Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Oct 1;90(19):9171–9175. doi: 10.1073/pnas.90.19.9171

Transport of glutathione diethyl ester into human cells.

E J Levy 1, M E Anderson 1, A Meister 1
PMCID: PMC47524  PMID: 8415673

Abstract

Glutathione monoesters in which the carboxyl group of the glycine residue is esterified were previously found, in contrast to glutathione itself, to be effectively transported into various types of cells and to be converted intracellularly into glutathione. Glutathione monoesters are thus useful for prevention of oxidative stress, certain toxicities, and for treatment of glutathione deficiency. Glutathione diethyl ester is rapidly split to the glutathione monoethyl ester by mouse plasma glutathione diester alpha-esterase activity. Thus, as expected, glutathione mono- and diesters have similar effects on cellular glutathione levels in mice. However, human plasma lacks glutathione diester alpha-esterase; thus, it became of interest to compare the transport properties of glutathione mono- and diesters in human cells. We found that human cells (erythrocytes, peripheral blood mononuclear cells, fibroblasts, ovarian tumor cells, and purified T cells) transport glutathione diethyl ester much more effectively than the corresponding monoethyl (glycyl) ester. Human cells rapidly convert glutathione diethyl ester to the monoester, whose intracellular levels rise to levels that are significantly higher than levels found after application of the monoester to the cells. High levels of the monoester provide the cells with a means of producing glutathione over a period of time. We conclude that glutathione diethyl ester is highly effective as a delivery agent for glutathione monoester, and thus for glutathione, in human cells and therefore could serve to decrease oxidative stress and toxicity. Hamster (and certain other animals) also lack plasma glutathione diester alpha-esterase and therefore would be suitable animal models. Previously reported toxicity of certain glutathione ester preparations appears to reflect the presence of impurities rather than effects of the esters.

Full text

PDF
9171

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson M. E. Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol. 1985;113:548–555. doi: 10.1016/s0076-6879(85)13073-9. [DOI] [PubMed] [Google Scholar]
  2. Anderson M. E., Meister A. Glutathione monoesters. Anal Biochem. 1989 Nov 15;183(1):16–20. doi: 10.1016/0003-2697(89)90164-4. [DOI] [PubMed] [Google Scholar]
  3. Anderson M. E., Powrie F., Puri R. N., Meister A. Glutathione monoethyl ester: preparation, uptake by tissues, and conversion to glutathione. Arch Biochem Biophys. 1985 Jun;239(2):538–548. doi: 10.1016/0003-9861(85)90723-4. [DOI] [PubMed] [Google Scholar]
  4. Campbell E. B., Griffith O. W. Glutathione monoethyl ester: high-performance liquid chromatographic analysis and direct preparation of the free base form. Anal Biochem. 1989 Nov 15;183(1):21–25. doi: 10.1016/0003-2697(89)90165-6. [DOI] [PubMed] [Google Scholar]
  5. ELLMAN G. L. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959 May;82(1):70–77. doi: 10.1016/0003-9861(59)90090-6. [DOI] [PubMed] [Google Scholar]
  6. Fahey R. C., Newton G. L., Dorian R., Kosower E. M. Analysis of biological thiols: quantitative determination of thiols at the picomole level based upon derivatization with monobromobimanes and separation by cation-exchange chromatography. Anal Biochem. 1981 Mar 1;111(2):357–365. doi: 10.1016/0003-2697(81)90573-x. [DOI] [PubMed] [Google Scholar]
  7. Gale G. R., Smith A. B., Atkins L. M., Jones M. M., Singh P. K., Meredith M. J. Glutathione status, glutathione monoisopropyl ester, and cadmium metabolism in mice. Res Commun Chem Pathol Pharmacol. 1990 Oct;70(1):71–91. [PubMed] [Google Scholar]
  8. Godwin A. K., Meister A., O'Dwyer P. J., Huang C. S., Hamilton T. C., Anderson M. E. High resistance to cisplatin in human ovarian cancer cell lines is associated with marked increase of glutathione synthesis. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):3070–3074. doi: 10.1073/pnas.89.7.3070. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Griffith O. W., Anderson M. E., Meister A. Inhibition of glutathione biosynthesis by prothionine sulfoximine (S-n-propyl homocysteine sulfoximine), a selective inhibitor of gamma-glutamylcysteine synthetase. J Biol Chem. 1979 Feb 25;254(4):1205–1210. [PubMed] [Google Scholar]
  10. Griffith O. W., Meister A. Glutathione: interorgan translocation, turnover, and metabolism. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5606–5610. doi: 10.1073/pnas.76.11.5606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Griffith O. W., Tate S. S. The apparent glutathione oxidase activity of gamma-glutamyl transpeptidase. Chemical mechanism. J Biol Chem. 1980 Jun 10;255(11):5011–5014. [PubMed] [Google Scholar]
  12. Meister A. Glutathione deficiency produced by inhibition of its synthesis, and its reversal; applications in research and therapy. Pharmacol Ther. 1991;51(2):155–194. doi: 10.1016/0163-7258(91)90076-x. [DOI] [PubMed] [Google Scholar]
  13. Puri R. N., Meister A. Transport of glutathione, as gamma-glutamylcysteinylglycyl ester, into liver and kidney. Proc Natl Acad Sci U S A. 1983 Sep;80(17):5258–5260. doi: 10.1073/pnas.80.17.5258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Scaduto R. C., Jr, Gattone V. H., 2nd, Grotyohann L. W., Wertz J., Martin L. F. Effect of an altered glutathione content on renal ischemic injury. Am J Physiol. 1988 Nov;255(5 Pt 2):F911–F921. doi: 10.1152/ajprenal.1988.255.5.F911. [DOI] [PubMed] [Google Scholar]
  15. Suthanthiran M., Anderson M. E., Sharma V. K., Meister A. Glutathione regulates activation-dependent DNA synthesis in highly purified normal human T lymphocytes stimulated via the CD2 and CD3 antigens. Proc Natl Acad Sci U S A. 1990 May;87(9):3343–3347. doi: 10.1073/pnas.87.9.3343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Thornalley P. K. Esterification of reduced glutathione. Biochem J. 1991 Apr 15;275(Pt 2):535–539. doi: 10.1042/bj2750535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Tsan M. F., White J. E., Rosano C. L. Modulation of endothelial GSH concentrations: effect of exogenous GSH and GSH monoethyl ester. J Appl Physiol (1985) 1989 Mar;66(3):1029–1034. doi: 10.1152/jappl.1989.66.3.1029. [DOI] [PubMed] [Google Scholar]
  18. Vos O., Roos-Verhey W. S. Radioprotection by glutathione esters and cysteamine in normal and glutathione-depleted mammalian cells. Int J Radiat Biol Relat Stud Phys Chem Med. 1988 Feb;53(2):273–281. doi: 10.1080/09553008814550621. [DOI] [PubMed] [Google Scholar]
  19. Wellner V. P., Anderson M. E., Puri R. N., Jensen G. L., Meister A. Radioprotection by glutathione ester: transport of glutathione ester into human lymphoid cells and fibroblasts. Proc Natl Acad Sci U S A. 1984 Aug;81(15):4732–4735. doi: 10.1073/pnas.81.15.4732. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES