Skip to main content
. 2016 Feb 12;11(2):e0148655. doi: 10.1371/journal.pone.0148655

Table 3. 1-NN classification accuracy in the visual object recognition study using the SURF features.

Train on source No adapt. Unsup. GFK [13] DA
Labels: S
Labels: S, T KEMA Kint Train on target No adapt.
OT-lab [15] JDA [26]
lS 0 20 20 20
lT 0 0 y^ 3
CA 21.4±3.7 35.3±3.2 43.5±2.1 40.7±4.0 47.1 ± 3.0 35.4±2.4
CD 12.3±2.8 35.6±5.0 41.8±2.8 40.0±4.0 61.5 ± 2.8 65.1±1.9
AC 35.3±0.5 32.9±2.5 35.2 ± 0.8 34.0±3.1 29.5±3.0 28.4±1.6
AW 31.0±0.7 32.0±3.4 38.4±5.4 36.0±5.1 65.4 ± 2.7 63.5±2.6
WC 21.7±0.4 27.7±2.4 35.5 ± 0.9 31.8±1.9 32.9±3.3 28.4±1.6
WA 27.0±1.5 33.3±2.1 40.0±1.0 31.5±4.7 44.9 ± 4.5 35.4±2.4
DA 19.0±2.2 33.0±1.3 34.9±1.3 32.9±2.9 44.2 ± 3.1 35.4±2.4
DW 37.4±3.0 69.7±3.8 84.2 ± 1.0 80.0±4.1 64.1±2.9 63.5±2.6
Mean 22.3 37.4 44.2 40.9 48.7 44.4

C: Caltech, A: Amazon, D: DSLR, W: Webcam.

ldomain: number of labels per class.

y^: predicted labels.