with the constraint of
having the same class labels in all domains. The semi-supervised manifold alignment (SSMA)
method proposed in [23] projects data from different domains to a latent space where samples
belonging to the same class become closer, those of different classes are pushed far apart, and
the geometry of each domain is preserved. The method performs well in general and can deal
with multiple domains of different dimensionality. However, SSMA cannot cope with strong
nonlinear deformations and high-dimensional data problems.

Contributions
This paper introduces a generalization of SSMA through kernelization for manifold alignment
and domain adaptation. The proposed Kernel Manifold Alignment (KEMA) has some remark-
able appealing properties:

1. KEMA generalizes other manifold alignment methods. Being a kernel method, KEMA
reduces to SSMA [23] when using a linear kernel, thus allowing to deal with high-dimen-
sional data efficiently in the dual form (Q-mode analysis): therefore KEMA can cope with
input space of very large dimension, e.g. extracted by Fisher vectors or deep features. KEMA
also generalizes other manifold alignment methods, e.g. [20] when used with a linear kernel
and with sample correspondences instead of the class similarity matrices (see page 5);

2. KEMA goes beyond data rotations and can align manifolds of very different structure, per-
forming a flexible discriminative alignment that preserves the manifold structure;

3. KEMA defines a domain-specific metric when using different kernel functions in the differ-
ent domains. Contrarily to SSMA, KEMA can use different kernels in each domain, thus
allowing to use the best descriptor for each data source at hand, e.g. when aligning text and
images one could involve using (more appropriate) string or histogram kernels in the very
same alignment procedure, or using the same kernel function with different hyperpara-
meters in each domain;

4. As SSMA, KEMA can align data spaces of different dimensionality. This is an advantage
with respect to other feature representation transfer approaches that require either sam-
ple correspondences [9, 12, 15, 20] or strict equivalence of the feature spaces across
domains [2, 10, 25].

5. KEMA is robust to strong (nonlinear) deformations of the manifolds to be aligned, as the
kernel compensates for problems in graph estimation and numerical problems. As noted
above, the use of different metric stemming from different kernels reinforces the flexibility
of the approach;

6. Mapping data between domains (and hence data synthesis) can be performed in closed-
form, thus allowing to measure the quality of the alignment in physical units. Kernelization
typically makes the new method not invertible analytically, and one commonly resorts to
approximate methods for estimating pre-images [28–30]. For the case of KEMA, this is not
straightforwad (see page 8). As an alternative, we propose a chain of transforms of different
types as a simple, yet efficient way of performing the inversion accurately and in closed
form.

The reported theoretical advantages translate into outstanding convenience when working
with high-dimensional problems and strong distortions in the manifold structures, as illus-
trated on a large set of synthetic and real applications in the experimental section.
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Materials and Methods
In this section, we first recall the linear SSMA algorithm and then derive our proposed KEMA.
We discuss its theoretical properties, the stability bounds and propose a reduced rank algo-
rithm, as well as a closed-form inversion strategy.

Semi-supervised manifold alignment
Semi-supervised learning consists in developing inference models that collectively incorporate
labeled and unlabeled data in the model definition. In semi-supervised learning (SSL) [31], the
algorithm is provided with some available labeled information in addition to the unlabeled
information, thus allowing to encode some knowledge about the geometry and the shape of the
dataset. There is an overwhelming amount of SSL methods in the literature, yet the vast major-
ity of algorithms try to encode the relations between labeled and unlabeled data through the
definition of an undirected graph, and more precisely through the graph Laplacian matrix L.

To define L, let’s first define a graph G(V, E) with a set of n nodes, V, connected by a set of
edges, E. The edge connecting nodes i and j has an associated weight [31]. In this framework,
the nodes are the samples, and the edges represent the similarity among samples in the dataset.
A proper definition of the graph is the key to accurately introduce data structure in the model.

To understand how matrix L is constructed, two mathematical tools have to be introduced
[31, 32]: First, the adjacencymatrixW, which contains the neighborhood relations between
samples. It has non-zero entries only between neighboring samples, which are generally found
by k-nearest neighbors or an �-ball distance. Then, the degreematrixD, which is a diagonal
matrix of size n × n containing the number of connections to a node (degree). The Laplacian
matrix L is then defined as L =D −W. Intuitively, Lmeasures the variation (i.e. norm of deriv-
atives hence the name of Laplacian operator) of the decision function along the graph built
upon all (labeled and unlabeled) samples [31].

When it comes to manifold alignment, an interesting semisupervised approximation was
presented in [23]. Let us consider D domains X i representing similar classification problems.

The corresponding data matrices,Xi 2 R
di�ni , i = 1, . . ., D, contain ni examples (labeled, li, and

unlabeled, ui, with ni = li+ui) of dimension di, and n ¼PD
i¼1 ni. The SSMA method [23] maps

all the data to a latent space F such that samples belonging to the same class become closer,
those of different classes are pushed far apart, and the geometry of the data manifolds is pre-
served. Therefore, three entities have to be considered, leading to three n × nmatrices: 1) a sim-
ilarity matrixWs that has componentsWij

s ¼ 1 if xi and xj belong to the same class, and 0

otherwise (including unlabeled); 2) a dissimilarity matrixWd, which has entriesWij
d ¼ 1 if xi

and xj belong to different classes, and 0 otherwise (including unlabeled); and 3) a similarity
matrix that represents the topology of a given domain,W, e.g. a radial basis function (RBF)
kernel or a k nearest neighbors graph computed for each domain separately and joined in a
block-diagonal matrix. Since we are not interested in preserving geometrical similarity between
the domains (we are only interested in preserving their inner geometry), all the elements of the
off-diagonal blocks in the matrixW are zeros. On the contrary,Ws andWd are defined between
the domains and therefore act as registration anchor points in the feature space. An illustrative
example of how SSMA works in given in Fig 1. The three different entities lead to three differ-
ent graph Laplacians: Ls, Ld, and L, respectively. Then, the SSMA embedding must minimize a
joint cost function essentially given by the eigenvectors corresponding to the smallest non-zero
eigenvalues of the following generalized eigenvalue problem:

ZðLþ mLsÞZ>V ¼ lZLdZ
>V; ð1Þ
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where Z is a block diagonal matrix containing the data matrices Xi, Z = diag(X1, � � �,XD), and V
contains in the columns the eigenvectors organized in rows for the particular domain, V = [v1,

v2, . . .,vD]
>, see details in [21, 33]. The method allows to extract a maximum of Nf ¼

PD
i¼1 di

features that serve for projecting the data to the common latent domain as follows:

PF ðXiÞ ¼ v>
i Xi: ð2Þ

Advantageously, SSMA can easily project data between domains j and i: first mapping the
data in X j to the latent domain F , and from there inverting back to the target domain X i as fol-

lows:

PiðXjÞ ¼ ðvjv
y
i Þ>Xj; ð3Þ

where † represents the pseudo-inverse of the eigenvectors of the target domain. The operation
is depicted as:

Therefore, the method can be used for domain adaptation but also for data synthesis. This
property was pointed out in [23], and experimentally studied for image analysis in [34].

Fig 1. The idea behind semi-supervisedmanifold alignment. (A) Consider two data sources (red and
black small points) in a binary problem (labeled points in orange balls and blue squares). SSMA aligns the
dataset by (B) preserving their inner geometry and (C) registering the data clouds in the feature space using
labels. (D) After alignment the datasets live in a semantically meaningful space.

doi:10.1371/journal.pone.0148655.g001
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Kernel manifold alignment
When using linear algorithms, a well-established theory and efficient methods are often avail-
able. Kernel methods exploit this fact by embedding the data set S defined over the input or
attribute spaceX ðS � XÞ into a higher (possibly infinite) dimensional Hilbert spaceH, or fea-
ture space, and then they build a linear algorithm therein, resulting in an algorithm which is
nonlinear with respect to the input data space. The mapping function is denoted as � : X ! H.
Though linear algorithms will benefit from this mapping because of the higher dimensionality
of the feature space, the computational load would dramatically increase because we should
compute sample coordinates in that high dimensional space. This computation is avoided
through the use of the kernel trick by which, if an algorithm can be expressed with dot products
in the input space, its (nonlinear) kernel version only needs the dot products among mapped
samples. Kernel methods compute the similarity between training samples S ¼ fxigni¼1 using
pair-wise inner products between mapped samples, and thus the so-called kernel matrix Kij = K
(xi, xj) = hϕ(xi), ϕ(xj)i contains all the necessary information to performmany classical linear
algorithms in the feature space.

Kernelization of SSMA. Kernelization of SSMA is apparently straightforward; one should
map the data to a Hilbert feature space and then replace all instances of dot products with ker-
nel functions. However, note that in the original formulation of SSMA, there are D data sources
that need to be first mapped to a common feature space. For doing this, we need to define D
different feature mappings to eventually different Hilbert feature spaces, and then ensure that
mapped data live in the same subspace in order to do linear operations therein with allmapped
data sources. This can be actually done by resorting to a property of Functional Analysis The-
ory [35], the direct sum of Hilbert spaces.

Theorem 1 Direct sum of Hilbert spaces [35]: Given two Hilbert spaces,H1 andH2, the set
of pairs {x,y} with x 2 H1 and y 2 H2 is a Hilbert spaceH with inner product
hfx1; y1g; fx2; y2gi ¼ hx1; x2iH2

þ hy1; y2iH2
. This is called the direct sum of the spaces, and is

denoted asH ¼ H1 �H2. This property extends to a finite summation of D Hilbert spaces by
whichH ¼ �D

i¼1Hi is a Hilbert space.
Now we have the necessary tools for kernelizing the SSMA algorithm. Let us first map the D

different datasets to D possibly different Hilbert spacesHi of dimensionHi,
�ið�Þ : x7!�iðxÞ 2 Hi, i = 1, . . ., D. Now, by replacing all the samples with their mapped fea-
ture vectors, the problem becomes:

ΦðLþ mLsÞΦ>U ¼ lΦLdΦ
>U; ð4Þ

where F is a block diagonal matrix containing the data matrices Fi = [ϕi(x1), . . ., ϕi(xni)]
> and

U contains the eigenvectors organized in rows for the particular domain defined in Hilbert

spaceHi, U = [u1,u2, . . .,uH]
> where H ¼PD

i Hi. Note that the eigenvectors ui are of possibly
infinite dimension and cannot be explicitly computed. Instead, we resort to the definition of D
corresponding Riesz representation theorems [36] so the eigenvectors can be expressed as a lin-
ear combination of mapped samples [37], ui = Fi αi, and in matrix notation U = FΛ. This
leads to the problem:

ΦðLþ mLsÞΦ>ΦΛ ¼ lΦLdΦ
>ΦΛ: ð5Þ

Now, by pre-multiplying both sides byF> and replacing the dot products with the correspond-
ing kernel matrices,Ki ¼ Φ>

i Φi, we obtain the final solution:

KðLþ mLsÞKΛ ¼ lKLdKΛ; ð6Þ
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where K is a block diagonal matrix containing the kernel matrices Ki. Now the eigenproblem
becomes of size n × n instead of d × d, and we can extract a maximum of Nf = n features.

When a linear kernel is used for all the domains,Ki ¼ X>
i Xi, KEMA reduces to SSMA:

PF ðXiÞ ¼ α>
i X

>
i Xi ¼ ðXiαiÞ>Xi ¼ v>

i Xi: ð7Þ

This dual formulation is advantageous when dealing with very high dimensional datasets, di �
ni for which the SSMA problem is not well-conditioned. Operating in Q-mode endorses the
method with numerical stability and computational efficiency in current high-dimensional
problems, e.g. when using Fisher vectors or deep features for data representation. This type of
problems with much more dimensions than points are recurrent nowadays for example in the
fields of bioinformatics, chemometrics, and image and video processing. In this sense, even
KEMA with a linear kernel becomes a valid solution for these problems, as it has all the advan-
tages of CCA-like methods, but can also deal with unpaired data.

Projection to the latent space requires first mapping the data Xi to its corresponding Hilbert
spaceHi, thus leading to the mapped data Fi, and then applying the projection vector ui
defined therein:

PF ðXiÞ ¼ u>
i Φi ¼ α>

i Φ
>
i Φi ¼ α>

i Ki: ð8Þ

which can be depicted as:

Therefore, projection to the kernel latent space is possible through the use of dedicated repro-
ducing kernel functions.

In order to map data from domain X j to domain X i with KEMA we would need to estimate

D − 1 inverse mappings from the latent space to the corresponding target domain X i. Such
transformations are highly desirable in order to measure the accuracy of the alignment/adapta-
tion in meaningful physical units. In general, nevertheless, using kernel functions hampers the
invertibility of the transformation. One can show that if an exact pre-image exists, and if the
kernel can be written as kðx;x0Þ ¼ ckðx>x0Þ with an invertible function ψk(�), then one can
compute the pre-image analytically under mild assumptions. However, it is seldom the case
that exact pre-images exist, and one resorts to approximate methods such as those in [28–30].
In the case of KEMA, inversion from the latent space to the target domain X i is even harder,
and hampers the use of standard pre-imaging techniques. Standard pre-image methods in ker-
nel machines [28–30] typically assume a particular kernel method (e.g. kPCA) endorsed with a
particular kernel function (often the polynomial or the squared exponential). If other kernel
functions are used, the formulation should be derived again. Remember that our KEMA feature
vectors in the latent space were obtained using a complex (and supervised) function that con-
siders labeled and unlabeled samples from all available domains through the composition of
kernel functions and graph Laplacians. One could derive the equations for preimaging under

our eigenproblem setting,K0≔K�1
s Kd where Ks ≔ K(L + μ Ls)K and Kd = KLd K, but this is

very complicated, data dependent, and sensitive because of the appearance of several hyper-
parameters. Another alternative could be performing a sort of multidimensional regression
(from the latent space to X i) in a similar way to the kernel dependency estimation (KDE)
method revised in [29], but the approach would be complicated (no guarantees about the exis-
tence of a kernel trying to reproduce the inverse mapping implicit in K0 exist), computationally
demanding (many hyperparameters appear), and would not deliver a closed-form solution.
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Here we propose a simple alternative solution to the mapping inversion: to use a linear ker-

nel for the latent-to-target transformationKi ¼ X>
i Xi, and Kj for j 6¼ i with any desired form.

Following this intuition, projection of data Xj to the target domain i becomes:

PiðXjÞ ¼ ðuy
i Þ>α>

j Kj ¼ ðαjðXiαiÞyÞ>Kj; ð9Þ

where for the target domain we used ui = Fi αi = Xi αi. We should note that the solution is not
unique since D different inverse solutions can be obtained depending on the selected target
domain. Using different transforms to perform model inversion was also recently studied in
[38]: here, instead of using an alternate scheme, we perform direct inversion by chaining differ-
ent transforms, leading to an efficient closed-form solution. Such a simple idea yields impres-
sive results in practice (see the experimental section, page 14).

Computational efficiency and stability of KEMA
One of the main shortcomings of KEMA is related to the computational cost since two n × n

kernel matrices are involved, being n ¼PD
i¼1 ni. KEMA complexity scales quadratically with n

in terms of memory, and cubically with respect to the computation time. Also projection for
new data requires the evaluation of n kernel functions per example, becoming computationally
expensive for large n. To alleviate this problem, we propose two alternatives to speed up
KEMA: a reduced-rank approximation (REKEMA) and a randomized features approximation
(rKEMA). We compare both approaches in CPU time, and for rKEMA we study the conver-
gence bound in ℓ2-norm based on matrix Bernstein inequalities. Finally, we study the stability
of the obtained solution when solving a (regularized) generalized eigenproblem using a finite
number of samples based on Rademacher principles.

Reduced rank approximation
The so-called reduced-rank Kernel Manifold Alignment (REKEMA) formulation imposes
reduced-rank solutions for the projection vectors,W = Fr Λ, where Fr is a subset of the train-
ing data containing r samples (r	 n) and Λ is the new argument for the maximization prob-
lem. PluggingW into Eq (5), and replacing the dot products with the corresponding kernels,
Krn ¼ Φ>

r Φ, we obtain the final solution:

KrnðLþ mLsÞKnrΛ ¼ lKrnLdKnrΛ; ð10Þ

where Krn is a block diagonal matrix containing the kernel matrices Ki comparing a reduced
set of r representative vectors and all training data points, n. REKEMA reports clear benefits
for obtaining the projection vectors (the eigenproblem becomes of size r × r instead of n × n),
hence the computational cost becomesOðr3Þ, r	 n, compacting the solution (now Nf = r	 n
features), and in storage requirements (henceOðr2Þ). We want to highlight here that this is not
a simple subsampling, because the model considers correlations between all training data and
the reduced subset through Krn. The selection of the r points can be done in different ways and
degrees of sophistication: close to centroids provided by a pre-clustering stage, extremes of the
convex hull, sampling to minimize the reconstruction error or preserve information, form
compact basis in feature space, etc. While such strategies are crucial in low-to-moderate sam-
ple-size regimes, random selection offers an easy way to select the r points and is the most
widely used strategy. Fig 2A shows the evolution of the computational cost as a function of
(randomly selected) r samples in a toy example of aligning two spirals (cf. experiment ]1 in the
experiments section).
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Random features approximation
A recent alternative to reduced rank approximations exploits the classical Bochner’s theorem
in harmonic analysis, which has been recently introduced in the field of kernel methods [39].

The Bochner’s theorem states that a continuous kernel k(x,y) = k(x − y) on R
d is positive defi-

nite (p.d.) if and only if k is the Fourier transform of a non-negative measure. If a shift-invari-
ant kernel k is properly scaled, its Fourier transform p(w) is a proper probability distribution.
This property is used to approximate kernel functions and matrices with linear projections on
m random features as follows:

kðx;yÞ ¼
Z
R
d
pðwÞe�jw>ðx�yÞdw 
Pm

i¼1
1
m
e�jw>

i xejw
>
i y

¼Pm
i¼1

1
m
cos ðw>

i xþ biÞ cos ðw>
i yþ biÞ ¼ h 1ffiffiffi

m
p zðxÞ; 1ffiffiffi

m
p zðyÞi;

ð11Þ

where p(w) is set to be the inverse Fourier transform of k and bi � Uð0; 2pÞ[39]. Therefore, we
can randomly sample parameterswi 2 R

d from a data-independent distribution p(w) and con-

struct am-dimensional randomized feature map z(�): X! Z, for dataX 2 R
n�d and

Z 2 R
n�m, as follows:

w1; . . . ;wm � pðwÞ;
zi ≔½cosðw>

i x1 þ biÞ; . . . ; cosðw>
i xn þ biÞ� 2 R

n;

zðXÞ ≔Z ¼ ½z1 � � � zm� 2 R
n�m:

ð12Þ

For a collection of n data points, fxign
i¼1, a kernel matrixK 2 R

n�n can be approximated with

the explicitly mapped data, Z 2 R
n�m, K̂ 
 ZZ>. The Gaussian kernel kðx;yÞ ¼ expð�kx�

yk2

2=ð2s2ÞÞ can be approximated usingwi � N ð0; I=s2Þ. For the case of KEMA, we have to
sample twice, hence obtain two sets of vectors and associated matrices Zs and Zd, to approxi-

mate the similarity and dissimilarity kernel matrices,Ks≔KðLþ mLsÞK 
 ZsZ
>
s and

Kd≔KLdK 
 ZdZ
>
d . The associated cost by using the random features approximation now

reduces toOðnm2Þ, see Fig 2B. It is also important to notice that solving the generalized eigen-
value problem in KEMA feature extraction with random features converges in ℓ2-norm error

Fig 2. Average computational cost of REKEMA and rKEMA.CPU time [s], over 10 realizations as a
function of r andm for the (A) reduced rank KEMA (REKEMA) and (B) randomized KEMA (rKEMA) in black
lines. In both figures, the red line is the KEMA solution). We used synthetic example ]1 (see experiments
section) with n = 1000 samples.

doi:10.1371/journal.pone.0148655.g002
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withOðm�1=2Þ and logarithmically in the number of samples when using an appropriate ran-
dom parameter sampling distribution [40] (see the Appendix).

Stability of KEMA
The use of KEMA in practice raises, however, the important question of the amount of data
needed to provide an accurate empirical estimate, and how the quality of the solution differs
depending on the datasets. Such results have been previously derived for KPCA [41] and KPLS
[42] and here we extend them to our generalized eigenproblem setting. We focus on the con-
centration of sums of eigenvalues of the generalized KEMA eigenproblem solved using a finite
number of samples, where new points are projected into them-dimensional space spanned by
them eigenvectors corresponding to the largestm eigenvalues.

Following the notation in [41], we refer to the projection onto a subspace U of the eigenvec-
tors of our eigenproblem as PU(ϕ(x)). We represent the projection onto the orthogonal comple-
ment of U by PU?(ϕ(x)). The norm of the orthogonal projection is also referred to as the
residual since it corresponds to the distance between the points and their projections.

Theorem 2 (Th. 1 and 2 in [41]) Let us define Ks ≔ K(L + μ Ls)K and Kd = KLd K. If we

perform KEMA in the feature space defined byK
≔K�1
s Kd , then with probability greater than

1 − δ over n random samples S, for all 1� r� n, if we project data on the space Û r, the expected
squared residual is bounded by

Xn
j¼rþ1

lj � E kPÛ r
?k2
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where the support of the distribution is in a ball of radius R in the feature space and λi are l̂ i are
the process and empirical eigenvalues, respectively.

Theorem 3 (Regularized KEMA) The previous theorem holds only when the inverseK�1
s

exists. Otherwise, we typically resort to matrix conditioning via regularization. Among the many
possibilities in problem conditioning, the standard direct Tikhonov-Arnoldi approach helps solv-
ing the generalized eigenproblem on a shifted and inverted matrix, which damps the eigenvalues.
Now we aim to bound a well-conditioned matrix K0 ≔ (Ks + γKd)

−1 Kd, where γ> 0 is the regu-

larization parameter. It is easy to show that its estimated eigenvalues, ŷ i are related to the unre-

gularized ones as l̂ j ¼ ŷ j=ð1� gŷ jÞ. Therefore, with probability greater than 1 − δ over n

random samples S, for all 1� r� n, if we project data on the space Û r , the expected squared
residual is bounded by
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where the support of the distribution is in a ball of radius R in the feature space, θi and ŷ i are the
process and empirical eigenvalues.

In either case, the lower bound confirms that a good representation of the data can be
achieved by using the first r eigenvectors if the empirical eigenvalues quickly decrease beforeffiffiffiffiffiffiffi
l=n

p
becomes large, while the upper bound suggests that a good approximation is achievable

for values of r where
ffiffiffiffiffiffiffi
r=n

p
is small. These results can be used as a benchmark to test different

approaches or to select among possible candidate kernels. Also, note that depending on how
much non-diagonal is K
 (or K0), i.e. how large are the manifold mis-alignments, the KEMA
bounds may be tighter than those of KPCA. With an appropriate estimation of the manifold
structures via the graph Laplacians and tuning of the kernel parameters, the performance of
KEMA will be at least as fitted as that of KPCA. Note that when intense regularization is
needed, the trace of the squared K0 can be upper bounded by 1

ng2 and then the expected squared

residuals are mainly governed by n and γ.

Results and discussion
We analyze the behavior of KEMA in a series of artificial datasets of controlled level of distor-
tion and mis-alignment, and on real domain adaptation problems of visual object recognition
from multi-source commercial databases and recognition of multi-subject facial expressions.

Toy examples with controlled distortions and manifold mis-alignments
Setup. the first set of experiments considers a series of toy examples composed of two

domains with data matrices X1 and X2, which are spirals with three classes (see the two first
columns of Fig 3). Each dataset is visualized by

• domain (first column of Fig 3): the first domain is characterized by a red square marker and
the second by a blue cross. With this plot, we see if the domains are misaligned, irrespectively
of the classes.

• class (second column of Fig 3): in this case, both domains are characterized by the class col-
ors (red, green and blue circles). With this plot we see if the classes are aligned, irrespectively
of the domain.

Then, a series of deformations are applied to the second domain: scaling, rotation, inversion
of the order of the classes, the shape of the domain (spiral or line) or the data dimensionality
(see Table 2). These experiments are designed to study the flexibility of KEMA to handle align-
ment problems of increasing complexity and between data of different dimensionality (Ex. #2).
The last experiment (#6) considers the same setting of Exp. #1, but adds 50 features of Gaussian
noise to the two informative features.

For each experiment, 60 labeled pixels per class were sampled in each domain, as well as
1000 unlabeled samples that were randomly selected. Classification performance was assessed
on 1000 held-out samples from each domain. The toy classification results can be reproduced
using the MATLAB toolbox available at https://github.com/dtuia/KEMA.git. The σ bandwidth
parameter of the RBF kernel was set in each domain as half of the median distance between all
the samples in the domain, thus enforcing a domain-specific metric in each domain.

Latent space and domain adaptation. Fig 3 illustrates the projections obtained by KEMA
when using a linear and an RBF kernel (lengthscale was set as the average distance between
labeled samples). Looking at the alignment results, we observe that the linear KEMAlin aligns
effectively the domains only in experiments #1 and #4, which are basically scalings and rota-
tions of the data. However, it fails on experiments #2, #3 and #5, where the manifolds have
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undergone stronger deformations. The use of a nonlinear kernel (KEMARBF) allows much
more flexible solution, performing a discriminative transform plus alignment in all experi-
ments. In Experiment #6, even though the two discriminative dimensions (out of 52) are the
same as in Exp. #1, only KEMARBF can align the data effectively, since KEMAlin is strongly
affected by the noise and returns a non-discriminative alignment for the eigenvectors corre-
sponding to the smallest eigenvalues.

Classification performances. Fig 4 reports the classification errors obtained by a linear
discriminant analysis (LDA, Fig 4A) and the nearest neighbor classifier (1-NN, Fig 4B). For
each classifier, classification errors are reported for the samples from the source domain (left
inset) and the target domain (right inset). LDA is used to show the ability of projecting the

Fig 3. Illustration of linear and kernel manifold alignment on the toy experiments. (A) data in the original
domains (X1 is designated with red squares, X2 is designated with blue crosses) and per class (red, green
and blue circles, respectively), data projected (B) with the linear and (C) the RBF kernels.

doi:10.1371/journal.pone.0148655.g003
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domains in a joint discriminative latent space, where even the simplest linear classifier can be
successful. 1-NN is used to show the increase in performance that can be obtained by using a
nonlinear, yet simple, classifier on top of the projected data.

When using a linear model (LDA), a large improvement of KEMARBF over KEMAlin (thus
over SSMA) is observed. In experiment #1, even if the alignment is correct (Fig 3), the linear
classifier trained on the projections of KEMAlin cannot resolve the classification of the two
domains, while KEMARBF solution provides a latent space where both domains can be classi-
fied correctly. Experiment #2 shows a different picture: the baseline error (green line in Fig 4)
is much smaller in the source domain, since the dataset in 3D is linearly separable. Even if the
classification of this first domain (red square in Fig 3) is correct for all methods, classification
after SSMA/KEMAlin projection of the second domain (blue x in Fig 3) is poor, since their pro-
jection in the latent space does not “unfold” the blue spiral. KEMARBF provides the best result.
For experiment #3, the same trend as in experiment #2 is observed. Experiments #4 and #5
deal with reversed classes (the brown class is the top one in the source domain and the bottom
one in the target domain). In both experiments, we observe a very accurate baseline (both
domains are linearly separable in their own input spaces), but only KEMARBF provides the cor-
rect match in a low-dimensional latent space (2 dimensions), including a discriminative V-
shaped projection leading to nearly 0% errors on average; KEMAlin requires 5 dimensions to
achieve a correct manifold alignment and a classification as accurate as the baseline (that still
includes misclassifications in the linear classifier). The missclassifications can be explained by
the projected space (3rd and 4th columns in Fig 3), where classes are aligned at best, but no
real matching of the two data clouds is performed. The last experiment (#6) deals with noisy
data, where only two out of the 52 dimensions are discriminative: KEMARBF finds the two first
eigenvectors that align the data accurately (classification errors close to 0% in both domains),
while KEMAlin shows a much noisier alignment that, due to the rigidity of a linear transform,
leads to about 20% misclassification in both domains.

When using the nonlinear 1-NN, both the KEMARBF and KEMAlin perform similarly.
KEMARBF still leads to correct classification with close to zero errors in all cases, thus confirm-
ing that the latent space projects samples of the same class close. KEMAlin leads to correct clas-
sification in almost all the cases, since the 1-NN can cope with multimodal class distributions
and nonlinear patterns in the latent space. KEMAlin still fails in Exp #3, where the projection of
the source domain (red circle in Fig 3) stretches over the target domain, and in Exp. # 6, where
the latent space is not discriminative and harms the performance of the 1-NN.

Alignment with REKEMA. We now consider the reduced-rank approximation of KEMA
proposed. We used the data in the experiment #1 above. Fig 5 illustrates the solutions of the stan-
dard SSMA (or KEMAlin), and for REKEMA using a varying rate of samples. We also give the
classification accuracies of a SVM (with both a linear and an RBF kernel) in the projected latent

Table 2. Specification of the toy examples.

Exp. Dimension Deformations Noisy

S T Shape of S Scaling Rotation Class flip dimensions

#1 2 2 Spiral
p

- - 0

#2 3 2 Spiral - - - 0

#3 3 3 Line - - - 0

#4 3 3 Spiral -
p p

0

#5 3 3 Spiral
p

-
p

0

#6 52 52 Spiral
p

- - 50

doi:10.1371/journal.pone.0148655.t002
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space. Samples were randomly chosen and the sigma parameter for the RBF kernel in KEMARBF

was fixed to the average distance between all used labeled samples. We can observe that SSMA
successfully aligns the two domains, but we still need to resort to nonlinear classification to
achieve good results. REKEMA, on the contrary, essentially does two operations simultaneously:
aligns the manifolds and increases class separability. Excessive sparsification leads to poor results.
Virtually no difference between the full and the reduced-rank solutions are obtained for small

Fig 4. Classification performances on the toy examples. Error rates as a function of the extracted features (Nf) when predicting data for the first (left inset)
or the second (right inset) domain. In all plots KEMALin is in blue, KEMARBF in red, SSMA in cyan and the Baseline in green. Panel (A) shows the LDA results,
panel (B) the 1-NN.

doi:10.1371/journal.pone.0148655.g004
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values of r: just 10% of examples are actually needed to saturate accuracies. The proposed
rKEMA showed similar behaviour but results are omitted for the sake of simplicity.

Invertibility of the projections. Fig 6 shows the results of invertibility of SSMA and
KEMA (using Eq (9)) on the previous toy examples (we excluded Exp. # 6 to avoid synthesizing
data with 50 noisy dimensions). We use a linear kernel for the inversion part (latent-to-source)

Fig 5. Linear and kernel manifold alignment on the scaled interwined spirals toy experiment (Exp. #1
in Fig 3). REKEMA is compared to SSMA for different rates of training samples (we used li = 100 and ui = 50
per class for both domains).

doi:10.1371/journal.pone.0148655.g005

Fig 6. Domain inversion with SSMA and KEMA. For each panel, the left inset represents domains: the red
squares are samples in the source domain, while the blue crosses are target domain samples projected onto
the source domain. The right inset represents the three classes (red, green and blue circles). Each plot shows
the result of a single run, and the averaged ℓ2-norm reconstruction error over 10 runs.

doi:10.1371/journal.pone.0148655.g006
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and use for the direct part (target-to-latent space) an RBF kernel. All results are shown in the
source domain space. All the other settings (# labeled and unlabeled, μ, graphs) are kept as in
the experiments shown in Fig 3. The reconstruction error, averaged on 10 runs, is also reported:
KEMARBF ! lin is capable of inverting the projections and is always as accurate as the SSMA
method in the simplest cases (#1, #4). For the cases related to higher levels of deformation,
KEMA is either as accurate as SSMA (#3, where the inversion is basically a projection on a
line) or significantly better: for experiment #2, where the two domain are strongly deformed,
and experiment #5, where we deal with both scaling and inverted classes, only KEMARBF ! lin

can achieve satisfying inversion, as it “unfolds” the target domain and then only needs a rota-
tion to match the distribution in the source domain.

Visual object recognition in multi-modal datasets
We here evaluate KEMA on visual object recognition tasks by using the Office-Caltech dataset
introduced in [2]. We consider the four domains Webcam (W), Caltech (C), Amazon (A) and
DSLR (D), and selected the 10 common classes in the four datasets following [13]. By doing so,
the domains contain 295 (Webcam), 1123 (Caltech), 958 (Amazon) and 157 (DSLR) images,
respectively. The features were extracted in two ways

• SURF features, as described in [2]: we use a 800-dimensional normalized histogram of visual
words obtained from a codebook constructed from a subset of the Amazon dataset on points
of interest detected by the Speeded Up Robust Features (SURF) method. The features are
included in the in the MATLAB package on https://github.com/dtuia/KEMA.git. Alterna-
tively, they can be downloaded from their original repository on https://www.eecs.berkeley.
edu/jhoffman/domainadapt/.

• Deep features from DeCAF [43]: these features are extracted as the sparse activations of the
fully connected 7th layer of of a convolutional network trained on imageNet and then fine
tuned on the visual recognition tasks considered here. It forms a 4096-dimensional vector.
The features are included in the MATLAB package on https://github.com/dtuia/KEMA.git.

Experimental setup. We compare our proposed KEMA with the following unsupervised
and semi-supervised domain adaptation methods: GFK [13], OT-lab [15] and JDA [26]. We
used the same experimental setting as [13], in order to compare with these unsupervised
domain adaptation methods. For all methods, we used 20 labeled pixels per class in the source
domain for the C, A and W domains and 8 samples per class for the D domain. After alignment,
an ordinary 1-NN classifier was trained with the labeled samples. The same labeled samples in
the source domain were used to define the PLS eigenvectors for GFK and OT-lab. For all the
methods using labeled samples in the target domain (including KEMA), we used 3 labeled sam-
ples in target domain to define the projections.

We used a sensible kernel for this problem in KEMA: the (fast) histogram intersection ker-
nel [44]. Using a χ2 kernel resulted in similar performances. We used u = 300 unlabeled sam-
ples to compute the graph Laplacians, for which a k-NN graph with k = 21 was used.

Numerical results. The projections obtained by KEMA in the visual object recognition
experiments remain discriminative, as shown by Fig 7, where projections on the first three
dimensions of the latent space are reported for the A! W (top) and C! A (bottom) using the
SURF features. The numerical results obtained in all the eight problems are reported in
Table 3: KEMA outperforms the unsupervised GFK and, in most of the cases, improves the
results obtained by the semi-supervised methods using labels in the source domain only.
KEMA provides the most accurate results in 5 out of the 8 settings. KEMA is as accurate as the
state of the art, but with the advantage of handling naturally domains of different
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Fig 7. Example of the three first dimensions of the latent space. (A) illustrates the A! W experiment. (B)
illustrates the C! A experiment. Left: by domain (red circles are the source samples, blue crosses are the
target samples), right: by class (each color represents a different class).

doi:10.1371/journal.pone.0148655.g007

Table 3. 1-NN classification accuracy in the visual object recognition study using the SURF features.

Train on source No adapt. Unsup. GFK [13] DA
Labels: S

Labels: S, T KEMA Kint Train on target No adapt.

OT-lab [15] JDA [26]

lS 0 20 20 20

lT 0 0 ŷ 3

C ! A 21.4±3.7 35.3±3.2 43.5±2.1 40.7±4.0 47.1 ± 3.0 35.4±2.4

C ! D 12.3±2.8 35.6±5.0 41.8±2.8 40.0±4.0 61.5 ± 2.8 65.1±1.9

A ! C 35.3±0.5 32.9±2.5 35.2 ± 0.8 34.0±3.1 29.5±3.0 28.4±1.6

A ! W 31.0±0.7 32.0±3.4 38.4±5.4 36.0±5.1 65.4 ± 2.7 63.5±2.6

W ! C 21.7±0.4 27.7±2.4 35.5 ± 0.9 31.8±1.9 32.9±3.3 28.4±1.6

W ! A 27.0±1.5 33.3±2.1 40.0±1.0 31.5±4.7 44.9 ± 4.5 35.4±2.4

D ! A 19.0±2.2 33.0±1.3 34.9±1.3 32.9±2.9 44.2 ± 3.1 35.4±2.4

D ! W 37.4±3.0 69.7±3.8 84.2 ± 1.0 80.0±4.1 64.1±2.9 63.5±2.6

Mean 22.3 37.4 44.2 40.9 48.7 44.4

C: Caltech, A: Amazon, D: DSLR, W: Webcam.

ldomain: number of labels per class.

ŷ : predicted labels.

doi:10.1371/journal.pone.0148655.t003
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dimensionality, and not requiring semilabeled examples (ŷ in the Table) to align the domains
as JDA. The results obtained when using the deep DeCAF features are reported in Table 4: a
strong improvement in performance is observed for all methods. This general increase was
expected, since the deep features in DeCAF are naturally suited for domain adaptation (they
are extracted with fine tuning on this specific dataset): but nonetheless, even if the boost in per-
formance is visible for all the methods (including the case without adaptation), KEMA
improves performances even further and leads to the best average results. Looking at the single
experiments, KEMA performs most often on a tie with OT-lab [15]. Summing up, KEMA
leads to results as accurate as the state of art, but is much more versatile, since it allows to han-
dle unpaired data, works with datasets of different dimensionality, and has a significantly
smaller computational load (see also Table 1 for a taxonomical comparison of the properties of
the different methods).

Recognition of facial expressions in multi-subject databases
This experiment deals with the task of recognizing facial expressions. We used the dataset in
[45], where 185 photos of three subjects depicting three facial expressions (happy, neutral and
shocked) are available. The features are included in the MATLAB package on https://github.
com/dtuia/KEMA.git. Alternatively, they can be downloaded from their original repository on
http://www.cc.gatech.edu/lsong/code.html. Each image is 217 × 308 pixels and we take each
pixel as one dimension for classification (66836 dimensional problem). Each pair {subject,
expression} has around 20 repetitions.

Experimental setup. Different subjects represent the domains and we align them with
respect to the three expression classes. We used only three labeled examples per class and sub-
ject, and held out 70% of the data for testing and used the remaining 30% (55 samples) for the
extraction of the labeled samples. The examples which have not been selected as labeled points
are used as unlabeled data. The three domains are aligned simultaneously into a common latent
space, and then all classifications are run therein for all subjects. Below, we report the results

Table 4. 1-NN classification accuracy in the visual object recognition study using the DeCAF fully connected layer fc7.

fc7 Train on source No adapt. Unsup. GFK [13] DA
labels: S

labels: S, T KEMA Kint Train on target No adapt.

OT-lab [15] JDA [26]

lS 0 20 20 20

lT 0 0 ŷ 3

C ! A 84.5±1.5 87.8±2.1 92.1 ± 1.3 89.6±2.0 91.5±1.5 84.4±3.6

C ! D 73.1±4.9 83.5±3.6 85.4±6.0 85.0±4.9 93.6 ± 3.1 92.2±1.9

A ! C 72.0±1.7 80.2±1.9 87.2 ± 1.2 82.6±2.9 80.3±3.4 66.3±3.7

A ! W 61.3±3.4 78.0±4.8 84.5±2.4 83.0±4.6 92.7 ± 2.5 88.1±3.8

W ! C 68.9±3.0 75.1±2.5 83.7 ± 1.5 79.8±2.0 82.1±2.3 66.3±3.7

W ! A 73.5±2.7 81.2±2.2 91.9 ± 1.4 90.9±1.2 91.6±1.3 84.4±3.6

D ! A 74.6±3.9 85.4±2.1 92.9 ± 1.1 91.9±0.8 90.3±1.1 84.4±3.6

D ! W 93.8±1.5 96.7±1.9 94.1 ± 3.4 97.0±1.5 91.0±3.5 88.1±3.8

Mean 75.2 83.5 88.9 87.49 89.1 81.7

C: Caltech, A: Amazon, D: DSLR, W: Webcam.

ldomain: number of labels per class.

ŷ : predicted labels.

doi:10.1371/journal.pone.0148655.t004
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obtained by using a LDA classifier trained in that common latent space. We consider three
experimental settings:

• Single resolution: all images are considered at their maximal resolution accounting for the
three domains. Each domain is therefore a 66836-dimensional dataset. SSMA could not han-
dle these data, since it would involve a 200508-dimensional eigendecomposition.

• Multiresolution, factor 2: the resolution of one of the domains (Subject #1) is downgraded by
a factor two. 154 × 109, leading to a 16786-dimensional domain. The alignment problem in
the primal would then be 16786 + (2 × 66836) = 150458-dimensional. With this experiment,
we aim at showing the capability of KEMA to handle data of different dimensionality.

• Multiresolution, factor 4: the resolution of one of the domains (Subject #1) is downgraded by
a factor four. 62 × 44, leading to a 2728-dimensional domain. The alignment problem in the
primal would then be 136400-dimensional.

Numerical results. Average results over ten realizations are given in Fig 8: since it works
directly in the dual, KEMA can effectively cast the three-domains problem into a low dimen-
sional space. In the single resolution case (Fig 8B) all domains are classified with less than 5%
error. This shows an additional advantage of KEMA with respect to SSMA in high dimensional
spaces: SSMA would have required to solve a 200508-dimensional eigenproblem, while KEMA
solves only a 55-dimensional problem. Subject #1 seems to be the most difficult to align with

Fig 8. Results of the classification of facial expressions (top: error rates, middle: predicted
expressions; bottom: subjects). (A) single resolution experiment; (B) multiresolution experiment with a
factor-two reduction for the images of subject 1; (C) multiresolution experiment with a factor-four reduction for
the images of subject 1.

doi:10.1371/journal.pone.0148655.g008
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the two others, difficulty that is also reflected in the higher classification errors. Actually, sub-
ject #1 shows little variations in his facial traits from one expression to the other compared to
the other subjects (see Fig 3 in [45]).

In the multi-resolution cases, similar error rates are observed for subjects #2 and #3, even
though the images of subject #1 were of coarse resolution. The reduced resolution of the images
of subject #1 made the expression recognition harder, but error rates lower than 20% are still
achieved by using KEMA. By looking at the projections (second and third rows of Fig 8), those
of the multiresolution experiment with a factor 2 reduction ((B) panel) are very similar to
those in the single resolution experiment ((A) panel).

Conclusions
We introduced a kernel method for semi-supervised manifold alignment. We want to stress
that this particular kernelization goes beyond the standard academic exercise as the method
addresses many problems in the literature of domain adaptation and manifold learning. The
so-called KEMA can actually align an arbitrary number of domains of different dimensionality
without needing corresponding pairs, just few labeled examples in all domains. We also showed
that KEMA generalizes SSMA when using a linear kernel, which allows us to deal with high-
dimensional data efficiently in the dual form. Working in the dual can be computationally
costly because of the construction of the graph Laplacians and the size of the involved kernel
matrices. Regarding the Laplacians, they can be computed just once and off-line, while regard-
ing the size of the kernels, we introduced a reduced-ranked version that allows to work with a
fraction of the samples while maintaining the accuracy of the representation. Advantageously,
KEMA can align manifolds of very different structures and dimensionality, performing a dis-
criminative transform along with the alignment. We have also provided a simple yet effective
way to map data between domains as an alternative to standard pre-imaging techniques in the
kernel methods literature. This is an important feature that allows synthesis applications, but
more remarkably allows to study and characterize the distortion of the manifolds in physically
meaningful units. To the authors’ knowledge this is the first method in addressing all these
important issues at once. All these features were illustrated through toy examples of increasing
complexity (including data of different dimensionality, noise, warps and strong nonlinearities)
and real problems in computer vision, and face recognition, thus showing the versatility of the
method and its interest for numerous application domains. It does not escape our attention
that KEMAmay become a standard multivariate method for data preprocessing in general
applications where multisensor, multimodal, sensory data is acquired.

Acknowledgments
This work has been supported by the Swiss National Science Foundation under project
PP00P2-150593, the Spanish Ministry of Economy and Competitiveness (MINECO) under
project TIN2012-38102-C03-01 (LIFE-VISION), and the ERC Consolidator Grant (ERC-CoG)
entitled SEDAL with grant agreement ]647423.

Appendix: Convergence bounds for rKEMA
In this Appendix, we study some theoretical properties of the proposed randomized KEMA
(rKEMA, page 9) to provide some guarantees of its convergence to KEMA. The solution of

KEMA is the eigensystem of the matrixK�1
d Ks —or alternatively its Tikhonov-regularized

problem (Kd + γI)−1 Ks. The matrices are now approximated by K̂s ¼ ZsZ
>
s and K̂d ¼ ZdZ

>
d ,

see Eq (11). Our aim is to give a bound on the approximation error to a product of these two
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matrices from products of their approximations through random projection matrices. First we
recall the Hermitian Matrix Bernstein theorem, which is then used to derive the bound on
rKEMA.

Theorem 4 (Matrix Bernstein, [46]) Let Z1, . . ., Zm be independent n × n random matrices.
Assume that E½Zi� ¼ 0 and that the norm of the error matrices is bounded kZik � R. Define the

variance parameter s2≔max fkPiE½Z>
i Zi�k; k

P
iE½ZiZ

>
i �kg. Then, for all t� 0,

P

X
i

Zi � t

�����
�����

 !
� 2nexp

�t2

3s2 þ 2Rt

� �
and E

X
i

Zi

�����
����� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3s2logðnÞ

p
þ RlogðnÞ: ð17Þ

Theorem 5 Given two kernel matrices Kd and Ks, we aim to solve the eigensystem of K�1
d Ks.

Let us define the corresponding kernel approximations K̂d , K̂s using md,ms random features as
in Eq (12), respectively, and m: = min(md,ms). Then, the ℓ2 approximation error bound can be
bounded as

EkK̂�1
d K̂s �K�1

d Ksk �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3n4 log ðnÞ

m

r
þ 2n2 log ðnÞ

m
: ð18Þ

Proof 1 For the sake of simplicity, let us rename D̂ ¼ K̂�1
d andD ¼ K�1

d .We follow a simi-
lar derivation to [47] for randomized nonlinear CCA. The total error matrix can be decomposed

as a sum of individual error terms,E ¼Pms
i¼1 Ei, which are defined as Ei ¼ 1

ms
D̂K̂ðiÞ

s �DKs

� �
.

Now recall that the md+ms random features are sampled i.i.d. and that the data matrices for

each domain are constant. Therefore, the random matrices fD̂ð1Þ; . . . ; D̂ðmdÞ; K̂ð1Þ
s ; . . . ; K̂ðmsÞ

s g
are i.i.d. random variables. Hence, their expectations factorize, E ½Ei� ¼ 1

ms
E½D̂�Ks �DKs

� �
,

where we used E½K̂ðiÞ
s � ¼ Ks. The deviation of the individual error matrices from their expecta-

tions is Zi ¼ Ei � E ½Ei� ¼ 1
ms

D̂K̂ðiÞ
s � E½D̂�Ks

� �
. Now we can apply Hölder’s condition twice

after using the triangle inequality on the norm, and Jensen’s inequality on the expected values
and obtain a bound of the error matrices, R:

kZik ¼ 1

ms

kD̂K̂ðiÞ
s � E½D̂�Ksk � BðBþ kKskÞ

ms

; ð19Þ

where B is a bound on the norm of the randomized feature map, kzk2 � B. The variance is

defined as s2≔max fkPms
i¼1 E½ZiZ

>
i �k; k

Pms
i¼1 E½Z>

i Zi�kg. Let us expand the individual terms
in the (first) summand:

Z>
i Zi ¼

1

m2
s

K̂ðiÞ
s D̂

2K̂ðiÞ
s þKsE½D̂�2Ks � K̂ðiÞ

s D̂E½D̂�Ks � E½D̂�KsD̂K̂ðiÞ
s

� �
; ð20Þ

and now taking the norm of the expectation, and using Jensen’s inequality, we obtain

kE Z>
i Zi

� 	k � B2kKsk2
m2 , which is the same for kE½ZiZ

>
i �k, and therefore the worst-case estimate of

the variance is s2 � B2kKsk2
ms

. The bound can be readily obtained by appealing to the matrix Bern-

stein inequality (Theorem 4) and using the fact that random features and kernel evaluations are
upper-bounded by 1, and thus both B and kKk are upper-bounded by n.
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Theorem 6 Equivalently, when we define the corresponding bound for a Tikhonov-regular-

ized problem as (Kd + γI)−1 Ks, and its approximation as ðK̂d þ gIÞ�1
K̂s, the bound reduces to

EkðK̂d þ gIÞ�1
K̂s � ðKd þ gIÞ�1

Ksk � 1

g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3n2 log ðnÞ

m

r
þ 2n log ðnÞ

m

 !
; ð21Þ

where γ> 0 is a regularization parameter.
Proof 2 The demonstration is trivial by following the same rationale and derivations in Theo-

rem 5, and simply bounding kðK̂d þ gIÞ�1k2 � 1=g. Interestingly, the bound is exactly the same
as that of the randomized nonlinear CCA in [47] for the case of paired examples in the domains
and no graph Laplacian terms.

Fig 9 shows the absolute error committed by doing an approximation with random features
of the corresponding kernels for rKEMA, along with the derived theoretical bound. We analyze
the issue as a function ofm (here for the sake of simplicity we usedmd =ms =m), and the num-
ber of samples n. The curves are the result of 300 realizations. The reported results match the
previous bound: we observe a logarithmical trend as a function ofm (linear in the log-scale,
Oðm�1=2Þ), and n log(n) for the case of training examples, as expected.
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