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Atomically detailed computer simulations of complex molecular events attracted the imagination of
many researchers in the field as providing comprehensive information on chemical, biological, and
physical processes. However, one of the greatest limitations of these simulations is of time scales.
The physical time scales accessible to straightforward simulations are too short to address many
interesting and important molecular events. In the last decade significant advances were made in
different directions (theory, software, and hardware) that significantly expand the capabilities and
accuracies of these techniques. This perspective describes and critically examines some of these
advances. C 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4940794]

INTRODUCTION

Atomically detailed computer simulations of molecular
processes have proven useful in many areas of chemical
physics, material science, and molecular biophysics (for
books see Ref. 1). Of interest to the present article is the
technique of classical Molecular Dynamics (MD) which is
loosely defined as the numerical solution of the classical
equations of motion for molecular systems. We denote by
Γ ∈ R6L the phase space vector of a system of L particles and
by Γ (t) the sequence of phase points as a function of time t
(the MD trajectory). Trajectories produced by the MD method
are used to investigate molecular kinetics and thermody-
namics.

As the title suggests, we are primarily interested in
the study of kinetics, which is the time evolution of an
ensemble of trajectories between predetermined states. This
is to be contrasted with the sampling of an ensemble of
configurations for equilibrium averages and for calculations
of thermodynamic observables. An ensemble representing
equilibrium can be computed with or without a time
series. For kinetics, at least one time series is necessary to
determine correlation functions and transition rates between
states.

The most widely used numerical realizations of MD
trajectories are solutions of initial value problems. Indeed,
initial value integration algorithms, such as Verlet,2 dominate
the field and form the core of a number of molecular modeling
software packages. It is amusing to note that later in his
life Verlet became interested in the history of science and
discovered that “his” algorithm was published in Newton’s
Principia in 1687 to prove Kepler’s second law.3 The wide
use and successes of the initial value formulation underline
the significant drawback of MD, namely, the limitation of
time scales. To appreciate the source of this limitation and its
importance consider an explicit implementation of the Verlet
algorithm in which the coordinates and velocities are solved
in small time steps. We call this and related algorithms Initial
Value Solvers (IVSs)

x (t + ∆t) = x (t) + v (t)∆t − ∆t2

2
M−1∇U (x (t)) ,

v(t + ∆t) = v (t) − ∆t
2

M−1 [∇U (x (t)) + ∇U (x (t + ∆t))] ,
x, v ∈ R3L. (1)

To ensure numerical accuracy and stability of the time
series, the time step, ∆t, must be small relative to the time
scale of the fastest coordinate changes in the system. Bond
vibrations are typical examples for fast motions that require
small time steps, indeed, periods of vibrations of bonds with
hydrogen atoms are of a few tens of femtoseconds which
makes it necessary to set ∆t ∼ 1 fs to follow these vibrations
accurately. The overall time scale studied is the sum of many
steps computed numerically. Without special hardware4 and/or
massively parallel computers, it is difficult to find simulations
of condensed phase systems that exceed 109 steps or a few
microseconds.

However, even this time scale is far too short to investigate
many interesting problems in molecular biophysics. Rapid
events of protein folding take place over tens of microseconds
to milliseconds,5,6 and so do many conformational transitions,
changing the structure of the protein from inactive to
active forms.7 Simulations of microsecond length are a
significant feat on readily accessible computers. Many
enzymatic reactions that couple chemical reactions with major
conformational transitions occur on the millisecond to second
time scale, or longer, making it necessary to further extend
the time scales of simulation to new uncharted territories.
Furthermore, observing and sampling a single event are not
sufficient to study kinetics and sampling multiple transitions
is required. Statistically meaningful observation requires the
measurement of the change of population and not of a single
trajectory. A single event, even if measured experimentally
with the tools of “single-molecule” spectroscopy,8 is hard to
assess quantitatively.

Given that MD is a general method appropriate for a
wide range of tasks with a minimal set of approximations (the
most obvious ones are the use of classical mechanics, and an
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empirical force field) it is desirable to extend its applicability
to kinetics beyond the microsecond time scale. The present
Perspective discusses different approaches to reach long
time scales in molecular dynamics simulations. In brief, the
advances can be divided into three categories: numerical
and physics-based analysis, special purpose hardware, and
physical modeling. From a methodological viewpoint, we
consider calculations of individual trajectories, sampling
of trajectories, and the computation and use of trajectory
fragments.

NUMERICAL AND PHYSICS-BASED ANALYSIS

In one direction of research, techniques from numerical
analysis and applied mathematics are used to seek an effective
increase in the time step and hence significant speed up
in MD simulations. One of the earliest approaches of this
category is SHAKE9 in which constraining bond lengths, dij,
in molecules to their ideal values, dij,0 (d2

ij − d2
ij,0 = 0 ∀i, j i, j

bonded pairs) removes fast motions and enables the increase
of efficiency of the calculations by about a factor of two.
Since bond lengths vary a little in normal circumstances, the
physics of the system is only slightly altered, allowing for
sound physical representation of atomically detailed models
at reduced costs and larger time steps.

A factor of two is significant and essentially all major
molecular dynamics software packages include the SHAKE
option (or variants) in their arsenal. However, it is not the
factor of thousands and millions that we mentioned in the
Introduction. Can we increase the time step further given that
the fastest motions are removed?

Simulations in condensed phases have another type of
fast processes that is difficult to eliminate during simulations.
These extra fast processes make it challenging to expand
the scope of MD and limit the benefits of SHAKE. In
condensed phases, we find hard-core collisions of particles
that are frequently modeled by the stiff parts of the Lennard
Jones terms (A/r12) where r is the distance between the
two particles and A an empirical constant. Pairs of atoms
that enter the domain in which this interaction is significant
accelerate until they leave the collision zone. The velocity
changes in the collision zone can be particularly dramatic and
require accurate, and small-step integration. In contrast to gas
phase and typical of solvated phases of biological molecules,
collisions are frequent and sequential configurations in
numerical integration of midsize and large systems are
rarely collision-free. How to model collision events with
SHAKE like algorithms is, however, not known. Collisions
are transient events, a pair of atoms interacts only a fraction
of time of the total trajectory, and the identity of colliding
pairs is changing rapidly. In current applications of SHAKE,
we have a list of fixed fast degrees of freedom (covalently
bonded atoms). No such list is available for condensed phase
collisions.

A conceptually similar approach to SHAKE (in the sense
that fast motions are treated separately in IVS) is proposed
by multi-stepping algorithms in which rapidly changing de-
grees of freedom are integrated with small time steps while
coordinates or forces that are slow to vary are integrated

with larger time steps. A leading algorithm of this type is
RESPA (REference System Propagation Algorithm)10 based
on a Trotter expansion of the time propagator, ensuring time
reversibility. The forces are split into a sum of long range and
short-range interactions. Short range and repulsive Lennard
Jones forces are integrated with smaller time steps. The long-
range interactions that are more numerous are integrated less
frequently. The splitting leads to significant computational
gains and an increase in the size of the time step used for
the slower degrees of freedom. Unfortunately, the hierarchical
integration adds significant complexity to the calculations and
reduces the benefits. The increase in the time step is also
moderate (a factor of several). It is bounded not only by fast
vibrations but also by rapid collision events. The overall effi-
ciency for deterministic dynamics in complex systems rarely
exceeds a factor of 2. This is of course useful but not a solution
for the extensive time scale gap mentioned in the Introduction.

The above formulations are rigorous and no compromise
on accuracy and details of the modeling is made. Is it possible
to obtain useful, but approximate solutions at lower cost?
Unfortunately, the popular Verlet or similar algorithms are
not a convenient starting point for approximations. If the time
step describing fast motions in atomically detailed simulations
increases significantly from 1 fs to say ∼10 fs the solution
develops instabilities and “blows up.” Different formulations
are required in order to obtain sensible approximate solutions.
An intriguing numerical approach to generate approximate
trajectories with a large step is the backward Euler algorithm,11

in which an exceptionally large time step can be taken
(tens of femtoseconds) and a correction step (minimization)
follows. The algorithm was shown to “leak” energy from high
frequency modes. A fix was proposed in conjunction with a
Langevin formulation using random noise to supply back lost
energy.12

Stochastic dynamics (like the Langevin “fix” mentioned
in the above paragraph) can use time steps larger than
deterministic algorithms. If the noise and friction are gentle
(e.g., they are added only to a few external variables such
as thermostat degrees of freedom) then correlation functions
were shown to be reproduced accurately.13,14 The efficiency
in this case is found to be less than a factor of 6.15,16 Further
research on gentle stochastic algorithms is desired. Moreover,
in the context of algorithms with multiple time steps and
Nose-Hoover thermostats,17 it is possible to sample from the
correct ensembles efficiently with a very large time step.
While the dynamic content of these trajectories is not clear,
they may provide initial conditions for the large number of
short trajectories that are used to enhance sampling of kinetics
(see section titled Physical Modeling).

Filtering of high frequency modes and focusing on slow
motions with the largest amplitudes at thermal conditions
was the focus of another research direction.18 Rather than
solving an initial value problem like in Eq. (1) an action is
defined and boundary value formulation is used. Of interest
was the Onsager-Machlup action18 at the zero friction limit,

S =
t

0
(mẍ + dU/dx)2dt, which is discretized and minimized

to obtain an approximate classical trajectory (depending on
the size of the time step ∆t)
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Sd (x1, . . . , xN) =


i=1, ...,N−1

∆t ·
(
m

xi+1 + xi−1 − 2xi

∆t2 +
dU
dxi

)2

+C (x1, . . . , xN) , (2)

where the C (x1, . . . , xN) are constraints on overall translations
and rotations of the images of the system xi.19 The coordinates
of the edges of the path x0 and xN are fixed. After the
discretization, the action is a function of the complete
trajectories and a solution can be found by setting the gradient
of the discrete action to zero (∂Sd/∂xi = 0 i = 1,N − 1). An
algorithm to optimize the action using the functional derivative
(or the derivatives of the discrete action) is the following.

1. Provide a guess for a trajectory of N steps: T (0)
≡ x0, x1, . . . , xN .

2. Compute action of the current trajectory (iteration n) and
its derivatives: S

�
T (n)� and ∂S/∂x(n)i .

3. Test if Θ(n) ≡ 
i


∂S/∂x(n)i

2
≤ ε where ε is a small

positive number used as convergence criterion. If the test is
true the process is terminated. If not continue. Note that the
check is for S being stationary, not necessarily a minimum.

4. Generate a step ∆ in discrete trajectory space to
find a new trajectory T (n+1) that reduces the value of
the target function Θ. If the derivatives ∂Θ(n)/∂x(n)i

are known, use derivative information to “quench”
the trajectory following the direction opposite to the
gradient: (∆)(n)i = −a∂Θ/∂x(n)i where a is a scalar chosen
to minimize Θ. Alternatively, an optimization step
can be chosen stochastically. A random displacement
∆ is accepted or rejected according to Metropolis
criterion: min

�
1,exp

�
− β̄ (Θ [T + ∆] − Θ [T])��, where β̄

is a fictitious Boltzmann factor that increases during the
optimization. Optimal action and trajectories are obtained
when β̄ → ∞.

5. Return to step 2 to evaluate the current trajectory.

It was shown that a global minimum of Eq. (2) filters
out motions with frequencies ω ≥ π/∆t, so one effect is
the removal of high frequency motions. Another effect is
the indirect impact of the removal of these motions on the
slower degrees of freedom, which is harder to assess. The
creation of a numerically stable (but approximate) trajectory
uses a similar motivation as the backward Euler integration
algorithm. The numerical stability of a trajectory as a function
of the time step generated with action optimization is going far
beyond the stability of initial value solvers. This observation
makes it possible to produce approximate trajectories at
highly extended time scales. We call this class of numerical
approaches Boundary Value Solvers (BVSs).

While initial value solvers of the equations of motion are
restricted in practice to time as a variable, more diversity is
found in action optimization. Besides solution as a function
of time one also finds practical solutions in the arc length that
gained in popularity.20–25 These trajectory calculations were
conducted for alternative types of dynamics, from Hamil-
tonian dynamics19,20,25,26 to overdamped Langevin.21–24,27

Optimization of actions and determination of trajectories
as a function of the arc-length were used to find order
of events in protein folding20,25,28 and to suggest reaction

coordinates for more elaborate rate calculations.29 This
type of study has recently gained considerable momentum
following rigorous mathematical analysis of path integral
formulation of stochastic trajectories, in both time19,26,30,31

and arc-length.21–24,27 It should be noted that the conversion
between time and arc-length is far from trivial. The trajectories
computed with large steps (either in time or in the arc-
length) are based on filtering high frequency motions that
add up noisy and diffusive contributions to the trajectories,
retaining the more deterministic and aimed displacements.
The part that is left out can be long in time. The filtering
was discussed extensively in the past.18 As such, the time
estimated directly from filtered trajectories is bound to be too
short, depending on the extent of the filtering. Nevertheless,
the set of structures generated by these calculations can be
used as a starting point for more elaborate calculations of the
kinetics, such as Milestoning. The structures provide seeds
for coarse and importance sampling of the relevant reaction
space. For example, in the method of Milestoning, the seeds
can be made centers of Voronoi cells32,33 that are used in
the calculations of short trajectories between the cells and
eventually in the studies of kinetics and thermodynamics (for
more information see section titled Enhancing Sampling of
Reactive Trajectories by “Celling”).

In general, IVS approaches to molecular dynamics are
much more popular than BVS. Nevertheless, the use of BVS is
still significant. A comparison between the two approaches is
therefore in place. When we compare the costs of calculations
of a single trajectory of the same accuracy computed with
initial value formulation or with an optimization of an action
the initial value formulation is a clear winner. It is faster and
more accurate. In initial value formulation, we generate one
phase space point at a time, and after it is computed (e.g.,
using the Verlet algorithm) the phase space point remains
fixed and is no longer considered computationally. In the
action optimization, we adjust each of the structures along
the trajectory many times until the convergence criteria are
satisfied (e.g., the functional derivative of the action or the
derivatives of the discretized action are sufficiently close to
zero). Hence, the optimization of the action for the same
accuracy and length will be slower by a factor of the number
of optimization cycles.

In practice the optimization of the action, starting from
an initial guess for a trajectory is considerably more difficult
than producing an IVS solution. The action minimization is a
global optimization problem for a sequence of structures along
a discrete approximation of a curve. Hence, the dimensionality
of the optimization problem is extremely high. If protein
folding is a hard problem to solve, the problem of finding
a pathway for folding, which is much larger, is obviously
harder.

Most frequently only local optimizations of the action
were computed, refining initial guesses. For example, the
focus was on estimates of trajectories in the neighborhood of
minimum energy pathways.20,25 The trajectories so obtained
allow the incorporation of thermal (kinetic) energy into
the ensemble of pathways. These calculations improve the
value of the action and the pathway. However, the path
remains correlated with the initial guess. It is therefore
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desired to develop more efficient global optimization schemes
for pathways, to make the BVS approach more attractive.
Bai and Elber26 examined a global optimization relaxation
algorithm to determine trajectories from the classical action.
They illustrate their algorithm for an isomerization problem
in a Lennard-Jones cluster of 38 atoms. However, more
could be done to address the global optimization problem of
pathways and we hope to see more future research in this
direction.

Another non-trivial complication for BVS use is the
treatment of explicit solvent. Solvent molecules are mobile
and permutable. It is therefore not advisable to label
them explicitly and to optimize action using the Cartesian
coordinate of each water molecules. Averages over solvent
coordinate to produce densities are likely to be effective
(though expensive). Averages of this type were employed
already in the study of hydrophobic collapse by Miller and
Vanden-Eijnden34 using the string method, and by Cardenas
and Elber in the investigation of membrane fluctuations35

using Milestoning.
A hybrid approach36 combines the generation of IVS

trajectories with a bias towards a desired product state with
the re-weighting of the trajectories using an action. The
advantage is the efficiency and simplicity of the protocol.
The bias, however, may tilt the ensemble towards restricted
sampling missing mechanisms that are inconsistent with the
functional choice of the bias.

The use of much larger time or length steps in
these protocols is a necessity to make the efficiency of
these computational techniques competitive with the initial
value formulation. However, they clearly cannot compete in
accuracy. Despite the lower efficiency, action-based trajectory
calculations are attractive for a number of reasons. First, they
are typically computed between known end points. If the task
at hand is the elucidation of reaction mechanisms between two
known molecular structures or states, the action optimization
is using all the information at hand. A solution of an initial
value problem uses only local information (typically one of
the end states) and cannot guarantee that the trajectory will end
at the desired point for reasonable values of trajectory lengths.
Many trials may be necessary adding significantly to the
complexity of the calculation. If the transition is particularly
rare (i.e., the number of trajectory trials before transition is
detected is large) then the efficiency of calculations can shift
from IVS to BVS. Typical biological examples that can benefit
from the boundary value formulation include conformational
transitions in proteins24 and transport through membranes.37

Simulation of protein folding is not a natural candidate
for BVS since the unfolded state is not a single or
even the neighborhood of a single structure. A plausible
workaround is to sample unfolded configurations and
conduct action optimization from the sampled set to folded
conformations.20,25 In this case, we sample widely different
starting configurations while converging to a set of similar
structures. A large step (in the arc-length) can still be used.

The action formulation is interesting for stochastic
dynamics because it assigns variable weights to different
trajectories or pathways. The usual IVS formulation of
Equation (1) assigns the same weight for all trajectories with

the same energy. The BVS formulation makes it possible to
determine most probable pathways,18,21,23,24,38 or pathways of
maximum weight. Such pathways are attractive for qualitative
analysis. Individual BVS trajectories are therefore easier to
interpret, assign weight, and understand than a single constant-
energy IVS path.

Correct weights of pathways in BVS formulation make
it also possible to use standard statistical sampling of Markov
chains to generate an ensemble of trajectories with the
BVS formulation. Sampling of pathways using BVS has the
additional advantage that new trajectories can be obtained
from perturbations to existing pathways simplifying the
refinement of an initial guess to the trajectory. This argument
must be done with extra care. For molecular trajectories
with hundreds (or more) of particles that interact via a non-
linear potential, we expect chaotic trajectories. The deviation
between IVS trajectories that start from (almost) the same
initial condition can rapidly develop to large values. In BVS,
we expect the trajectories to be more stable to perturbation.
The optimization is global for a whole trajectory and some
(noisy) high frequency motions are removed. Hence in contrast
to IVS, we ask if we can find a nearby whole trajectory once the
original trajectory is perturbed. The answer to this question,
using local minimization on the rough energy landscape of
pathways, is typically yes.

Nevertheless optimizing whole trajectories, especially if
they are quite long, is an expensive task that requires special
hardware like massively parallel computing systems. The use
of large time steps makes the trajectories approximate and the
optimization is costly. It is therefore no surprise that IVS are
considerably more popular. This brings us to the next set of
approaches for computing long time dynamics: Exploitation
of modern, and task specific hardware.

DESIGNING AND EXPLOITING SPECIAL HARDWARE

The idea of designing special purpose hardware to
conduct long time molecular dynamics simulations has
been explored for a long time.4,39–41 One focus was on
special computer boards for rapid calculation of non-bonded
interactions. The boards or the machine exploit the observation
that the functional form of empirical force fields in molecular
dynamic simulations has remained essentially the same for a
long time. It is a sum of covalent interactions and non-covalent
terms

V(R) =

i

kbi(bi − bi0)2 +

i

kθi(θi − θi0)2

+

i

ai cos (liφi + δi) +

i

kIi(Φi − Φi0)2

+

i> j

κ
qiqj

rij
+


i> j

*
,

Aij

r12
ij

−
Bij

r6
ij

+
-
, (3)

where the b, θ, φ,Φ are the bond lengths, bond angles, torsions,
and improper torsions, respectively. Subscript “0” means an
ideal equilibrium value of that variable. The periodicity of a
torsion n is denoted by ln. The coefficients (ki, ai, δi, κi, Ai,
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and Bi) are constants of the force fields, and qi are the atomic
charges.

The computational cost of the forces is dominated by
the last two summations of the non-bonded interactions. The
cost of electrostatic and van der Waals interactions scales
in the worst-case scenario as L2 where L is the number of
atoms. Usually the long range interactions are either truncated
or summed up in Fourier space (particle meshed Ewald42)
which improves the scaling with the number of particles to
L or L log(L). Even with the improved scaling the non-
bonded interaction term is the most expensive component
of the whole calculation. Special computer hardware was
designed39,40 to reduce the time of computing the non-bonded
interactions and hence speeding up the integration in Equation
(1). The basic concept is straightforward. Given the current
coordinate set xi, the summations in Equation (3) can be
divided between different cores or threads speeding up the
computations of the forces, ideally by the number of threads.
The list of the covalent interactions (bonds, angles, torsions,
and improper torsions) is fixed during the simulations and is
precisely divided between the processors at the beginning of
the run. The parallelization of the non-bonded interactions
is more challenging since the list of interactions is dynamic.
Interacting pairs may be added or subtracted as the particles
are getting closer or farther away. Updates of the list of
non-bonded interactions are computed periodically and stored
in arrays that can be accessed rapidly.43

Until the last decade special purpose hardware did not
make significant impact on the field. There are multiple
reasons for the limited influence. First, progress of widely
available commercial Central Processing Units (CPUs) was
exceptionally fast. In the past, the time from the design of
the special hardware to production was too long to compete
effectively with general-purpose machines. Special hardware
appeared late in the market and as a result was not sufficiently
attractive to potential buyers. Companies that produced this
hardware did not show profit in the limited time allowed
by investors and the companies failed. If the performance
difference between a general-purpose machine and specialized
hardware is not very large then a general purpose machine is
the natural choice to buy and use.

A second reason that reduced the impact of early
special hardware is the focus on the non-bonded interactions.
Non-bonded interactions typically require 90% of the total
computation time. If the remaining ten percent are left “as
is” it is impossible to speed up the original code by more
than a factor of 10. The cloak time (time that passes in the
real world between initiation to termination of the program)
can be expressed as t = a/p + b also called Amdahl’s law.44

The parameter a is the time component that is amenable for
parallelization and b is the time required for running the part
of the code that is executed serially. It is necessary to create
a balanced optimization scheme of all the components of the
MD algorithm (i.e., make b as close as possible to zero).
Small b makes it possible obtain speedup factors that are
linear in the number of processors and are in the thousands in
many molecular biophysics applications on readily accessible
parallel computers. The significant change in the impact of
special purpose machines occurs when Anton was introduced.4

With significant investment and comprehensive approach for
parallelization, the Anton project provided a special purpose
machine that is about 1000 times faster than alternatives. This
intriguing development opened the way for a direct study of
new molecular processes and at present is leading the field
in computational speed of individual trajectories. However,
given the exceptionally long time scales of many molecular
processes in biophysics, the necessity of averaging over initial
conditions and the cost of a single machine Anton is not a
complete answer for many intriguing questions in molecular
biophysics.

An intermediate approach runs molecular dynamics appli-
cations directly on general purpose parallel computers and in-
cludes programs like NAMD,45 GROMACS,46 and Desmond47

that scales well with the number of processors (roughly linear
for typical systems) and allow for significant speed up. Several
tens or hundreds of cores can be used effectively in super-
computer centers. Parallelization at national centers makes it
possible to conduct research by a broad community of inves-
tigators (and on a diverse set of problems). Parallelization
also makes it possible to study exceptionally large systems by
dividing the system between nodes.

Another important avenue of supercomputing is growing;
the use of Graphic Processing Units (GPUs)48–52 in molecular
dynamics simulations. The GPUs enable significant speed
up of simulations using a similar concept to the original
special purpose boards (massive parallelism that primarily
reduces the calculation time of the non-bonded interactions).
Considerable re-thinking of the original code is required,
since the GPU bottle-neck tends to be memory-access and not
numerical operations. In contrast to special purpose boards,
the design of the GPU for the game industry made the cost
to the end customer significantly cheaper. It is possible to
build up today the equivalent of tens of parallel cores using
GPUs on a desktop machine at modest cost. Though the
investment in software writing and optimization for the GPU
is significant the payoff is considerable as well and a number
of MD software packages take advantage of the GPU.48,49,51–53

A concern is of stability of computing models and retention of
software. No one would like to write a significant code that has
to be re-written in another year. The GPU is still an evolving
architecture. Nevertheless, stable programming models for
GPU architecture are emerging which encourages investments
in more general development of portable software.54 Given
the price performance ratio and the wide market of GPU
processors (beyond the use in MD simulation) it is likely
that the GPU architecture is here to stay. It is also likely to
be merged with other architectures to provide more versatile
systems.

Another concern is the accuracy and consistency of the
numerical integration across different computing platforms.
While the standard are either single or double precision
arithmetic, a single precision accuracy (32 bits) is usually
insufficient to ensure energy conservation of mechanical
systems in extended simulations. Earlier GPU models support
efficient calculations of 32 bits arithmetic. This restriction
was removed, however, in more recent products. Care must
be used to ensure correct mechanical behavior of trajectories
produced if single precision mode is exploited (on CPU
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or GPU). Frequently, compromises are sought between
numerical efficiency and accuracy considered sufficient for the
task at hand. For sampling configurations from the appropriate
ensemble (e.g., the canonical ensemble) it is necessary to know
the distribution from which the structures were sampled.
Without energy conservation and/or accurate integration of
the equations of motion it is not known what is this sampled
distribution. Of particular concern are simulations of long
time dynamics in which “energy drift” significantly affect the
system motions. Strategies were developed to ensure accurate
integration at the microsecond time scale which is probably
the upper bound of straightforward MD simulations that
are run routinely on widely accessible computing platforms.
Integration using fixed point arithmetic is used to ensure exact
reproducibility of the simulations.4

PHYSICAL MODELING

Processes with a clear transition domain

Here, we consider theoretical approaches to investigate
and predict long time scale processes and kinetic. The first
question is what is the physical mechanism that makes
molecular processes so slow compared to the fastest motion
of molecules (femtoseconds). The common answer to that
question is activation. Many molecular processes require
passage over a large (free) energy barrier for completion.
This transition is rare and the system spends a long time in
a metastable state before climbing up the barrier and rapidly
transitioning to another metastable configuration (Fig. 1).

FIG. 1. Sketches of three energy landscapes (U) along a coordinate (X). The
dynamics on these three potentials is of long time scales which are difficult to
access with straightforward Molecular Dynamics simulations. A—Potential
energy with large and smooth energy barrier separating two metastable states,
which is significantly larger than the thermal energy. Crossing this barrier is
a rare event. However, Transition State Theory (TST)55,56 and the calcula-
tions of transmission coefficient57 are likely to provide adequate estimate of
the rate. B—A rough energy landscape with a dominant barrier separating
metastable states. Transitions between the metastable states are rare. However
transient trajectories are expected to be short. The precise interface of the tran-
sition state may be hard to identify, and the transmission coefficient is slow to
converge due to the local roughness and small barrier distribution. Methods
like transition path sampling (TPS)58 that probe short transient trajectories
between reactants and products are likely to provide adequate estimate of
the rate. C—A rough energy landscape without a single dominant barrier
and/or multiple metastable states. The motion is a mixed of activated pro-
cesses and diffusion. Methods insensitive to the shape of the potential energy
are appropriate for these types of systems and include weighted ensemble
(WE),59 partial path transition interface sampling (PPTIS),60 non-equilibrium
umbrella sampling (NEUS),61 and Milestoning.62

Hence, while the “waiting” time at the metastable states is
long the actual transition time is very short.

For activated processes with a single dominating barrier
(which is significantly larger than the typical thermal energy
kT) the TST55,56 is appropriate. TST is not trajectory based and
therefore does not provide a dynamical picture. Supplementing
TST with dynamics aspects of the process can be done with
the transmission coefficient.57 Trajectories are sampled and
run starting from the neighborhood of the barrier. Some of
these trajectories will return to the reactants and some to
the products. The transmission coefficient is the fraction
of trajectories that were initiated at the transition state
and continue to the product state before returning to the
reactant. The basic form of the TST assumes that all the
trajectories that made it to the dividing surface (Transition
State) are reactive. Both the transmission coefficient and
the more recent approach of the TPS58 build on the idea
that the transitional trajectories are short and accessible to
straightforward molecular dynamics simulations.

Sampling short (but rare) transitional trajectories

Individual short trajectories that are passing over barriers
can be computed explicitly with straightforward molecular
dynamics. However, to study long time kinetics, there remains
the following two issues that were addressed by TPS:58,63 (i)
how to find them (these trajectories are rare and are difficult
to sample directly) and (ii) how to analyze the ensemble of
trajectories to obtain experimentally measured quantities such
as rate constants. The generation of TPS trajectories is done
by a Monte Carlo procedure in trajectory space. A single
reactive trajectory is provided and new reactive trajectories
are generated from it. For example, micro-canonical sampling
selects an intermediate point along the trajectory and samples a
displacement to the momentum direction, keeping the kinetics
energy (and of course the total energy) fixed. Once a new
momentum is assigned a trajectory is computed backward
and forward to termination in the metastable states of the
“reactants” and “products.”

Some of the trajectories will end up at the same basin
they started from and are non-reactive. Losing some of the
sampled points is the price we need to pay for using the more
convenient IVS approach. If these trajectories were computed
in BVS formulation then the acceptance probability of “trial”
trajectories would be one. However, keep in mind that the
calculation of each of the BVS trajectories is significantly
more expensive than IVS solutions if the same accuracy is
desired in both formulations.

Activated processes on corrugated energy landscapes

In many molecular processes, the experimental kinetic is
described by a single exponential as a function of time. In
this case, it is tempting to interpret an ensemble of reactive
trajectories using a simple two state kinetics. For example, if
N (t) is the reactant population that survived after time t then
exponential kinetics implies that N (t) = N0 exp (−kt) where
N0 is the population at time zero and k is the rate coefficient
which is time independent. Alternatively we can focus only on
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reactive trajectories. Let the number of product molecules be
B, the phenomenological rate equation for the appearance of
the product (starting from zero product concentration) takes
the form B (t) = B (t → ∞) (1 − exp (−kt)). For sufficiently
small rate constant, k (or equivalently short times) the
fraction of trajectories that makes it to state B at time t
is

B (t) /B (t → ∞) ≈
kt≪1

kt. (4)

We can determine the rate constant from a slope of the above
ratio as a function of time even if the trajectory duration is
significantly shorter than (1/k).

The above procedure, which requires only the sampling of
reactive transitional trajectories, avoids the use of a transition
state or a reaction coordinate and is still able to determine a rate
constant. This is an important advance that enables the study
of kinetics of complex molecular systems by simulations. It
is important to remember, however, the basic requirements.
The calculation is conducted assuming that only two states
are under consideration. The existence of metastable states
can make the analysis considerably more complicated. It is
also assumed that the states are well defined and separated
by a significant (free) energy barrier. The assumption of
large barrier implies that the transitional trajectories are short,
which is exploited by the TPS algorithm. What can we do if the
separation into distinct metastable states is not obvious? For
example, if the rugged energy landscape includes a number
of metastable states with comparable barriers separating them
(Fig. 1). Note that the energy landscape can be rugged and
still have only two metastable states if separation of scales of
barrier heights is present. However, the transitional trajectories
will no longer be short.

Enhancing sampling of reactive trajectories
by “celling”

In typical energy landscapes of condensed phase systems,
even with a dominant barrier, the remaining barriers can be
relatively high (Fig. 1, B) and transitions inaccessible on
the usual MD time scale. The remaining local corrugation
can significantly slow down the dynamics to the extent that
direct trajectories passing over the barrier are hard to sample.
Broad distributions of barrier heights were illustrated for
realistic systems in the past.64–66 A recent numerical study of
a two-dimensional random energy model illustrates some of
the issues mentioned above.67

An alternative technology is required to sample reactive
trajectories under these conditions. An early idea that is used
extensively in recent methods splits phase space into “cells,”
and estimates local kinetics between cells. In Fig. 2, we
illustrate the concepts of cells for the method of Milestoning.

The parameters of the local kinetics (e.g., rate coefficients,
the probability of transition between cells, the distribution of
transition times between cells) are collected to obtain global
properties of the system. We call this concept in the present
manuscript “celling.” How to choose the cells in an effective
and efficient way is an important open question that has
attracted considerable research. One possibility is to create
cells along one dimensional reaction coordinate. Choices

FIG. 2. A schematic drawing of Milestoning cells in two dimensions. The
milestones are the blue lines between the anchors (red circles). A trajectory is
a curve that alternates colors when the last milestone crossed is modified. In
the illustration, it crossed milestone α and then β.

of reaction coordinates in complex molecular system vary
from minimum energy paths,68 maximum flux pathways,69

most probable or dominant pathways,24 minimum free energy
paths,70 and iso-committors.71–74 In the context of the present
discussion (identifying optimal cells), iso-committors are
special, since they make a straightforward connection to
kinetics.74,75 The choice of the order parameter (as long it
is sensible and follows a few guidelines listed below for
different methods) is not expected to affect the accuracy of the
calculations, but it will certainly affect the efficiency.

The first implementation of the celling idea was in the WE
approach for stochastic dynamics along a one-dimensional
reaction coordinate.76 This method was revisited and enhanced
significantly more recently.59 In WE, particles in cells along
the reaction coordinate, executing stochastic dynamics, are
created and destroyed as they transition between cells, and
their statistical weights are modified. The process is repeated
until stationary distributions in all the cells are obtained. The
final distributions of particles and their weights determine
the free energy and the flux. The fluxes between the cells
determine the rate.

The same concept of “celling” along one dimensional
reaction coordinates was also used in the approaches of
Transition Interface Sampling (TIS),77 PPTIS,60 Mileston-
ing,62,78 Markovian Milestoning,32 Non-Equilibrium Umbrella
Sampling,79 Forward Flux Sampling (FFS),80 and others.81,82

The sheer number of these approaches underlines the
importance of the topic for current computational sciences
but can also be confusing for the user that wishes to pick up
the most appropriate technology for his/her applications.

“Celling” for diffusive and activated processes

Below an attempt is made to differentiate and classify
the different technologies that use the concept of “celling”
along a one-dimensional reaction coordinate. Extensions to
more than a single reaction coordinate are possible and
are discussed later. The first classification is to methods
that are aimed at activated processes (called class A) and
to methods with a focus on diffusive dynamics, called
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class B. In class A, the reactive trajectories tend to be
short but they are rare. In class B, the trajectories are
not necessarily rare but can be long individually. Class A
methods include TIS,77 FFS,80 and hyperdynamics.83 Class
B includes PPTIS,60 Milestoning,84 Markovian Milestoning,32

Non-Equilibrium Umbrella Sampling,79 trajectory tilting,81

and exact Milestoning.62 All the class A techniques compute
complete trajectories from reactants to products. A Monte
Carlo algorithm in trajectory space, enhancing and building
on TPS, enables the calculations of the weights of trajectories
and makes it possible to compute kinetic and equilibrium.85

The use of complete trajectories is in principle exact but it
can also be a weakness, since individual trajectories cannot
be longer than the time range accessible to ordinary MD
(microseconds at most, considering the need to produce an
ensemble of trajectories). Intermediate metastable states that
trap the system for a substantial length of time may prevent
it from reaching the end product at the MD time scale and/or
complicate the analysis based on the argument in Eq. (4).

If class A technologies are used in type B systems two
things may happen: (i) The trajectories will not reach the
product and/or the reactant, since they are designed to be
short. As such they will fail to connect the two metastable
states and no rate could be estimated. The partially good news
is that the failure will be easily detected by the user. (ii) Some
short time trajectories connecting the reactant and product
will be found and sampled. Since typical trajectories in these
systems are longer than those sampled, the statistics will
be biased towards short, and atypical trajectories, potentially
leading to incorrect results. That is, even though class A
approach is in principle exact, it is hard to detect and avoid
the second problem mentioned above.

In PPTIS and Milestoning (class B), the emphasis is on
diffusive behavior. Instead of computing complete trajectories,
only trajectory fragments between interfaces (milestones)
are computed (Fig. 2). These trajectory fragments are used
to calculate transition probabilities and typical times of
transitions between the cells or cell interfaces which we
call milestones.78 The overall kinetics and thermodynamics
are computed with these intermediate entities.60,86

The use of trajectory fragments in calculations of kinetics
is more complex to manage than the use of complete
trajectories from reactants to products. It is necessary to
design a statistical model that will make it possible to
“patch” the information extracted from the fragments to
obtain a complete transition. These statistical models are
at the core of the methods of WE,59,76 Milestoning,84 PPTIS,60

non-equilibrium umbrella sampling,79 and trajectory tilting.81

They can be approximate or exact. The approximate version is
highly efficient and the exact formulation is significantly more
expensive but still profoundly cheaper than straightforward
MD. Below we describe in details the framework of trajectory
fragments in the language of Milestoning. Related concepts
are used in other approaches.

The trajectory fragments in Milestoning are conducted
between milestones that are boundaries separating phase
space cells (Fig. 3). In one realization we consider stationary
processes close to equilibrium. To retain a stationary state
we have a source that generates new trajectories (reactant

FIG. 3. A schematic drawing describing the use of trajectory fragments
(thin black lines) in Milestoning. Trajectories are initiated at a milestone (a
boundary of a cell, red thick lines) and are integrated until they hit for the first
time another milestone (green think line). From the trajectories the probability
for a direct transition between two milestones (red and green) is estimated and
so is the average time of the transition.

state) and a sink that absorbs them (product state). For every
trajectory absorbed by the sink, we have a new trajectory
initiated at the source keeping the total number of trajectories
fixed. The system is stationary since at the long time limit the
number of trajectories per unit time that crosses any milestone
in the system is fixed.

Consider the transition probability density Kαβ

�
Xα,Xβ

�

or the kernel. Given the end points, Xα and Xβ, it is the
probability density of a trajectory fragment that connects
the two. In other words, given that a trajectory fragment
last crosses milestone α at a phase space point Xα, the
kernel is the probability that the trajectory fragment will
cross next, before any other milestone, milestone β at phase
space point Xβ. The end points are set closed in space,
or at least close from kinetic perspective. This means that
the kernel, or elements of the kernel, can be sampled and
estimated directly by short molecular dynamic trajectories
between the milestones. To obtain adequate statistics a
large number of short trajectories are needed. Because
the trajectories are typically of picosecond lengths, they
can be computed using massive parallelism. Furthermore,
other considerations87 further illustrate that this approach is
profoundly more efficient than straightforward MD.

A probability density of interest is the number of
trajectories that crosses milestone α at phase space point
Xα in unit time. This function is the absolute stationary
flux qα (Xα). This probability density can be normalized
since the total number of trajectories in the system in
unit time remains fixed under stationary conditions. In
principle, running long time trajectories and enumerating
the instances in which they cross milestones can estimate
this function. This procedure, however, is expensive and is
equivalent to an exact calculation of the dynamics. This
is where the short trajectory information is very useful.
The stationary flux is the solution of the vector-matrix
equation qβ

�
Xβ

�
=


α


Mα

qα (Xα) Kαβ

�
Xα,Xβ

�
dXα where the

integration over Mα is over an interface (milestone) between
two cells. This equation is written in a more compact
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form as qt = qtK and can be solved exactly by iterations:
qt(n+1) = qt(n)K where n is the iteration number62 or as an
eigenvalue problem where q is the eigenvector of K with
eigenvalue of one. The same procedure of iteratively sample
short trajectories between cells is used in non-equilibrium
umbrella sampling79 and in trajectory tilting.81 In the first
version of Milestoning, we are using only one iteration to
solve for the flux vector.84 We estimate the zero order iteration
of the flux from the Boltzmann distribution assuming that the
system is at equilibrium.86

The flux vector contains information needed to compute
the thermodynamics and kinetics of the system. From the short
trajectories, we extract another vector t. An element of t say
tα is the average time that it takes a trajectory after crossing
milestone α to cross any other milestone. We also call it the
lifetime of a milestone and it can be estimated from the same
short trajectories that sample elements of the kernel. With t
and q, we can compute the probability that the last milestone
that was crossed is α − pα =


Mα

qα (Xα) tα (Xα) dXα. The free

energy associated with milestone α is Fα = −kBT log (pα).
Finally, the Mean First Passage Time, MFPT, to an
absorbing milestone f in stationary conditions is ⟨τ⟩
=


α


Mα

qα (Xα) tα (Xα) dXα/

M f

qf

�
X f

�
dX f .

The approximation of estimating the flux from an
equilibrium distribution at the milestone and using a single
iteration to estimate the weight of the milestone62 is cheaper
than the exact calculation by a factor of about one hundred.
It is therefore worth exploring and was examined a number
of times in the past, conceptually and empirically. We expect
the approximate calculation to be accurate if the system has
enough time to relax to a local equilibrium while it transitions
from one milestone to the next. In that case the sampling from
the canonical distribution for initial conditions at the milestone
will be appropriate. A way of making the local transition time
longer is by increasing the spatial separation between the
milestones. In Fig. 4 (a reproduction from Ref. 86), the MFPT
as a function of the number of milestones is plotted.

Interestingly the use of three or nineteen milestones
did not impact significantly the value of the MFPT. This

FIG. 4. The Mean First Passage Time (MFPT) as a function of the number of
milestones M . The calculations are for a conformational transition in solvated
alanine dipeptide from an alpha helix to a beta sheet configuration; see Ref. 86
for more details.

observation suggests that the MFPT is insensitive to the
distance between the milestones as long as the distance is large
enough to allow for local equilibration during the time the
system travels between the two milestones. This insensitivity
to the number of milestones is a useful consistency check of the
approximate Milestoning calculations. The more Milestoning
we introduce, the smaller is the separation between the
milestones and the calculation is more efficient. However,
the assumption of local equilibration may not be satisfied if
approximate Milestoning is used.

Other approaches to verify and enhance the memory loss
of trajectories were proposed.87 One is the retention of partial
history of previous interfaces or milestones that were crossed
by the trajectory fragment.88 Without diminishing from the
seriousness of the physical assumption of de-correlation,
practice and adjustments mentioned above seem to keep the
errors at bay. For practical purposes, the above computational
methods can be made accurate by proper choice of simulation
conditions (distances between Milestones).

The remarkable thing about class B methods is the huge
computational gain that they provide for a broad range of
processes. A simple illustration of required computational re-
sources follows. The trajectory fragments are of a few to hun-
dreds of picoseconds long. The total number of trajectory frag-
ments rarely exceeds one hundred thousand. The accumulated
computing time is therefore of order of less than 10 µs. The
predicted and actual physical time scales in the system studied
routinely exceed milliseconds89 and for membrane transport
it was found to be hours.90 Hence the speed up compared to
straightforward MD is at least thousands.

It is useful to discuss the differences between class A
and B methods for diffusive and activated processes. We
already mentioned that methods for activated processes do
not handle efficiently diffusive dynamics since individual
diffusive trajectories can be long. Care must also be exercised
when using the methods designed for diffusive dynamics in
the investigation of activated processes. The requirement of
memory loss and local equilibration time poses a challenge
for the short time trajectories typical of passages over
large barriers. The problem is less significant for trajectory
fragments that climb up the barrier, since the probability of
going up is low and many (uncorrelated) climbing trials are
expected. Memory loss and local equilibration is less likely for
trajectories that are (rapidly) moving downhill from the top of
the barrier. The solution in this case is to keep the milestones
that point downhill as far as possible from each other. Since the
trajectories are rapid, the calculation is not significantly more
expensive and memory loss can be achieved with sufficient
separation. This is an example for directional Milestoning,
in which the separation between milestones depends on the
direction in which they are crossed.33

It is also useful to discuss the technologies within a class,
since some of the differences are significant and should impact
selection. The prime attraction of the forward flux sampling
(of the class A category) is that only forward trajectories are
stored and considered. Trajectories are initiated at the reactants
and are “pushed” towards the product along an appropriate
reaction coordinate. This selection simplifies considerably the
book keeping of trajectory events compared to approaches that
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count both forward and backward trajectories (TIS). It also
makes it possible to investigate non-equilibrium dynamics,91

since the trajectories are initiated from a particular state at
fixed time. This is to be contrasted with trajectory sampling in
TPS and TIS calculations from a known statistical ensemble
in which trajectories are launched anywhere “in between” and
integrated forward and backward in time. The disadvantages of
forward-only integration are somewhat less stable calculations
due to “initiation” from the reactant position only. The FFS
is probably restricted to one dimensional reaction coordinate
since the concept of “forward” is harder to define in more than
one-dimensional reaction space.

The methods of PPTIS and Milestoning focus on running
short trajectories between the interfaces/milestones to estimate
local transition times, rates, and transition probability. For
example, in Milestoning, the transition probability between
milestones α and β is estimated using trajectories as
Kαβ (t) � nαβ (t) /nα, where nα is the number of trajectories
initiated at interface α and nαβ (t) is the number of trajectories
that were initiated at α and made to β exactly at time t. Both
technologies were proposed for one-dimensional systems.
Milestoning was extended to reaction space of several coarse
variables,33 making it possible to address problems with
multiple coupled and slow degrees of freedom. An alternative
approach to deal with coarse space with more than one degree
of freedom is the use of several pathways (a network) and
stochastic sampling to switch between pathways. Extension
to the TIS approach makes this type of calculation possible.92

Celling has made it possible to simulate in atomic details many
complex and interesting systems. For example, conformational
transitions in proteins,70,93 and folding.94,95

Finally, the approach of Markov State Model (MSM)96–98

made it possible to partition long time trajectories between
cells and therefore to suggest another view of “celling”
which can be analyzed to yield significantly long time
scales. The MSM was introduced as a method to analyze
long time trajectories and to rigorously build, based on this
analysis, a coarse grained description of the system including
a relatively small number of metastable states. Shalloway
formulated an elegant way to dissect conformation space
to several macrostates and estimate transition rates between
them.99,100 Schuette and co-workers101 put the foundation of
MSM and showed how a transition matrix can be constructed
from detailed trajectories, using cells in the space of coarse
variables. The time may be discrete or continuous and MSM
is expected to accurately describe the long time behavior. In
the simplest terms, the dynamics is being mapped to a master
equation of transitions between cells dPα

dt =

β

kαβPβ where

α and β denote cells that are assumed to be in local thermal
equilibrium. Pα (t) is the probability of being at cell α at time t,
and kαβ is a matrix of rate coefficients. While the above model
is approximate for general dynamics (the generalized master
equation is exact102), it is simple and attractive. Therefore,
a great deal of work was published on the design of and
estimates of the rate coefficients.96,97,101,103–106 The prime goal
is to reproduce the long time behavior. Efficient and accurate
estimates of the rate coefficients will continue to be a topic of
intense debate.

It should be noted that WE, non-equilibrium umbrella
sampling, and Milestoning are viable alternatives to the MSM
model by providing kinetic description at broader scales and
being exact for their corresponding dynamics. This is achieved
at the additional cost of more involved and complex modeling.
In Milestoning, for example, two approaches are possible: (i)
exact calculations retaining the phase space points at the
crossing milestones62 or (ii) an approximate calculation that
is going beyond Markovian approximation in coarse space
and model the dynamics following the generalized master
equation.78,107

SUMMARY

Atomically detailed molecular simulations continue to
attract the interest and imagination of many scientists.
They offer a tool that explores molecular processes at
great detail and makes it possible to analyze and focus
at the smallest component. A drawback of simulations
is their approximate nature. The force field is not exact,
and the sampling for kinetics or thermodynamics is not
comprehensive. Nevertheless, significant progress has been
made to make these simulations quantitative, predictive, and
subject to rigorous tests by a wide range of experiments.
The present perspective focuses on extending the scope of
simulations of kinetics.

Kinetics is a critical aspect of molecular processes
that has so far received less attention compared to the
calculations of thermodynamic equilibrium data. In biology,
many processes are determined by kinetics and can be far
from global equilibrium. Emphasizing only thermodynamics
can therefore be misleading. Study of kinetics (as opposed
to equilibrium) suggests new challenges. The calculation of
a single reactive trajectory can be a demanding task if the
process under consideration is slow. Obviously the calculation
of an ensemble of such trajectories is even more challenging.
In this perspective, we consider different approaches to address
these problems. The most straightforward approaches focus
on speeding up the computation of time steps either by special
hardware4,51,52 or numerical analysis aiming to increase
the fundamental time step13 and make the straightforward
calculations of trajectories more rapid. Other approaches focus
on the physical characteristics of the problem, exploiting the
short length in time of transitional and rare trajectories.58

Other physical characteristics that are exploited in long time
algorithms are memory loss in which de-correlation simplifies
the mechanical equations of motions and makes it possible
to use short trajectories and local kinetic operators77,78,108 to
extrapolate to much longer times.

In the future, we expect more interactions between
the three directions. For example, the physically motivated
approaches are likely to be subject to more rigorous analysis
and mathematical verifications of the type that led to methods
like SHAKE. Special-purpose machines may be built to run
ensemble of trajectories that are computed and analyzed on
the fly to decide where and when to launch new trajectory
fragments. Trajectory fragment approaches are particularly
suitable for massively parallel computing systems. Hence
approaches for quantification of kinetic calculations are likely
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to be automated, not only at the level of software (as is partially
done with geometric clustering in Markov State Models109)
and more extensively in the Copernicus package110 but also at
the level of hardware.

Finally, we comment on a new direction that is not
fully explored yet with enhanced sampling techniques. It is
the time dependent approach of a system to a stationary
non-equilibrium state. Coupling of time dependent relaxation
process to stationary phenomena is relevant to many cellular
processes. An approach to the problem has been formulated
by Ciccotti,111 and applications using enhanced sampling
techniques for kinetics that were discussed in this perspective
are anticipated.
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