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Abstract

Developing physiologically-based pharmacokinetic (PBPK) models for chemicals can be
resource-intensive, as neither chemical-specific parameters nor in vivo pharmacokinetic
data are easily available for model construction. Previously developed, well-parameterized,
and thoroughly-vetted models can be a great resource for the construction of models per-
taining to new chemicals. A PBPK knowledgebase was compiled and developed from exist-
ing PBPK-related articles and used to develop new models. From 2,039 PBPK-related
articles published between 1977 and 2013, 307 unique chemicals were identified for use as
the basis of our knowledgebase. Keywords related to species, gender, developmental
stages, and organs were analyzed from the articles within the PBPK knowledgebase. A cor-
relation matrix of the 307 chemicals in the PBPK knowledgebase was calculated based on
pharmacokinetic-relevant molecular descriptors. Chemicals in the PBPK knowledgebase
were ranked based on their correlation toward ethylbenzene and gefitinib. Next, multiple
chemicals were selected to represent exact matches, close analogues, or non-analogues of
the target case study chemicals. Parameters, equations, or experimental data relevant to
existing models for these chemicals and their analogues were used to construct new mod-
els, and model predictions were compared to observed values. This compiled knowledge-
base provides a chemical structure-based approach for identifying PBPK models relevant
to other chemical entities. Using suitable correlation metrics, we demonstrated that models
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of chemical analogues in the PBPK knowledgebase can guide the construction of PBPK
models for other chemicals.

Author Summary

Physiologically-based pharmacokinetic (PBPK) models are complex kinetic models
describing the absorption, distribution, metabolism and excretion of chemicals in humans
or animals in vivo. They can be utilized in many applications, such as dosimetry testing,
toxicological investigations, and chemical risk assessment. De novo construction of PBPK
models can be very challenging when chemical data are limited. Previously developed
PBPK models from structurally similar chemicals can provide valuable insight in the con-
struction of a new model. We compiled a PBPK knowledgebase that contains the chemical
space covered by existing PBPK models. This knowledgebase indexes PBPK publications
with chemical names, animal species, routes of administration, and model compartments.
The knowledgebase aids new PBPK model generation by providing a structure-based
approach to identify literatures related to provisional nearest-neighbor chemicals. Such
approaches can complement efforts to develop de novo PBPK models that might act as
supporting computational tools in modern risk assessment.

Introduction

Developing physiologically-based pharmacokinetic (PBPK) models for chemicals can be
resource-intensive, as the formulation of new PBPK models is dictated by multiple factors.
These factors include intended use for the model, target organism, target subpopulation (e.g.,
life stage, gender), endpoint of interest (which can affect which organs are modeled individu-
ally and which are lumped together), routes of exposure, dosing regimen or exposure scenarios,
and availability of relevant data for model calibration or evaluation. Among these factors, col-
lecting chemical-specific data for parameterizing and calibrating a PBPK model is often the
most resource-intensive task. For example, tissue-blood partition coefficients, or data that can
be used to estimate these coefficients (e.g., log Kow), can be missing. Several in silico models
are available for predicting tissue-specific partition coefficients based on chemical structure or
properties [1-7]. On the other hand, computational tools for predicting a chemical’s metabolic
pathway and rates of metabolism have been more difficult to develop due to widely variable
interspecies (e.g., rat vs. human), intraspecies/interindividual (i.e., fast vs. slow metabolizers),
and intra-individual (i.e., liver vs. kidney) variation in metabolic activities [8]. Many environ-
mental chemicals and most pharmaceuticals are metabolized in the body, and metabolites
often exhibit drastically different pharmacokinetic properties and toxic effects than the parent
compound or alternative metabolites of the parent compound [9]. While progress has been
made toward increasing the accuracy of in silico predictions of metabolic parameters [10-12],
experimental data is always preferable, but much more costly to obtain. In addition to a dearth
of chemical-specific data, time course measurements of tissue concentrations, along with dose-
response measurements that reflect the disposition of a chemical and its metabolites inside the
body, often do not exist, further impeding model validation.

Chemical-specific parameters or in vivo pharmacokinetic data are unavailable for the vast
majority of chemicals in commerce. Previously published PBPK articles are great resources to
search for well-parameterized and thoroughly-vetted models that can inspire the structural
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design, code implementation, parameter optimization and experimental validation of models
for additional chemicals. Incremental improvements, adaptations or modifications of existing
models are common strategies used in the PBPK field to extrapolate chemical effects from labo-
ratory animals to humans [13-17], to incorporate additional exposure routes or life stages
[18-22], to link to pharmacodynamic endpoints [23-27], or to build new models for similar
chemicals [28-33].

While adapting a model to use for a different chemical has been demonstrated previously
[4,34-41], the actual process of selecting the most suitable published PBPK model for use as a
starting template is not trivial. One strategy is to identify existing PBPK models that describe
chemical analogues of the chemical entity of interest. This approach also works when adapting
only a portion of the model (i.e., its compartmental structure) for chemicals that are similar to
previously modeled chemicals [42-44]. A simple, yet efficient way to identify analogous chemi-
cals is by conducting a similarity search in a comprehensive knowledgebase. Many online
tools, such as PubChem (https://pubchem.ncbinlm.nih.gov/) and ChemSpider (http://www.
chemspider.com/) provide similarity-searching capabilities on generic sets of chemicals, but
currently no repository exists specifically for PBPK models. Thus, the objective of this study is
to compile a knowledgebase that contains PBPK modeling-related literature annotated with
respective chemical structures along with several easily accessible molecular descriptors for
these chemicals. These molecular descriptors can then be used to build a correlation matrix for
each unique chemical in the knowledgebase. The knowledgebase can be queried by inputting
the structure of the chemical of interest so that existing PBPK-related literature containing that
chemical’s close analogues might be found. Illustration of this approach involved two case
studies. In the first, the PBPK knowledgebase and correlation matrix were applied in the devel-
opment of a new PBPK model for ethylbenzene using parameter values from six chemicals.
These new models were then evaluated by comparing model-simulated blood concentrations
of ethylbenzene against measured literature values. In the second case study, a published model
of gefitinib was used to predict blood concentrations of its close-analogues and non-analogues
categorized using the PBPK knowledgebase and correlation matrix. In addition to enhancing
the efficiency of analogue-based PBPK model construction for additional chemicals, the power
of the PBPK knowledgebase lies in its compilation of a wealth of information related to these
PBPK chemicals, such as time course tissue concentration data, dose-response data, the
authors’ assumptions about the model, limitations and applications of the model, and cited
material. The PBPK knowledgebase directs users to published knowledge describing a specific
chemical in order to aid in the development of new PBPK models for additional chemicals of
interest.

Methods
Development of the PBPK knowledgebase

A compilation of all Supplementary Tables from the current study were summarized in a sepa-
rate web repository in csv format (https://sites.google.com/site/pbpkknowledgebase/
supplementary-materials). An open-source web interface is currently under development to
provide intuitive navigation to data of interest for users.

Creation of an abstract-based PBPK corpus

An abstract-based PBPK corpus was created to provide a comprehensive composition of
PBPK-related literature using PubMed (http://www.ncbi.nlm.nih.gov/pubmed). Query
parameters included: “pbpk OR (“physiologically based” AND (pharmacokinetic OR
toxicokinetic))”.
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URL: http://www.ncbi.nlm.nih.gov/pubmed/?term=pbpk+OR+(%22physiologically+based
%22+AND+(pharmacokinetic+OR-+toxicokinetic))

Additional search filters included “Abstract/title only.” No publication date boundaries
were set for the query. Search results returned articles that were available only as early as 1977.
All search results were saved and exported as a text file (S1 Table).

Extraction of chemical names from the abstract corpus and formation of
the PBPK knowledgebase

The PBPK abstract corpus (as a text file) was loaded into Google sites to be processed through
www.chemicalize.org (developed by ChemAxon), which is a public web resource that uses
chemical named-entity recognition (NER) and a chemical taxonomy mark-up utility to iden-
tify unique chemical structures from text. The entire corpus was subdivided into smaller sec-
tions (~400 abstracts per set) to accommodate the processing capability of chemicalize.org.
The marked-up page source was copied into Microsoft Excel 2007, parsed, and filtered so

that the only entries remaining were chemical names and PubMed manuscript ID (PMID)

(a unique database-designated index for cataloging purposes). This process identified 795
abstracts containing specific chemical names; results are summarized elsewhere (S2 Table).
Because many chemicals have more than one abstract associated with each chemical name, the
CAS registry number and SMILES string for these chemicals were obtained from other data-
bases (e.g., ACToR [http://actor.epa.gov/actor/faces/ ACToRHome.jsp), DSSTox [http://www.
epa.gov/ncct/dsstox/], and ChemSpider [http://www.chemspider.com/]). Duplicates and syno-
nyms were removed based on the CAS registry number and SMILES strings. For quality con-
trol purposes, two authors manually curated the chemical list to ensure that the knowledgebase
contains only specific chemical entities (e.g., “ethyl” was excluded) and that PBPK models exist
for these chemicals (e.g., existing studies measuring kinetic data for a specific chemical that
could be used to build a PBPK model). After the manual curation, 307 unique chemicals
remained. Their chemical names, CAS registry numbers and SMILES strings are provided else-
where (S3 Table). The 795 abstracts (S2 Table) and corresponding 307 unique chemicals

(S3 Table) are referred to as the “PBPK knowledgebase” throughout this article.

Mining the knowledgebase for PBPK-related terms and binary-vector
determination

The abstracts in the PBPK knowledgebase were analyzed in order to identify the presence or
absence of PBPK-associated word-stems. The purpose of this analysis was to improve our
knowledge of the type of PBPK model information that could be expected from a publication.
The PBPK-associated word-stems selected for our analyses were as follows: Species included
“rat, rats, mouse, mice, human, pig, cow, goat, guinea pig, hamster, marmoset, monkey, rabbit,
rhesus, rodent, sheep, bird, chicken, fish, pony, swine, turkey, and whale.” Life stages included
“adult, pregnant, children, lactating, fetus, infant, dam, neonate, pediatric, pup, child, fetal,
neonatal, and maternal.” Gender included “female, male, man, woman, men, and women.”
Compartmental organs included “cutaneous, venous, arterial, carcass, body, fin, skin, lungs,
heart, adipose, fat, brain, kidney, liver, bone, placenta, testes, ovary, breast, hepatic, blood,
urine, plasma, plasma, feces, fecal, renal, milk, and hair.” Mining for these terms in each chemi-
cal name-containing abstract was performed using the open-source statistical program R (R
Foundation for Statistical Computing, Vienna, Austria) to create a presence (1) or absence (0)
vector (summarized in S2 Table).
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Calculating physicochemical descriptors for compounds in the corpus

Absorption, distribution, metabolism and elimination (ADME) of chemicals are largely gov-
erned by their physicochemical properties [2,3,45-48]. For each of the chemicals identified in
the PBPK abstract corpus, eight easily obtainable 2D physicochemical molecular descriptors
were calculated using the proprietary software Molecular Operating Environment (MOE)
(Chemical Computing Group Inc., Montreal, QC, Canada). These descriptors include molecu-
lar weight (MW), hydrogen bond acceptor count (hba), hydrogen bond donor count (hbd),
number of rotatable bonds (nRotB), polar surface area or topological polar surface area (PSA),
octanol:water partition coefficient (logP), log transformation of solubility (logS) and area of
van der Waals surface (vdw_area). Descriptor values are summarized in S3 Table.

These descriptors are commonly accepted by the research community as correlated with
chemicals’ pharmacokinetic properties. MW, hba, PSA, logP and logS have been associated
with human intestinal absorption [49-51]. MW hba, hbd, nRotB and PSA can be used to pre-
dict clearance and volume of distribution [52]. MW, logP, hba, hbd, PSA, nRotB and log$ have
been associated with percent binding to plasma and liver microsomal proteins [53,54]. MW,
hba, hbd, PSA, logP were included in the in silico identification of cytochrome P450 isoform-
specific substrates [55,56].

Because other studies have shown that increasing the number of descriptors does not neces-
sarily increase the predictive power from descriptor to PK properties [47,57], and to limit
descriptors to those that are easily accessible to the public, no additional descriptors were calcu-
lated for this study.

Normalizing descriptors and calculating correlation coefficients

In this study, the similarity between chemicals was calculated as correlation coefficients based
on the eight descriptors described above. Since the scientific community lacks consensus on
the weight of importance for each descriptor toward a chemical’s pharmacokinetic properties,
each descriptor was considered to contribute equally to the calculation of correlation coeffi-
cients. Six of the eight descriptors, hba, hbd, nRotB, PSA, vdw_area and MW, have values 0 or
above and are positively skewed to the right. Thus, a log transformation was conducted to nor-
malize these descriptors. The remaining two descriptors, logP and logS, exist in their trans-
formed states. All the log-transformed descriptors were converted to standard normal
distribution ~N(0,1), based on Eq 1.

X — My
0k

Xer i = (1)
Where is the normalized value of the k™ descriptor for chemical i, X x ; is the value of the
log-transformed k™ descriptor for chemical i, and y 4 and o ; are the respective mean and stan-

dard deviation values of the log-transformed k™ descriptor for all chemicals. Normalized
molecular descriptors for all chemicals in the PBPK knowledgebase are summarized in S4
Table.

A correlation coefficient was then calculated based on the normalized molecular descriptors,
as shown in Eq 2.

8

Z(XST_k_i) (XST_k_j)
C. k=1 (2)

ij S

- 8
2 2
Z (Xr_ici) (XST,M)
k=1 k

=1
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Where Cj; represent the correlation coefficient between chemicals i and j in the knowledge-
base. X7 «_;and Xgr «_j represent the normalized k™ descriptor of chemical i and j, respectively.
The pairwise correlation coefficients matrix for each chemical in the PBPK knowledgebase is
summarized elsewhere (S5A Table). Each cell in the matrix represents the correlation coefficient
between two chemicals (column and row names). This matrix has been further flattened into
chemical-pairs, and then ordered by rank based on their correlation coefficient values. The rank-
ordered correlation coefficients of chemical pairs are provided in S5B Table.

Case study with ethylbenzene

To demonstrate the utility of the PBPK knowledgebase in finding analogous chemicals with
existing PBPK models that could act as a starting template to build a new model, ethylbenzene
was used as a case study. Six chemicals with varying structural similarities towards ethylben-
zene were selected from the PBPK knowledgebase, and the equations/parameters from their
existing models were used for the construction of an ethylbenzene PBPK model. The simula-
tion results from these newly constructed models were compared to the experimental data on
ethylbenzene [29].

Correlation coefficient-based selection of entries in the PBPK knowledgebase. First,
eight molecular descriptors for ethylbenzene were calculated in MOE and normalized as
described above for the chemicals contained within the PBPK knowledgebase. Second, the cor-
relation coefficients of ethylbenzene with all chemicals in the PBPK knowledgebase were calcu-
lated and rank ordered (S6 Table). Because the experimental data [29] for ethylbenzene were
extracted from a rat inhalation study, only the PBPK knowledgebase entries that had “rats”
and “inhalation” in the title and/or abstract were considered for our case study. Six chemicals
were selected from three categories, including: (1) exact matches (ethylbenzene), which have a
correlation coefficient of 1; (2) close-analogues (xylene, toluene and benzene), which have
high-ranked correlation coefficients among chemicals in the PBPK knowledgebase; and (3)
non-analogues (dichloromethane and methyl iodide), which have low-ranked correlation coef-
ficients among chemicals in the PBPK knowledgebase. The chemical names, CAS number, cor-
relation coefficients (toward ethylbenzene), rank of correlation coefficient (among a total of
307 chemicals in the PBPK knowledgebase) and PBPK literature references of the six selected
chemicals are summarized below (Table 1).

Using newly developed models to simulate ethylbenzene blood concentrations. PBPK
models for the selected entries (ethylbenzene, xylene, toluene, benzene, dichloromethane, and
methyl iodide) were extracted from the literature in Table 1 [58-60]. The models were coded
in MATLAB R2014b (version 8.4; The MathWorks, Natick, MA) and modified to simulate the

Table 1. Selected analogues” of ethylbenzene.

Name

Ethylbenzene
Xylene

Toluene
Benzene
Dichloromethane
Methyl iodide

CAS No. Correlation Coefficient Rank* PBPK ref.
100-41-4 1 (58]
1330-20-7 0.999979 1 [58]
108-88-3 0.999957 3 [58]
71-43-2 0.999848 7 [58]
75-09-2 0.988299 54 [59]
21410-51-5 0.910114 283 [60]

*Chemical analogues were selected based on their similar published experimental designs (animal species = rats, route of administration = inhalation,
time span = short term) relative to that of ethylbenzene-associated literature.
*The ranking of correlation coefficient among a total of 307 unique chemicals in the PBPK knowledgebase.

doi:10.1371/journal.pcbi.1004495.t001
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time course of ethylbenzene blood concentrations in rats weighing 250 g after inhalation
exposure to 100 ppm ethylbenzene for 4 hours. For simplicity and illustrative purposes, uncer-
tainties in model parameters, model predictions and experimental observations were not con-
sidered: All parameters in the newly built models were set as fixed, and all data points extracted
from the literature were fixed at their mean values.

The simulation results were then compared to experimental data for ethylbenzene obtained
from the literature [29]. Only blood concentrations were compared for illustrative purposes.
Organ-specific or tissue-specific concentration data were not measured in many studies, espe-
cially human studies, due to economic and ethical reasons. Therefore, organ-specific data were
not used in the current studies.

For each of the six models, goodness-of-fit between predicted blood concentrations and
measured values was calculated through the calculation of Chi Square statistics (3°), using Eq 3
as follows.

1*Stat = Xk:L —e) (3)

i=1 i

Where O; is the model-predicted concentration and e; is the experimentally observed con-
centration at the iy, time point. p—Values for the ” statistics were obtained through MS Excel
function “CHIDIST”. Calculated y? statistics and p-values for each model versus experimental
data are stored in S7 Table.

Comparing model parameters. Parameters from the existing models (Table 1) for
ethylbenzene, xylene, toluene, benzene, dichloromethane, and methyl iodide were extracted
from published studies associated with abstracts contained within the PBPK knowledgebase
[58-60]. These parameters can be grouped into two general types: physiology-specific and
chemical-specific. Rat physiology-specific parameters (e.g., cardiac output, alveolar ventilation
rate, tissue volumes, blood flows to tissues) from these models were generally consistent
[58-60], while chemical-specific parameters varied widely among models (Table 2).

Case study with gefitinib

Models for the anti-cancer drug gefitinib [61] were coded and executed in Matlab in order to
predict blood concentrations for seven other chemicals of varying similarity to gefitinib. Pre-
dicted blood concentrations for these seven structural analogues were then compared against
measured values [26,61-67]. All entries in the PBPK knowledgebase were first ranked based on
their similarity toward gefitinib, as described above (S8 Table). Close- and non-analogues of
gefitinib were selected from the top and bottom of the ranking list. Because some of the top or
bottom ranked chemicals do not have published experimental data, only entries that are associ-
ated with experimental data were kept as examples. Four close-analogues (itraconazole,

Table 2. Partition coefficients and metabolic parameters from existing PBPK models for ethylbenzene and selected analogues.

Parameters

Blood:air

Fat:air

Slowly perfused tissue:air

Rapidly perfused tissue:air

Liver:air

Maximum rate of metabolism (mg/h/kg)
Michaelis-Menten constant (mg/L)

doi:10.1371/journal.pcbi.1004495.1002

Ethyl Benzene Xylene Toluene Benzene Dichloromethane Methyl iodide
42.7 46 18 15 19.2 39
1556 1859 1021 500 120 89
26 41.9 27.7 15 7.9 7.5
60.3 90.9 83.6 17 14.2 9
83.8 90.9 83.6 17 14.2 24
6.39 6.49 3.44 2.11 4.3 831
1.04 0.45 0.13 0.01 0.4 3.6
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Table 3. Chemical names, CAS numbers, rank of correlation coefficient toward gefitinib, and related references of selected analogues of gefitinib.

Name
gefitinib
itraconazole
cocaine
diclofenac

3,3'-diindolylmethane

perchlorate

phosphorothioate oligonucleotide

melamine

doi:10.1371/journal.pcbi.1004495.t003

CAS No. Rank Species Route of Administration PBPK ref.
184475-35-2 1 mice oral [61]
84625-61-6 2 human oral [62]
50-36-2 5 human intravenous [63]
15307-86-5 7 human oral [64]
1968-05-4* 8 mice oral [65]
14797-73-0 301 rat intravenous [26]
10101-88-9 302 rat intravenous [66]
108-78-1 304 pig intravenous [67]

cocaine, diclofenac and 3,3'-diindolylmethane) and 3 non-analogues (perchlorate, phosphor-
othioate oligonucleotide, and melamine) of gefitinib were selected for experimental data
extraction (Table 3). The existing gefitinib model [61] was used to simulate the blood concen-
trations for these selected example chemicals. Dose and body weight (BW) were obtained from
references for each chemical [26,61-67]. The volume of distribution (V1, V2) for each new
chemical was linearly scaled by body weight. For example, V1 iiraconazole = (BW _itraconazole
IBW _ gefitinib)” V1_ gefitinib- Other parameters were not altered from the original gefitinib model
(Table 4). Predicted blood concentrations were then compared to published experimental con-
centrations for each chemical. Calculation of Chi Square statistics (x*) as an indication of good-
ness-of-fit was performed as described above.

Results

Trends in PBPK-related literature

The 2,039 PBPK-related articles were assigned to one of three categories (Fig 1A): publications
on unique chemicals that appeared for the first time (likely to be a newly-developed PBPK
model); publications on chemicals that appeared in previous publications (likely to be an appli-
cation or refinement of a previously-developed PBPK model); and reports on general PBPK
concepts, methods, commentaries, perspectives, or reviews.

Regression analysis was performed for the three categories (Fig 1B). Linear relationships
between the number of publications and the year of publication were calculated to help

Table 4. Model parameters for selected gefitinib’s close-analogues and non-analogues.

Name

gefitinib
itraconazole
cocaine
diclofenac
3,3-
diindolylmethane
perchlorate

phosphorothioate
oligonucleotide

melamine

Dose
(mg/
kg)

55

2.9
0.3
0.7
250

3.3
10

6.13

BW (9)

22.5
70000
70000
70000

25

330
250

100000

doi:10.1371/journal.pcbi.1004495.t004

Bioavailability Absorption Elimination High-to low- Low- to high- High- Low
rate (1/h) rate (1/h) permeability permeability permeability permeability
tissue rate tissue rate tissue tissue
(1/h) (1/h) volume (V1)  volume (V2)
(ml) (ml)
0.45 0.88 0.54 1.65 0.55 75 0.3
0.45 0.88 0.54 1.65 0.55 233330 933
0.45 0.88 0.54 1.65 0.55 233330 933
0.45 0.88 0.54 1.65 0.55 233330 933
0.45 0.88 0.54 1.65 0.55 83 0.33
0.45 0.88 0.54 1.65 0.55 1100 4.4
0.45 0.88 0.54 1.65 0.55 833 3.3
0.45 0.88 0.54 1.65 0.55 333333 1333
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Fig 1. Trends of PBPK literatures. (A) The 2,039 PBPK-related articles are placed into one of three categories: (1) unique chemical PBPK papers (grey),
pioneering articles in which specific chemical names have appeared for the first time; (2) non-unique chemical PBPK papers (yellow), articles in which
chemical names have appeared in previous publications; or (3) PBPK related papers (green), articles that are not associated with specific chemical names.
(B) Linear regression of the number of articles in three categories over time.

doi:10.1371/journal.pcbi.1004495.9001

identifying the growth rates. The growth rates for publications are 14/year, 36/year, and
78/year for the first, second, and third categories, respectively. These trends reflect the difficulty
in developing a new PBPK model due to the great quantity of experimental data required.
While our search suggests ongoing development and expansion of PBPK-related modeling
methodologies, the low output of new PBPK models limits the utility of PBPK modeling for
examination of health risks resulting from chemical exposures.

Species, life stage, gender, and organ coverage of the PBPK
knowledgebase

When comparing the two gender keywords, “male” appeared much more frequently than
“female” (66% vs. 34%). “Human” and “rat” were the most frequently mentioned species, and
these key words appeared at about three times the frequency of “mouse” (Fig 2A). “Dog,”
“rabbit,” “monkey,” “fish,” and “pig” comprised the 4™ to 8 most common animal species
mentioned in the abstracts, but with noticeably lower frequency than the top 3 species, which
accounted for >94% of the total (Fig 2A).

The most frequently mentioned life stage was “adult,” appearing three times more fre-
quently than the second-most frequent term “pregnant” (Fig 2B). For the top 9 life stage terms
mentioned in PBPK-related literature, the key words “pregnant,” “dam,” and “lactating” refer
to the reproductive cycle of the female parent; the key words “fetus,” “neonate,” “infant,”-
“pediatric,” and “children” refer to growth and developmental stages of offspring (Fig 2B).

“Blood” and “liver” were the two most frequent organs incorporated into PBPK models,
with appearance frequencies twice as high as the 3" most frequent organ, “fat (adipose)”

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004495 February 12,2016 9/22
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Fig 2. Keywords extraction from PBPK literatures. The abstracts in the PBPK knowledgebase were analyzed to identify PBPK-associated word-stems:
(A) Frequency of the top 10 species; (B) Frequency of the top 10 life stages; (C) Frequency of the top 10 compartments.

doi:10.1371/journal.pcbi.1004495.9002

(Fig 2C). “Brain,” “kidney,” “lungs,” “gut (intestine),” “skin,” “heart,” and “spleen” comprised
the 4™ to 10™ most frequent organs mentioned in these publications.

Calculation of physicochemical molecular descriptors and correlation
coefficients

The means and standard deviations of hba, hbd, nRotB, logP and logS were much smaller than
those of PSA, vdw_area and MW (Fig 3A). After normalization of the physicochemical molec-
ular descriptors for these chemicals using Eq 1 above to reduce bias in calculation of correlation
coefficients, the mean and standard deviation of each descriptor was set as 0 and 1, respectively
(Fig 3B).

Each cell in the correlation matrix contains the correlation coefficient of one chemical
toward another chemical in the knowledgebase. The top five correlation coefficients were equal
to 1, because those five chemical pairs contained identical molecular descriptors. These chemi-
cals were either chiral isomers or isotopically-labeled compounds. The remaining chemical-
pair combinations exhibited a maximum correlation coefficient of 0.999990409 (between
1,2,4-trimethylbenzene and 1,2,3,5-tetramethylbenzene) and a minimum correlation coeffi-
cient of 0.589788342 (between ethylene and methyl mercury).

Case study with ethylbenzene

Simulated blood concentrations from the PBPK model based on an “exact match” (ethylben-
zene) [58] aligned extremely well with the experimental data [29] (Fig 4A). Simulated blood
concentrations from PBPK models based on “close-analogues” (xylene, toluene and benzene)
[58] deviated slightly from the ethylbenzene data (Fig 4B and 4C and 4D). In contrast, simu-
lated blood concentrations from the models based on “non-analogues” (dichloromethane and
methyl iodide) [59,60] exhibited significant deviations from the experimental data on ethylben-
zene (Fig 4E and 4F).
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Fig 3. Physicochemical molecular descriptors. Summary of the values of eight physicochemical molecular descriptors, calculated using the Molecular
Operating Environment (MOE), for 307 chemicals in the PBPK knowledgebase. The eight descriptors are molecular weight (MW), hydrogen bond acceptor
count (hba), hydrogen bond donor count (hbd), number of rotatable bonds (nRotB), polar surface area or topological polar surface area (PSA), octanol:water
partition coefficient (LogP), log transformation of solubility (logS), and area of van der Waal surface (vdw_area). (A) The original calculated descriptor values;
(B) The normalized descriptor values using Eq 1 from the Methods section.

doi:10.1371/journal.pcbi.1004495.9003

The PBPK model based on an “exact match” (ehtylbenzene) resulted in the highest %> good-
ness-of-fit p-value of 0.9991; PBPK models based on “close-analogues” had p-values of 0.8603,
0.5789 and 0.1479 for xylene, toluene, and benzene, respectively; PBPK models based on “non-
analogues” (dichloromethane and methyl iodide) resulted in much lower p-values of
<6x 1077,

Case study with gefitinib

Fig 5 shows published experimental observed blood concentrations for each example
chemicals compared to their predicted values from the each of the accommodated gefitinib
models (dose, BW, V1,V2 adjusted). Chi Square statistics (x*) were calculated and stored in
S9 Table. The gefitinib model fit the best with its own experimental data, with ¥ test p-values
equal to 0.999. The predictive ability of the gefitinib model for the structural analogues
cocaine and 3,3"-diindolylmethane were high, with %> goodness-of-fit p-values of 0.994 and
0.898, respectively. The x test p-values for the other two structural analogues itraconazole
and diclofenac were not as high, but still better than those of non-analogues, with x* test
p-values of 2.81 x 107" and 5.71 x 107", respectively. The y test p-values for non-analogues
were all zero.

Discussion

Researchers have used molecular modeling approaches (e.g., quantitative structure-activity
relationships) to predict parameters, such as volume of distribution and clearance rate, to fill
data gaps when building new PBPK models for chemicals lacking these data [52,68-70]. This
approach can be labor intensive and requires background knowledge in computational chemis-
try and statistics. Utilizing pre-existing models with well-calibrated parameters to help new
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Fig 4. Case study with ethylbenzene. Comparing blood concentrations of ethylbenzene (triangle symbols) from rats exposed to 100 ppm ethylbenzene for
four hours [29] and simulated blood concentrations of ethylbenzene (solid lines) based on the (A) ethylbenzene PBPK model [58]; (B) xylene PBPK model
[58]; (C) toluene PBPK model [58]; (D) benzene PBPK model [58]; (E) dichloromethane PBPK model [59]; and (F) methyl iodide PBPK model [60].

doi:10.1371/journal.pcbi.1004495.9004

model construction is a more efficient approach and has been widely implemented [28-33].
However, reviewing or sorting through publications for relevant information often would be
an overwhelming task for investigators. The PBPK knowledgebase presented in this current
work serves as an effective means for finding analogues whose publications contain necessary
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Fig 5. Case study with gefitinib. Comparing simulated (solid lines) and experimentally observed (triangle symbols) blood concentrations for compounds.
PBPK models were extracted from the gefitinib study [61], and executed to predict pharmacokinetics of gefitinib’s close-analogues (itraconazole, cocaine,
diclofenac, 3,3'-diindolylmethane) and non-analoguse (perchlorate, phosphorothioate oligonucleotide, melamine, carbamateon). The experimental
observations were extracted from PBPK literature listed in Table 3.

doi:10.1371/journal.pcbi.1004495.9005

model information and/or data that can aid the construction or validation of new PBPK mod-
els for new chemicals.

One-compartment (whole body) and two-compartment (blood and the remainder of the
body) models are simplest classical pharmacokinetic models. In these models, the organ-struc-
ture and mathematical equations remain the same for different chemicals, so extracting param-
eters from pre-existing models would be reasonable approach [61]. When a classical PK model
extends beyond two compartments, grouping and integration of organs into hypothetical com-
partments often occurs [71]. For example, the liver might be integrated into one compartment
(e.g., compartment 3 of a five-compartment model) for one chemical but integrated into an
entirely different compartment (e.g., compartment 4) for another chemical. This difference in
integration could lead to changes in not only chemical-specific parameters, but also in physio-
logical parameters (e.g. compartmental volume, protein content, metabolic capacity) for com-
partment 3 and 4, respectively. Therefore, extraction from pre-existing models would not be an
appropriate parameterization approach for high-dimension classical PK models.

Compartments in PBPK models correspond to real biological organs (tissues), so the physi-
ological parameters of compartments (e.g., blood flow, organ volume, and protein content) are
highly conserved among PBPK models [72]. Chemical-specific parameters for each organ,
such as tissue:blood partition coefficients and fraction of protein binding, are related to organ
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structure and the compound’s physicochemical properties. These characteristics enable
researchers to use parameters from an analogue’s pre-existing model for a new PBPK model
of new chemicals. However, mathematical equations in PBPK models are determined on a
case-by-case basis, with variation in the number of compartments, type of compartments
(flow-limited or diffusion-limited), chemical-specific elimination routes, active transport of the
parent chemical and/or metabolites, and other factors [73]. Therefore, borrowing parameters
from other PBPK models would be a case-by-case practice and require extensive browsing and
reading of relevant publications. The PBPK knowledgebase not only ranked the publications
based on structural similarity (S5A Table), but also summarized much essential information,
such as chemical names, organs, genders and species (S2 Table). It will help expedite selection
and reading through relevant publications for locating appropriate parameter values.

The current estimate for the number of chemicals in commerce in the United States is
nearly 100,000, with 500 to 1000 new chemicals being produced each year [74]. The current
rate of PBPK model development (~14 chemicals/year; Fig 1B) will likely never catch up with
rate of new chemical production. Just covering the 1,800 chemicals found in consumer prod-
ucts would take more than 100 years. The new strategy presented in this current work is
designed to facilitate the generation of provisional pharmacokinetic models as chemical inven-
tories continue to expand. The PBPK knowledgebase can be used to gauge the chemical space
of existing PBPK models, as well as developing a methodology to search for existing PBPK
models for structural analogues of chemicals of interest. It is up to the discretion of future
investigators whether to use our proposed approach based on eight molecular descriptors to
select an analogue or to use a different similarity testing method based on the intended purpose
of the new model.

Identifying structural analogues is an ongoing area of research. Commonly accepted numer-
ical measurements of chemical similarity are distance coefficients based on chemical descrip-
tors, such as binary (0 or 1) values, indicating the absence or presence of some particular
feature, topological indices, physicochemical properties (sometimes estimated using in silico
approaches), or on/off indications for molecular fingerprints [75]. A large number of similarity
calculations have been defined and used in the literature, including Euclidean [75,76], Ham-
ming [75,76], Minkowsky [76,77], Correlation [76,78], Tanimoto [75,76], Molecular Access
System (MACCS) [79,80], and Artificial Neural Network (ANN) [81,82]. Currently, there is no
consensus regarding the best practices in selecting molecular descriptors and similarity calcula-
tion methods. Pearson’s correlation coefficient has previously been used in similarity calcula-
tions [76,78]. We chose this metric because it equally-weighted the descriptors and also can
easily be calculated through a simple R programming language script. The eight molecular
descriptors (Fig 3) presented here were selected based on their relationship with pharmacoki-
netic properties [47,49,52,57,83] and their ease of accessibility to the general public.

Route of administration, as well as molecular properties of chemicals, can influence chemi-
cal behavior entering into a biological system. Route of administration determines the bioavail-
ability, peak blood/tissue concentrations (C,,,y), time of peak concentrations (t,,.x), biological
half-life (t,,,), and other pharmacokinetic characteristics [84,85]. When intravenously injected,
ethylbenzene is 100% bioavailable and reaches t,,,y at time 0. When exposed through oral
administration, the bioavailability of ethylbenzene is influenced by metabolic degradation in
gut tissue, by gut lumen bacteria, and by liver hepatocytes [86—88]. If exposed through inhala-
tion, ethylbenzene’s bioavailability and rate of absorption is determined by the air:blood parti-
tion coefficients and gas exchange rate of the lung [89,90]. The physiological parameters of the
model change with a given animal species. Although extrapolation between species is a com-
mon practice in PBPK modeling [91], the original model is more appropriate when using the
same species as that used to derive the experimental data. Therefore, in our ethylbenzene case
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study which used model predictions comparable to measured time course data obtained from a
rat inhalation study [29], “inhalation” and “rats” were used as filters for the PBPK knowledge-
base before chemical selection.

The three categories of “exact match,” “close-analogue,” and “non-analogue” in our case
study represent the major scenarios that can aid researchers in model development using the
PBPK knowledgebase. For a given chemical, if an “exact match” entry is found, the existing
model should have the best predictive capability. Although the same information may be
retrievable through a PubMed search for the chemical, our PBPK knowledgebase can be used
to search existing models that might have been built based on alternatives for a chemical (e.g.,
synonyms, chiral isomers or isotopically-labeled compounds). For example, ChemSpider lists
21 synonyms for ethylbenzene. The PBPK knowledgebase provides a more efficient and more
precise solution, especially for those without a background in chemistry: any synonyms, chiral
isomers or isotopically-labeled compounds would have a calculated correlation coefficient of 1
(S5B Table).

Besides being able to search for an “exact match,” the power of the PBPK knowledgebase
lies in its ability to detect “close-analogues” of a chemical simply by searching for the highest
correlation-ranked entries. Searching for “close-analogues” without the knowledgebase could
potentially be achieved by a two-step process of (1) searching public chemical databases for
structural analogues; and then (2) searching PubMed for existing PBPK models for each ana-
logue. This two-step process, however, is unnecessarily time-consuming. Although many
publications exist that contain PBPK-related models and information, this number pales in
comparison to the hundreds of thousands of chemical structures found in public chemistry
databases (e.g., ChemSpider, PubChem) [92]. It is more efficient to start the search of ana-
logues found within the PBPK knowledgebase, which contains 307 entries rather than with the
entire universe of chemicals. For example, in a structural-similarity search using ethylbenzene
on ChemSpider, more than 10,000 results were retrieved with a Tanimoto score >99%. Xylene
and toluene, which ranked 1% and 3™ in the PBPK knowledgebase, were not included in the
top 100 of this list of chemical analogues for ethylbenzene identified in ChemSpider. Studies
have shown that not all structural properties are associated with chemicals’ PK properties
[2,3,45-48]. Using all available molecular descriptors, such as the structural analogue algo-
rithm in the public chemical database, may result in a less accurate estimation of the desired
PK property analogue.

The two “non-analogues” of ethylbenzene were selected from lower correlation-ranked
entries in our ethylbenzene case study to confirm that the parameter values for non-analogues
differ most from parameter values for “exact matches” (Table 2), and that simulations from
PBPK models of non-analogues deviate most from experimental data (Fig 4E and 4F). Since
experimental data for the target chemical, ethylbenzene, was available in our case study, it was
straightforward for us to categorize the knowledgebase entries as “close-analogues” or “non-
analogues” by comparing model predictions with data. For a chemical of interest lacking exper-
imental data, there is no clear way to select a threshold for similarity rankings. A proposed rule
of thumb is to select three to five chemicals from the first ten correlation-ranked entities, and
then the “best” published model is picked from this shortlist. We caution that this recommen-
dation is subjective, and the choice of the best model should be rooted in the quantity and
applicability of the data that is available from published research to calibrate the model. For
example, a model that was calibrated using time course data in multiple tissues in animals and
evaluated against human data would be considered a better model than one that was calibrated
using only urinary metabolite data and was not evaluated against any human data.

Our second case study with gefitinib further demonstrates the utility and versatility of the
PBPK knowledgebase. A pre-existing PBPK model of gefitinib was accommodated to predict
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the experimental observations of other chemicals, selected from the top and bottom of similar-
ity-ranked PBPK knowledgebase entries. The simulated drug kinetics in Fig 5 and calculated x*
test p-values in S9 Table, demonstrated that the gefitinib model gave better predictions for the
closer structure analogues (cocaine, 3,3"-diindolylmethane) than to non-analogues (perchlo-
rate, phosphorothioate oligonucleotide, melamine). These results supported the theoretical
assumption for using close-analogue’s existing parameters for a new chemical’s model con-
struction [4,34]. The PBPK knowledgebase not only contains the chemical names, animal spe-
cies, route of administrations, and tissue compartments (all of which were extracted and used
for indexing and searching in the current manuscript), but also can facilitate the discovery of
corresponding experimental data that can be easily extracted from publications. Such extracted
data was used to test the appropriateness of gefitinib’s model in our second case study. These
data can also serve additional needs and interests of knowledgebase users.

Commercial software packages such as SimCyp, Gastroplus or PKSim are used extensively
in the pharmaceutical industry, as well as in academia, to support rapid PBPK model develop-
ment [93-96]. We wish to emphasize several fundamental differences between these commer-
cial software packages and our PBPK knowledgebase. Firstly, values of chemical-specific
parameters in the knowledgebase are either measured or optimized against experimental data;
while in SimCyp, Gastroplus and PKSim, chemical-specific parameters are often QSAR-based
predictions. Secondly, our knowledgebase provides more information than merely model code
and parameter values. Through its abstract corpus compilation, the knowledgebase also refers
users to relevant articles containing time course tissue concentration data, dose-response data,
the authors” assumptions, limitations and applications of the model, and cited resources, in
regards to chemicals of interest. Thirdly, our knowledgebase is free to the public and acts as a
central location for abstract information relevant to chemicals of interest. Users accessing this
information can contact the authors of the publications for additional information pertaining
to model code or related data, while commercial software packages require licensing fees.
Finally, the model structures in the published literature, which can be easily located from
abstract information provided in the knowledgebase, were constructed based on the authors’
expert judgement and modeling philosophy (e.g., top-down vs. bottom-up); in SimCyp, Gas-
troplus, and PKsim, the model structure is primarily generic. Although a modifiable, generic
model structure is easy to use, more experienced users may prefer to construct their own mod-
els based on data availability and purposes of the study.

The knowledgebase herein provides abstracts for previously published PBPK articles, begin-
ning from 1977 onwards. With extracted information from these published articles, the knowl-
edgebase can aid users in identifying the most relevant publications. Use of this extracted
information is highly dependent on the scientific questions and problems of interest and is
applicable mostly on a case-by-case basis. The two case studies presented here represent two
specific circumstances addressing different scientific queries. Future users should select a strat-
egy that meets their individual needs, based on data availability and study purpose, when using
the knowledgebase.

In summary, a PBPK knowledgebase was compiled that contains a thorough documentation
of the chemical space of PBPK models. This knowledgebase provides scientists with a struc-
ture-based approach to identify provisional nearest-neighbor chemicals that are described by
existing PBPK models and whose existing models might be used as a template to construct new
models for chemicals of interest. These comprehensive dataset initiatives can be coupled with
in vitro or in vivo chemical and biological data curated and accessible from other sources (e.g.,
STITCH 4.0, CSS Dashboard, Comparative Toxicogenomics Database), or with more recent
methods such as in silico multi-target profiling in DockScreen [97], in order to pave the way
for more rapid PBPK model development. Such approaches can complement efforts to rapidly
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develop PBPK/PD models that are designed to act as supporting computational tools in
modern risk assessment.
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