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Purpose: To allow for a purely image-based motion estimation and compensation in weight-bearing
cone-beam computed tomography of the knee joint.
Methods: Weight-bearing imaging of the knee joint in a standing position poses additional require-
ments for the image reconstruction algorithm. In contrast to supine scans, patient motion needs to
be estimated and compensated. The authors propose a method that is based on 2D/3D registration of
left and right femur and tibia segmented from a prior, motion-free reconstruction acquired in supine
position. Each segmented bone is first roughly aligned to the motion-corrupted reconstruction of
a scan in standing or squatting position. Subsequently, a rigid 2D/3D registration is performed for
each bone to each of K projection images, estimating 6×4×K motion parameters. The motion of
individual bones is combined into global motion fields using thin-plate-spline extrapolation. These
can be incorporated into a motion-compensated reconstruction in the backprojection step. The authors
performed visual and quantitative comparisons between a state-of-the-art marker-based (MB) method
and two variants of the proposed method using gradient correlation (GC) and normalized gradient
information (NGI) as similarity measure for the 2D/3D registration.
Results: The authors evaluated their method on four acquisitions under different squatting positions
of the same patient. All methods showed substantial improvement in image quality compared to the
uncorrected reconstructions. Compared to NGI and MB, the GC method showed increased streaking
artifacts due to misregistrations in lateral projection images. NGI and MB showed comparable image
quality at the bone regions. Because the markers are attached to the skin, the MB method performed
better at the surface of the legs where the authors observed slight streaking of the NGI and GC
methods. For a quantitative evaluation, the authors computed the universal quality index (UQI) for all
bone regions with respect to the motion-free reconstruction. The authors quantitative evaluation over
regions around the bones yielded a mean UQI of 18.4 for no correction, 53.3 and 56.1 for the proposed
method using GC and NGI, respectively, and 53.7 for the MB reference approach. In contrast to the
authors registration-based corrections, the MB reference method caused slight nonrigid deformations
at bone outlines when compared to a motion-free reference scan.
Conclusions: The authors showed that their method based on the NGI similarity measure yields
reconstruction quality close to the MB reference method. In contrast to the MB method, the proposed
method does not require any preparation prior to the examination which will improve the clinical
workflow and patient comfort. Further, the authors found that the MB method causes small, nonrigid
deformations at the bone outline which indicates that markers may not accurately reflect the internal
motion close to the knee joint. Therefore, the authors believe that the proposed method is a promising
alternative to MB motion management. C 2016 American Association of Physicists in Medicine.
[http://dx.doi.org/10.1118/1.4941012]
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1. INTRODUCTION

Recently we proposed a method that allows for weight-bearing
imaging of the knee joint using a C-arm cone-beam CT
(CBCT) that is usually operated in the interventional suite.1,2

The CBCT is mounted on a robotic arm and acquires volu-
metric images with high-spatial resolution and a relatively
large field-of-view (FOV), using a horizontal trajectory around
a standing patient.3 Such weight-bearing scans pose a chal-
lenging reconstruction problem, as the patients’ unsupported
standing or squatting position induces involuntary motion of
the knee joint. Initially, we used externally attached metallic
markers that can be tracked in the projection images to estimate
the motion.1,4 The markers yielded accurate reconstruction
results and were able to remove most of the motion artifacts.
However, in clinical routine, the attachment of the markers will
be bothersome as they need to be placed carefully to avoid
overlaps in the projection images. Also, the internal motion
of the joint might not be accurately reflected as the markers
are attached to the skin. Finally, the markers cause metallic
artifacts in the reconstruction which degrade image quality.5

Therefore, a motion correction method which performs simi-
larly well as the marker-based (MB) method but works directly
on the acquired projection images is desirable. This could
substantially reduce the preparation time for weight-bearing
CT and increase patient comfort.

One method to estimate motion from projection images is
2D/2D registration. Here, the acquired projections are usually
registered in 2D to digitally rendered radiographs (DRRs).
The DRR can be computed from an initial gated reconstruc-
tion6,7 or alternatively from previously acquired images. The
estimated 2D deformations can be directly incorporated into a
motion-compensated reconstruction.

Alternatively, the motion can be estimated directly in the
volume domain using 2D/3D registration with a similarity
measure that is defined over the projection images. Prior work
for the knee joint was done by Tsai et al. where they intro-
duced a new similarity measure called weighted edge match-
ing score (WEMS).8 WEMS matches edges extracted by a
Canny edge detector incorporating increased weights for long
edges. WEMS has also been used by Lin et al. to register a prior
3D MRI to a real-time 2D MRI slice during exercise using a
custom weight-bearing apparatus.9 A slightly different method
for 2D/3D registration of bones in the knee and shoulder joints
was presented by Zhu et al.10,11 They first computed the outline
of the forward projected vertices of a 3D mesh originating from
a prior segmentation. The outline is then registered to the 2D
outline of the bone which was segmented in the 2D projection
image.

In skeletal 2D/3D registration, Wang et al. proposed a
differential approach for registration of a prior thorax CT
to fluoroscopic images.12 Their method is also based on 2D
contour segmentation, where they report increased accuracy in
estimating longitudinal off-plane motion. Bifulco et al. used
the normalized cross correlation (NCC) to register prior 3D
CT volumes of vertebrae to 2D fluoroscopic images.13,14 Otake
et al. used normalized gradient information (NGI) for registra-
tion of vertebra to a single projection image.15 NGI compares

the 2D gradient directions and weighs them with the minimum
gradient magnitude. Yet, in more recent work,16 they decided
to use the well known gradient correlation (GC) measure as
described by Penney et al.17 Only very little work has been
done in 2D/3D registration using a full set (>100) of projection
images from a CBCT scan. Recently, Ouadah et al.18 presented
a method for image-based geometric calibration of mobile C-
arm systems using the NGI similarity measure and a statistical
optimization. Overall, 9 parameters were estimated for each of
the 360 projection images yielding a total of 3240 parameters.

In weight-bearing knee-joint imaging, we neither have ac-
cess to surrogate signals such as ECG in cardiac imaging nor
can we rely on motion periodicity. Thus, many 2D/2D and
2D/3D registration methods known in the literature are not
applicable. Furthermore, methods based on implicit segmen-
tations in the projection domain, such as WEMS or the work
by Zhu et al.,10,11 work only on single- or pairs of projection
images which can usually be positioned such that there is only
little overlap with background structures. We scan both knees
using a horizontal trajectory, i.e., overlap of tibia, femur, fibula,
patella, and the skin boundary is inevitable which make these
methods hardly applicable.

In a first attempt of image-based motion estimation, we
used a simple 2D/2D registration for marker-free weight-
bearing CBCT projection images of the knee joint.19 The DRR
was calculated by maximum intensity projections (MIPs) of an
initial, motion-corrupted reconstruction. In the context of this
work, we estimated 2D translations for each pair of projection
images using a similarity measure based on mutual informa-
tion (MI) and a gradient-descent optimizer. The approach did
not require any additional or prior data and improved the im-
age quality compared to a reconstruction without correction.
However, we still observed large discrepancies from the image
quality achieved with the MB approach.

To further improve our marker-free motion compensation,
we now make use of an already existent, motion-free CBCT
reconstruction of the knee joints acquired in supine position.
This enables rigid 2D/3D registration of the segmented left
and right tibia and femur from the motion-free scan. All four
segmentations are rigidly registered to each of the K motion-
corrupted projection images, for example, for K = 248 yield-
ing a total of 4× 6× 248 = 5952 parameters. The estimated
motion between the acquired projection images and the static
3D reference is then incorporated into a motion-compensated
FDK-type reconstruction to obtain a corrected 3D volume.
A first version of the proposed method has already shown
promising results when evaluated on a numerically simulated
dataset as shown in Berger et al.20

2. METHODS AND MATERIALS
2.A. Reference method using metallic fiducial
markers

To thoroughly evaluate the proposed method, we compare
it with the motion-compensated reconstruction that is based
on externally attached fiducial markers. In the following, we
briefly summarize the MB motion estimation method. For
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details, we refer to the work of Müller et al.,4 which combines
the MB motion estimation presented by Choi et al.1 with the
automatic marker detection and removal presented by Berger
et al.5 The optimization problem for K projection images and
M markers is given by

arg min
α

f (α)= arg min
α

1
2

K
k=1

M
i=1

∥h(n)−uik∥2
2

n=
(
n1 n2 n3

)T
=Pk ·Tk(α) ·

(
xi 1

)T
, (1)

where α ∈R6K is a vector containing three rotation and trans-
lation parameters per projection, Pk ∈ R3×4 is the kth projec-
tion matrix as given by the system’s calibration, Tk(α) ∈R4×4

applies the rigid motion for projection k given the parameters
in α, xi ∈ R3 is the 3D reference position of the ith marker
and uik the ith marker’s measured 2D position in projection
k. Further, n is the homogeneous representation of the motion-
compensated and projected 3D reference position xi. The func-
tion h : R3 → R2 describes the mapping of n to 2D pixel
coordinates. It is defined by h(n)= �n1/n3 n2/n3

�T. Thus, by
adjusting the motion parameters, we minimize the distance be-
tween forward projected 3D reference positions and measured
2D marker positions over all detected markers and all projec-
tions. Marker detection in the projection-domain is done by
applying the fast-radial-symmetry-transform (FRST)21 with
subsequent thresholding and center-point detection. The 3D
reference positions for each marker are obtained automati-
cally. First, we apply a Gaussian filter to the 2D FRST result
yielding bloblike structures at marker locations. These images
are then backprojected to 3D, resulting in high-intensity 3D
blobs where the backprojected 2D blobs overlap. These blobs
are then segmented using a maximum entropy thresholding.
Finally, the 3D reference positions are extracted from the
blobs’ centroids using a 3D connected-components analysis.
The assignment of 2D detections to 3D reference positions is
given by the smallest Euclidean distance of forward projected
3D reference and 2D detection. For more details on 2D marker
detection and 3D reference point extraction, we refer to our
previous work.5

As a new feature, we introduce an analytic gradient compu-
tation of the cost-function which reduced the algorithm’s
run-time drastically compared to a forward-differences type
gradient estimation used in Müller et al.4 and Choi et al.1 Using
the chain rule for multivariate functions the partial derivatives
of Eq. (1) with respect to the individual parameters is given by

∂ f (α)
∂α j

=

k


i

(h(n)−uik)T · Jh(n) ·Pk
∂Tk

∂α j

*
,

xi

1
+
-
, (2)

where Jh(n) denotes the Jacobian of function h,

Jh(n)=
*...
,

1
n3

0 − n1

n3
2

0
1
n3
− n2

n3
2

+///
-

. (3)

For outlier detection and removal, we applied an iterative
removal of worst contributions. After optimization, we find
those uik that belong to the 0.5% highest 2D distances with

respect to their forward-projected reference point. They were
then removed from the measurements using the following
rules: (1) only remove one detection per projection and (2) only
remove if at least Mmin detections are left for this projection.
This process is repeated iteratively for J times.

2.B. Motion compensation using 2D/3D registration

Our method is based on 2D/3D registration of segmen-
tations from a prior, motion-free reconstruction acquired in
supine position. To limit complexity of the optimization prob-
lem, we focus on four bones that represent both knee joints,
i.e., left and right femur and tibia. An overview of the proposed
method is given in Fig. 1. As input we have a stack of projection
images acquired under weight-bearing conditions along with
the segmented femur and tibia volumes, both emphasized by
a dashed box. First we perform a motion-corrupted recon-
struction of the acquired projections. Then, a 3D/3D registra-
tion of each segmented bone volume to the motion-corrupted
reconstruction to align the standing and supine coordinate
system and to account for different positions of the bones
among one another. Note, that this global 3D/3D alignment
does not include any estimation for intrascan patient motion.
Subsequently, the initial 3D/3D registration results are used as
initialization for the 2D/3D registration. 2D/3D registration is
performed between each bone and every acquired projection
image using a rigid motion model. The result of the 2D/3D
registration is the individual bone motion over the acquisition
time. To perform a motion-compensated backprojection, we
also need to extrapolate the motion that occurs in between
bones, e.g., at muscle or skin tissue. We use a thin-plate-
spline (TPS) extrapolation method as explained in Müller
et al.22

The accuracy of the 2D/3D registration is the important step
for a successful motion compensation. A crucial component
is the similarity measure used to compare DRR images with
the acquired projections. In this work, we assess the influence

F. 1. Overview of the proposed motion compensation approach. The inputs
are the femur and tibia volumes and the 2D projection images, both marked
by a dashed frame.
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of two different similarity measures on the reconstructed im-
age quality. First, we apply the GC that computes the NCC
between vertical and horizontal gradient images. Further, we
use the NGI measure that is also gradient-based but has been
reported to be more stable against outlier intensities and thus
more performant in presence of overlapping structures.15 To
avoid convolution-based gradient computation for every DRR
we create gradient DRRs directly by ray-tracing through the
precomputed 3D volume gradients.23,24

2.B.1. GC

GC is a state-of-the-art similarity measure and has been
widely used to register bones to their projection images. For
the initial formulation of GC, we refer to Penney et al.17 Let
∇pk(u;γ) : R2→ R2 be the DRR’s gradient and u ∈ R2 a 2D
pixel location. Further, ∇bk(u) : R2 → R2 is the gradient of
the kth acquired projection image computed using the Sobel
operator. In contrast to the MB approach, the parameter vector
is now γ ∈ R6KL, containing six rigid parameters for each of
the K projections and each of the L segmented bone volumes.
The GC can be formulated as

GC(p,b;γ)= 1
2

K
k=1


u∈Ωk

�
∇pk(u;γ)T W−1 ∇bk(u)�. (4)

In our formulation, the normalization, i.e., a division by the
standard deviations, is incorporated into the weighting matrix
W ∈ R2×2 given in Eq. (5), where diag(·) represents a matrix
with the vector argument being on the diagonal.

W = diag
*.....
,

*.....
,


u

(
∂pk(u; γ)

∂u1

)2

×


u

(
∂bk(u)
∂u1

)2


u

(
∂pk(u; γ)

∂u2

)2

×


u

(
∂bk(u)
∂u2

)2

+/////
-

+/////
-

1
2

. (5)

The set Ωk defines the image region used for the computa-
tion of the GC measure, which may vary for each projection
image as indicated by the subscript k. The normalization W
is used to adjust intensity differences and depends on the
regionΩk. During our experiments, we setΩk such that it con-
tains every nonzero gradient value of the DRR image, i.e., Ωk

= {u | ∥∇pk(u;γ)∥2 > 0}.

2.B.2. NGI

The idea behind NGI is to compare the similarity of gradient
directions at each pixel position. This is done by computing
the cosine of the angle between the gradient directions, fol-
lowed by a weighting with the pixel’s gradient magnitude. To
improve robustness against outliers, at each pixel, the mini-
mum gradient magnitude of DRR and acquired image is used
as a weighting factor for that pixel location. This scheme was
described to be more robust against intensity outliers and thus
overlapping structures.15 In contrast to GC, the NGI does not
perform an intensity normalization and therefore intensities of
the DRR image need to be adjusted heuristically. For more

information, we refer to Otake et al.15 The NGI can be formu-
lated as

NGI(p,b;γ)= GI(p,b;γ)
GI(b,b) , (6)

with the variable measure

GI(p,b;γ) =
K
k=1


u∈Ωk

(
1
2
∇pk(u;γ)T ∇bk(u)

∥∇pk(u;γ)∥2 ∥∇bk(u)∥2
+

1
2

)
×min(∥∇pk(u;γ)∥2,∥∇bk(u)∥2) (7)

and the constant normalization

GI(b,b)=
K
k=1


u∈Ωk

∥∇bk(u)∥2. (8)

Because the gradient magnitude of the DRR equals zero
outside the projected bone volume, we can set the region Ωk

such that it covers the full image domain for all k.

2.B.3. Regularization, cost-function, and optimization

We assume that the variation of all six motion parameters
is physically limited given the knee-joint anatomy. Therefore,
we add a temporal smoothness regularizer to our cost-function.
We minimize the energy of the difference of the estimated
parameters and their Gaussian filtered parameters. This can
be understood as a minimization of energies present in high
temporal frequencies,

γ =
(
ζT

11,. . .,ζ
T
1K ,ζ

T
21,. . .,ζ

T
LK

)T
, (9)

ζlk =
(
φx,φy,φz,tx,ty,tz

)T

lk
,

r(γ)=
L
l=1

K
k=1

�
ζlk− (ζ ∗gσ)lk

�2
2. (10)

In Eq. (9), we outline the structure of the parameter vector
γ, where ζlk ∈ R6 holds the Euler angles φx,φy,φz and the
translations tx,ty,tz for the lth bone and the kth projection.
Equation (10) shows the smoothness regularizer, where gσ

are Gaussian filter coefficients for standard deviation σ and
(ζ ∗gσ) denotes the convolution filtering over the temporal
direction k.

The overall optimization problem is then given by

arg min
γ

−c(p,b;γ)+λ r(γ), (11)

where c(p,b;γ) can be either GC(p,b;γ) or NGI(p,b;γ).
Both GC and NGI need to be maximized. This is achieved

by minimization of the negative cost-function value. We use a
nonconstrained gradient-based minimization method for opti-
mization. The gradient is estimated by forward-differences and
the Hessian is approximated using BFGS. The step-direction is
then computed by attempting a Newton step using the approx-
imated Hessian. The step-size is calculated by a line-search
method. We optimize the rotational parameters in degrees
instead of radians to ensure that rotation and translation param-
eters are in a similar range. For more information, we refer to
the optimizers documentation.25
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2.B.4. Noise reduction in DRRs

We observed a high amount of noise in the forward pro-
jected gradient images which led to unsatisfactory registration
results. As the noise originates from the segmented volume,
we applied a 3D edge-preserving bilateral filter as described by
Lorch et al.26 before calculation of the 3D gradient volumes.
Additionally, we observed that the trabecular bone and the
bone marrow show rather homogeneous intensities and hence
contain only little structural information that is useful for
2D/3D registration. Therefore, the segmentation masks were
adjusted such that they focus on cortical bone, i.e., the outline
of the bone. This was done by first applying a 3D erosion
to the segmentation masks and in another step a 3D dilation.
Subtracting the eroded from the dilated mask results in a mask
which contains the bone outline only. This process is illustrated
in Fig. 2.

2.B.5. Unified coordinate system, TPS estimation, and
reconstruction

After 2D/3D registration, we know the individual bone
motion over time. As a next step, we extrapolate a global
nonrigid motion field d(x,k) : R4 → R3 based on the rigid
bone motion using a TPS model.22 We use the vertices of
the segmented surface meshes as known TPS control points.
The deformation field is estimated for each projection image
separately. Il ∈ R4×4 contains the rigid motion that was esti-
mated by initial manual 3D/3D registration between supine
and motion-corrupted scan. Further, T̂lk ∈ R4×4 are the final
rigid motion matrices obtained from the 2D/3D registration.
After selection of a reference time point k̂, we can express the
rigid alignment to a common coordinate system by Rl = T̂l k̂.
We choose k̂ to correspond to an anterior–posterior viewing
direction, where no overlapping bones are present. First, we
adjust all rigid transformations such that they operate in the
reference coordinate system, i.e.,

Tlk = T̂lk R−1
l . (12)

Subsequently, all supine mesh vertices are propagated to the
standing reference coordinate system. Let v̂n

l
= v̂l ∈ R3 be the

nth vertex of the lth bone in the supine coordinate system. In
the following we omit the superscript n assigned to each vertex
to improve clarity. Then, its static reference position vl ∈ R3

for the reference time point k̂ can be calculated as is given
by

vl = (Rl Il) v̂l, (13)

where v ∈ R4 represents a 3D point in homogeneous coor-
dinates. Finally, we apply the updated matrices Tlk to the
standing reference positions

vlk =Tlk vl . (14)

According to Davis et al.,27 the TPS deformation at a point
x ∈R3 can be formulated by

d(x,k)=
N
n=1

L
l=1

G(x−vlk)clk+Ak x+bk, (15)

where clk ∈ R3 are the unknown spline coefficients and the
matrix Ak ∈ R3×3 and vector bk ∈ R3 are additional rigid mo-
tion parameters. The kernel matrix G(x̃) :R3→ R3×3 for a 3D
deformation is given by

G(x̃)= ∥x̃∥2 · I, (16)

where I ∈ R3×3 denotes the identity matrix. To train the TPS
model, we need to determine the unknown coefficients clk, Ak,
and bk. As they have a linear relationship within Eq. (15), they
can be estimated in a straightforward manner. Inserting the
known 2D/3D motion vectors of the vertices, i.e., ulk = vlk−vl,
for x in Eq. (15) yields a system of linear equations which can
be solved by singular value decomposition. To constrain the
spline deformation at the periphery of the reconstruction, we
also added the eight bounding box corners as control points
for each volume. As displacement vector, we assigned the
motion generated by the geometrically closest bone, e.g., for
the upper-left corners we applied the estimated left femur
motion. For more details on solving the TPS equations we refer
to Davis et al.27

The reconstruction pipeline includes the following steps:
(1) a simplified beam-scatter-kernel scatter estimation28

assuming that the object consists only of water and that
the water-equivalent-thickness is uniform, (2) cosine weight-
ing, (3) Parker redundancy weighting,29 (4) a simple trunca-
tion correction,30 ramp filtering with a smooth Shepp–Logan
kernel,31 and a motion-compensated GPU backprojector.32

The deformation field d(x,k) was incorporated into the GPU-
based backprojection step as described by Schäfer et al.33

F. 2. Adjustment of 3D segmentation masks to reduce the noise level in DRRs. (a) Original masks, (b) adjusted masks for DRR generation.

Medical Physics, Vol. 43, No. 3, March 2016



1240 Berger et al.: Marker-free motion correction in weight-bearing CBCT 1240

That means, we evaluate the TPS model in Eq. (15) for each
voxel coordinate and use the updated instead of the original
coordinate to compute the 2D detector location. It should be
noted that this type of reconstruction algorithm is approximate
as it cannot guarantee a correct filtering and weighting of the
projection images.33

2.C. Evaluation procedure

In this work, we compare the state-of-the-art MB approach
and two versions of the proposed motion correction based on
2D/3D registration. We chose to focus on the reconstruction
image quality, as this includes all possible steps and parameters
of the individual approaches and also validates clinical appli-
cability. To improve early diagnosis of osteoarthritis, we want
to investigate the change in joint space under weight-bearing
conditions. The joint space in the knee is defined between
the femoral and tibial bone surfaces.34 As the bones will be
directly involved in the measurement process, we are espe-
cially interested in correcting motion at the distal femur and the
proximal tibia. We tailor our evaluation pipeline accordingly
and focus on the improvement of bone structure when applying
our motion correction methods.

2.C.1. Data acquisition and parameter selection

We evaluated our method on four acquisitions of the same
patient, where large motion was present in two standing scans.
The study included (1) one motion-free scan in supine posi-
tion with high angular resolution, (2) a standing scan with an
upright stand, (3) a standing scan with 35◦ knee flexion, and
(4) a standing scan with 60◦ knee flexion. The motion severity
increased with the flexion angle. Supine scanning took 20 s
acquiring 496 projection images over 200◦, whereas the stand-
ing scans took 10 s with 248 projection images over the same
angular range. The detector size was 1240×960 pixels with
an isotropic pixel size of 0.308 mm. For the supine and initial
motion-corrupted data, we reconstructed a 512 × 512 × 256
volume with isotropic resolution of 0.5 mm, using the same
preprocessing steps as described for the motion-compensated
reconstruction. A total of 12 metallic beads were attached
to the skin at both knees. We set the minimum number of
beads to be detected per projection to Mmin = 6 and repeated
the optimization for J = 4 times. The 2D/3D registration was
applied using a two-fold multiresolution, where only the reso-
lution of the projection images was adjusted. For the first
optimization, we used a projection image size of 310×240. In
the second step, we initialized the parameters with the results
from the first optimization and used a size of 620×480. The
weighting factor λ = 5×103 as well as the standard deviation
of the Gaussian smoothing σ = 2 has been determined heuris-
tically and was kept constant for all experiments. Further, we
ensured that the initial cost-function values for GC and NGI
are within the same range by incorporating a normalization
factor.

The 2D/3D registration and the marker-based approach
have been implemented using , a dedicated and open-
source software platform for CBCT reconstruction.35 Function

evaluations for the 2D/3D registration are entirely done on the
GPU using OpenCL. The segmentation was done using -
,36 and initial 3D/3D registration was done manually using
3D Slicer.37 To reduce artifacts due to detector saturation, the
patient’s legs were wrapped in a layer of plasticine which can
be seen clearly in the reconstructed volumes (see Choi et al.1

for more information).

2.C.2. Quantitative evaluation

We conducted an image-based quantitative comparison
between the supine, motion-free and the standing, motion-
corrected reconstructions by computing the universal image
quality index (UQI).38 A key problem for quantitative eval-
uation is that there is no unified coordinate system for the
motion-corrected reconstruction. Depending on which refer-
ence projection index k̂ is chosen in Eq. (12), the final recon-
struction will represent a different motion state. Assuming
that the motion parameters for 2D/3D registration are esti-
mated perfectly, the alignment between corrected and supine
reconstruction should still work accurately. However, small
errors in the 2D/3D registration for the reference projection
k̂ lead to a piecewise rigid motion that is based on only
6 × 4 = 24 parameters of the 6 × 4 × 248 = 5952 estimated
parameters. This misalignment would dominate the image-
based measures. Our main interest, however, is the improve-
ment in the actual image quality. To become independent
of this offset, we applied an automated 3D/3D rigid regis-
tration for each bone to the reference reconstruction using
3D Slicer37 and evaluated the image quality for each bone
region separately. For the rigid 3D/3D registration, we used
a MI-based similarity measure that ensured proper alignment
even in presence of motion artifacts. For registration and UQI
computation, we used bonewise region-of-interests (ROIs)
as depicted in Fig. 3. We made sure that the ROIs include
a soft tissue margin around the bone. This was done by
dilating the segmentation masks in x and y direction with a
circular structuring element of radius 2.5 mm. We excluded
the z-direction from the dilation as this would have caused an
overlap of different bones in the ROIs. Details are given in
Algorithm I.

2.C.3. Target registration error (TRE)

To evaluate how accurate the TPS extrapolation can model
the motion in a certain distance to the bone we calculated the
TRE using the attached metallic beads. To do so, we first detect
the 3D bead locations in the corrected reconstructions using
the same automatic detection approach as for the MB method,
except that the backprojection now involves the estimated TPS
motion fields. Then we apply the TPS motion field to the
detected 3D point locations and project the resulting point
to the individual projection images. The TRE can now be
computed by the mean distance between the detected bead
locations in 2D and the reprojections of the 3D bead locations.
To avoid wrong assignments of 2D and 3D points, we used the
correspondences as determined after the outlier detection of
the MB method.
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F. 3. Axial and coronal slices of the motion-free supine data. The green line corresponds to the regions used for the numerical evaluation in Sec. 3.B. The
images show a clear reconstruction of the bones without any apparent motion artifacts. (a) Supine—axial, (b) supine—coronal. (See online version.)

2.C.4. Relative bone motion

To assess the amount of nonrigidity, we measured the rela-
tive bone motion during a scan, i.e., how much the rigid mo-
tions of the bones deviate from each other. All estimated rigid
motion matrices Tlk of the 2D/3D registration are relative to
their individual manual initialization Il, thus, a direct compar-
ison of motion parameters will be difficult. As a first step,
we remove the mean rigid transform Tl over all time steps k,
from all Tlk, yielding the temporal, mean-free rigid transforms
Ψlk =Tlk T

−1
l .

In case that all bones move with the same rigid transform,
their deviation to the mean rigid transform over the bones,
i.e., Ψk, is the identity matrix. To visualize the relative mo-
tion between the bones, we decided to compute the differ-
ences to their mean rigid transform ∆Ψlk =Ψlk Ψk

−1
. Finally,

we extract all angles
�
∆φx ∆φy ∆φz

�
lk

and translations�
∆tx ∆ty ∆tz

�
lk

from ∆Ψlk.

3. RESULTS
3.A. Visual comparison

For the 0◦ flexion angle, we observed only little motion
artifacts. Slight streaking is present at the outline of femur
and patella [Fig. 4(a)] but also at tibia and fibula [Fig. 5(a)].
All three methods were able to restore the bone outlines,
yielding similar visual results, shown in Figs. 4(b)–4(d) and
Figs. 5(b)–5(d). Yet, the MB approach shows a slightly sharper
correction of the fibula’s interior compared to GC and NGI as

indicated by the arrow in Fig. 5(d). Note the zoomed version
of the reconstructed marker shown in the embedded box in
the lower, right corner of the images. As expected the marker
was accurately reconstructed using the MB method but also the
NGI method did not substantially distort the marker’s appear-
ance, indicating a good estimation of the motion at the skin
boundary. A little more distortion (i.e., starlike appearance)
can be seen at the marker for the GC case.

All methods could substantially reduce the large amount
of motion artifacts for the 35◦ case. Not many differences
are seen at bone outlines between the results for the femur
slices in Figs. 4(f)–4(h). As expected, the MB method shows
a better result at the skin boundary and was able to restore the
shape of the plasticine wrap. The slight streaking at the anterior
skin boundary in NGI and GC originates from the plasticine
wrap and is not related to the image quality of the bones. A
clearer difference can be seen at the tibia. Again, all methods
clearly improved image quality, yet, the GC could not fully
correct the bones’ outlines, especially in case of the left tibia
[see Fig. 5(f)]. The MB and NGI images are of similar image
quality with slightly more residual streaking in the NGI case
[see Figs. 5(g) and 5(h)]. The reduced image quality of the
GC case is due to misregistrations of the 2D/3D alignment as
illustrated in Fig. 6.

The highest amount of motion was observed in the scan
with a 60◦ flexion angle, as can be seen in the uncorrected
reconstructions in Figs. 4(i) and 5(i). Both GC and NGI
successfully estimated the patient’s femoral motion, yielding
comparable reconstructions of the femur with substantially
improved image quality compared to an uncorrected recon-

A I. Quantitative evaluation pipeline.

1: Corrected reconstruction with respect to reference projection k̂

2: Extraction of bonewise ROI using dilated segmentation masks
3: for each ROI do
4: 3D/3D registration of ROI to supine volume
5: New reconstruction including the registration result to avoid additional interpolation
6: Computation of the UQI for each bone ROI
7: end for
8: Construction of mean and standard deviation of bonewise measures
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F. 4. Axial slices through the femur. From left to right: Reconstructions without motion correction (NoCorr), the proposed method using GC, the proposed
method using NGI and the MB reference method. The rows correspond to the three different weight-bearing scans from 0◦ flexion angle at the top to 60◦ flexion
angle at the bottom (W : 2025 HU, C : 145 HU). (a) NoCorr-0◦, (b) GC-0◦, (c) NGI-0◦, (d) MB-0◦, (e) NoCorr-35◦, (f) GC-35◦, (g) NGI-35◦, (h) MB-35◦,
(i) NoCorr-60◦, (j) GC-60◦, (k) NGI-60◦, and (l) MB-60◦.

struction. More streaking is present in the left tibia for GC,
whereas NGI shows a good tibial reconstruction. Similar to
the scan at 35◦ flexion angle, the skin boundaries are better
corrected when using the MB approach with slight streaking
in the 2D/3D registration-based approaches. Apart from that,
the visual results are comparable.

3.B. Image quality measures

The qualitative measures yielded a UQI value for each
combination of bone, flexion angle, and correction method. Ta-
ble I shows the mean values over all four bone regions together
with the standard deviation. Note that the UQI has been scaled
by a factor of 100 throughout the paper for better visuali-
zation. Each weight-bearing scan showed moderate intensity
variations due to different detector saturation and truncation
artifacts. The UQI is known to be robust against intensity
variations,38 which allows for a fair differentiation between the
methods as well as the individual weight-bearing scans.

3.B.1. Interscan comparison

A reduction of the UQI value in case of noncorrected
reconstructions from 34.9 to less than 9.0 is in line with the
amount of motion observed visually. This is supported by
the maximum achieved UQI values when applying correction
methods. All methods showed the highest values for the 0◦

flexion with an average UQI of 61.1. The best achieved UQI
values for flexion angles 35◦ and 60◦ have been substantially
lower with a maximum UQI of 53.1. UQI values between 35◦

and 60◦ flexion did not show a substantial difference.

3.B.2. Method comparison

We notice a large improvement of the UQI values from
no correction to any of the correction methods. The relative
improvement for each dataset is well supported by the visual
impression in Figs. 4 and 5. The GC showed the lowest
improvement for all flexion angles and also high interbone
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F. 5. Axial slices through the tibia and fibula. From left to right: Reconstructions without motion correction (NoCorr), the proposed method using GC, the
proposed method using NGI and the MB reference method. The rows correspond to the three different weight-bearing scans from 0◦ flexion angle at the top
to 60◦ flexion angle at the bottom (W : 2025 HU, C : 145 HU). (a) NoCorr-0◦, (b) GC-0◦, (c) NGI-0◦, (d) MB-0◦, (e) NoCorr-35◦, (f) GC-35◦, (g) NGI-35◦,
(h) MB-35◦, (i) NoCorr-60◦, (j) GC-60◦, (k) NGI-60◦, and (l) MB-60◦.

variations which may originate from the misregistration-based
streaking artifacts seen in Figs. 5(j) and 5(f). Even though the
MB method yields better reconstructions with less streaking,
the NGI method shows higher UQI values for the 0◦ and
35◦ dataset. This discrepancy is analyzed in more detail in
Sec. 3.C.

3.C. Deformation of bone outline for MB method

In contrast to the visual results, the highest UQI values were
achieved by the NGI method with a mean distance to the MB
correction of 6.3 in the 0◦ dataset, 3.1 in the 35◦ dataset, and
comparable results for the 60◦ dataset. This could be explained
by a small deformation of the reconstructed bones in case
of the MB approach. To analyze this deformation, we ex-
tracted line profiles equidistantly and orthogonal to the femur’s
outline. The semiautomatic segmentation generally yielded an
outline that slightly extended outside the visually determined
bone outline. Therefore, we manually refined the segmentation

results for a selected axial and coronal slice of the supine
acquisition, such that the bone’s outline is covered exactly.
The refinement was performed using the manual segmentation
functionality of -.36 Then, 2D spline models of the
refined segmentation mesh were obtained for the selected axial
and coronal slice. We also extracted the corresponding image
slices for NGI, MB, and the supine data. Finally, we sampled
line profiles perpendicular to the fitted spline, equidistantly
along the whole spline curve.

Figure 7(a) shows the axial and coronal slice of the motion
free reconstruction with an overlay of the extracted spline
curves and a subset of the line profiles. In Fig. 7(b), the ex-
tracted profiles are shown. We incorporated a dashed refer-
ence line at 0.5 mm distance to the spline, which corresponds
roughly to the center of the femur’s cortical bone edge in the
supine scan.

The resulting profiles show that for the MB approach, the
edge intensities shift upward at multiple locations with respect
to the reference line. This is not the case for the NGI approach.
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F. 6. Difference of gradient magnitudes between DRR and acquired projections after registration. Top row: Projections used for extracting the reference
coordinate system. Bottom row: Projections with large occlusions led to incorrect registration of the left tibia using the GC method. (a) GC-60◦—Ref. projection,
(b) NGI-60◦—Ref. projection, (c) GC-60◦—First projection, (d) NGI-60◦—First projection.

Shifting “upward” corresponds to a deformation perpendicular
to the bone’s surface. It can be interpreted as scaling or distor-
tion if it occurs uniformly along the spline. In addition to the
distortion, we can observe that the edge of the NGI approach
is more similar to the motion-free scan, than the edge of the
MB method.

3.D. Target registration error

As expected, for all datasets, the MB method yielded the
smallest TRE values and also the smallest deviations. Table II
shows that the maximum TRE of the GC method amounts
to 1.55 mm, whereas all TRE values were no larger than
0.92 mm for the NGI method. Compared to the MB approach,
the standard deviations for NGI and GC increased substan-
tially. Yet, for the NGI method, the highest standard deviation
(1.07 mm) is still considerably smaller than for the GC case
(2.46 mm).

T I. Mean and standard deviation of the UQI over four bone regions. All
correction methods lead to an increased UQI compared to an uncompensated
reconstruction. The bold font emphasizes the method with the highest UQI
for each dataset.

UQI (×102)

Dataset (deg) NoCorr GC NGI MB

0 34.9 ± 2.3 62.6 ± 3.6 63.5 ± 4.3 57.2 ± 6.4
35 11.2 ± 3.5 47.2 ± 6.7 53.1 ± 3.7 50.0 ± 7.1
60 9.0 ± 4.1 49.9 ± 5.7 51.7 ± 5.0 52.9 ± 7.4

3.E. Relative bone motion

In Fig. 8, we show boxplots based on all relative motion
parameters over all bones and all projections. We limited the
analysis to the NGI method using the 60◦ case, as this corre-
sponded to the highest amount of motion estimated with the
best performing registration approach. The boxes depict the
25th and the 75th percentiles and the whiskers cover ≈99%
of the samples in case of a normal distribution. The red line
shows the median of the samples. Almost all rotation angles
lie within a range of 1◦, which corresponds to the maximum
rotational deviation between the bones. The translations in
vertical direction, i.e., ∆tz show only little difference with
a maximum range below 1 mm. In contrast, translations in
x- and y-axis are in the range of [−1.44 mm,1.84 mm] and
[−2.89 mm,2.32 mm], respectively.

4. DISCUSSION

CBCT scanning of knees under weight-bearing conditions
poses a difficult motion estimation and compensation problem.
In previous work on image-based motion correction, we tried
to correct for involuntary patient motion without markers using
2D/2D registration of projection images and maximum inten-
sity DRRs of a motion-corrupted reconstruction.19 However,
the improvement in image quality was limited due to the
amount of motion artifacts present in the initial reconstruction.
All of our weight-bearing studies include a nonweight bearing
scan in supine position, which serves as a reference for the
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F. 7. Edge profiles along the outline of the right femur for NGI-0◦, MB-0◦, and the supine, motion-free reference (SUP). The depth axis points from the bone
outward. The starting point and direction of the x-axis is indicated by arrows in (a). Compared to the NGI method the edge shifts upward for the MB method
indicating a scaling effect. (a) Line profile measurement in an axial and coronal slice, (b) edge profiles along the right femur’s outline in an axial (top) and
coronal (bottom) slice.

investigation of functional parameters, such as joint space
analysis.

A non-weight-bearing scan in a supine patient position is
part in all our weight-bearing studies to obtain a reference for
further investigation, e.g., a joint space analysis. Therefore,
we propose a marker-free motion correction method based on
piecewise-rigid 2D/3D registration of a motion-free reference
volume to all projection images acquired in a weight-bearing
scan. The proposed method builds on previous work by Berger
et al.,20 where a proof-of-concept for the GC approach is
presented and evaluated on a noise-free numerical phantom.
We developed the method further to allow its application to real
patient acquisitions. Our main contributions are an improved
similarity measure (NGI), a noise reduction approach for the
forward projected gradient images and a more sophisticated

estimation of a global motion field using nonrigid TPS extrap-
olation. Further, we extended the MB motion estimation as
shown in Müller et al.4 by an analytic gradient computa-
tion and an improved outlier detection scheme. Moreover,
this work gives a complete overview of existing motion-
compensation methods for weight-bearing CBCT of the knee-
joint and shows a thorough evaluation and comparison be-
tween the state-of-the-art MB and the novel, image-based
approach using 2D/3D registration.

Our results show a substantial improvement of image qual-
ity for GC and NGI as well as for the MB approach compared
to reconstructions without motion correction. The NGI method
yielded higher UQI values and showed less streaking at the
bone boundaries than the GC method. We believe that the NGI
is indeed more robust to overlapping structures as indicated
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T II. Mean and standard deviations for the 2D TRE of reprojected
marker locations. 3D marker detection was done in the motion corrected
reconstructions for GC and GI. For MB, the existing 3D estimates have been
used.

TRE (mm)

Dataset (deg) GC NGI MB

0 0.45 ± 0.29 0.37 ± 0.24 0.15 ± 0.08
35 1.45 ± 1.32 0.92 ± 0.86 0.35 ± 0.17
60 1.55 ± 2.46 0.75 ± 1.07 0.29 ± 0.16

by Otake et al.15 This is of special importance in lateral views
where we see increased overlap of left and right leg accompa-
nied by an increased number of misregistrations in case of the
GC method (see Fig. 6).

The goal of the proposed method was to achieve an image
quality similar to that of the MB approach. As expected, the
MB method was able to accurately restore the skin outline
whereas the registration-based methods showed inaccuracies
at the skin boundary that also led to slight streaking artifacts.
In contrast, we see the smallest amount of streaking for the MB
approach. The NGI method performed comparable to the MB
method in reconstructing the bones’ outline. This is of special
interest as a potential application is a 3D analysis of the joint
space between the femur and tibia as outlined in Sec. 2.C.

Although the MB approach produces better visual results,
we have noticed a lower UQI compared to the NGI method,
especially for smaller flexion angles. Line profiles along a
femur’s boundary revealed a deformation of the reconstructed
bone outline with respect to the reference scan which can be
seen as an intensity shift in Fig. 7. Note that the edge of the
MB approach is generally higher than that of the reference
which shows that the intensity shift is not due to a misalign-
ment but due to a real distortion effect. A possible cause can
be the assumption of a global, rigid transform per projec-
tion image which does not allow for nonrigid motion. If we
incorrectly assume a rigid movement per projection, this can
lead to a distortion in the reconstruction. In a future study,
we plan to perform a statistical analysis of the directions and
lengths of the residual distances in 2D. This may provide
insight on the amount of nonrigidity present in the marker
motion.

We deem MB methods unsuitable for the problem of re-
constructing the knee under weight-bearing conditions for a
number of reasons. First and foremost, markers are cumber-
some and too time-intensive to attach by a physician in clinical
routine. If not done carefully, markers may overlap in projec-
tions from some angles, leading to potential mismatching and
lower estimation accuracy. Second, MB methods are restricted
to a single rigid motion model. Rigid transformations of
individual bones or even deformable models would require
a considerably larger number of markers, exacerbating the
problem of overlapping markers. On top of that, markers can
only be attached to the skin, while the accurate relationship
of bone and skin motion is unclear. Finally, markers degrade
image quality due to metal artifacts. This work remedies the
above mentioned problems by entirely image-based methods,
thus possibly allowing a fully automatic system in the future.
We currently rely on a semiautomatic segmentation and
initialization of the supine bones. Methods that allow for a
fully automatic segmentation of the bones and an automatic
initial alignment could eliminate manual interaction and will
be part of future work.

We have used the UQI for a qualitative evaluation of the
reconstruction results. Note that the pipeline described in
Sec. 2.C.2 requires a truly motion-free supine scan preferably
of high quality. Based on the patient’s supine position and the
good reconstruction quality of the supine scans (cf., Fig. 3),
we could not identify patient motion in the supine scan. The
image quality was superior to the standing scans, as the supine
acquisition protocol used twice as many projection images.
Another limitation of the evaluation method is that it also
includes potential registration errors of the 3D/3D registration.
To eliminate this subsequent registration we would require a
ground truth motion of the bones, which is hardly possible
during an in vivo study. Finally, the reported UQI values
describe the mean values over the bone ROIs in Fig. 3. The
ROIs include the bones and adjacent soft tissue, yet we do
not claim that the UQI is an accurate measure for soft tissue
deformation.

To evaluate the TPS extrapolation we computed the repro-
jection error of the markers (TRE) for the GC, NGI, and MB
methods. As expected, the MB method performed best with a
maximum TRE of 0.35 mm for the 35◦ case. The NGI method
yielded a maximum TRE of 0.92 mm for the same dataset,
which is still acceptable. Note that the markers represent the

F. 8. Relative bone motion during the 60◦ scan estimated by the NGI approach. The motion parameters show the deviation to the average rigid transform over
all four bones.
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boundary of the anatomically meaningful area and therefore
have the largest distances to the bone surfaces on which the
extrapolation is based. As is generally the case in extrapolation
methods, the confidence of the TPS extrapolation decreases
with increasing distance to the control points. Additionally,
the MB cost-function aims to minimize exactly this error,
whereas GC and NGI do not consider the markers in their
optimization. Even though the proposed NGI method creates
an accurate reconstruction of the bone outline, we still need to
consider the effect of 2D/3D registration errors. As all our bone
positions are estimated independently, errors in 2D/3D regis-
trations may lead to deviations in relative bone position, e.g.,
between tibia and femur. Our analysis of relative bone motions
in Sec. 3.E shows rather small rotational differences between
the bones and only little variation in z-axis translations. Note
that the estimated relative motion will always consist of a
combination of the real ground truth motion and the residual
error of the registration. Hence, for an exact measurement of
relative bone motions, we would need access to the ground
truth motion directly, which was not possible during our in
vivo, weight-bearing acquisitions. Thus, it remains unclear
if the increased deviations of translations in x- and y-axis
correspond to registration errors or real variability of motion.
A study using cadaver legs where tibia and femur are fixed to
a device that applies a predefined motion pattern would allow
an exact measurement of registration errors and is planned as
future work.

As explained in Sec. 2.B.4, we reduced the bone segmen-
tations to the bone outlines to limit the noise level in the
DRRs. This makes the method similar to a mesh-to-image
2D/3D registration where the meshes are directly registered
to the acquired projection images without the need of an
expensive DRR generation step. An extensive overview of
these methods is given in Ref. 39, where it is referred to as
“feature-based” 2D/3D registration. A comparison of the two
methods would be interesting for future work; yet, we expect
that the current method is more robust to variations in the
segmentation quality as it does not only consider segmented
3D positions but also the measured intensities. Moreover,
most mesh-based registration methods require feature point
detection in the projection images which will be difficult
considering the high degree of overlapping structures in our
acquisitions.

We will also investigate if we can perform the motion
correction using a cost-function based on data consistency
conditions (DCC) instead of 2D/3D registration. Methods
based on image moments,40 filtering in the Fourier domain,41

or by using the epipolar geometry42,43 will be investigated.
The motion is then estimated directly in the projection domain
without the need for a motion-free scan and bone
segmentations.

5. CONCLUSION

We presented a novel motion correction scheme to allow
for weight-bearing CBCT imaging of the knee joint. The
involuntary patient motion is estimated with respect to a

motion-free reference scan in supine patient position. Left
and right femur and tibia are segmented and registered to the
acquired weight-bearing projections. Thus, six rigid motion
parameters were estimated for each bone and each projection
resulting in a total of 5952 parameters. To improve registra-
tion results, we also incorporated a regularizer that ensured
smoothness of the motion-parameters over time. The motion
was then used to estimate a TPS-based nonrigid deformation
field for each projection which was directly incorporated
into the backprojection step, yielding a motion-compensated
reconstruction.

Our study included a thorough comparison between two
versions of our proposed method and a state-of-the-art MB
motion estimation method.4 All correction methods substan-
tially improved image quality compared to reconstructions
without motion correction. The GC similarity measure proved
to be less robust to overlapping bone structures than the
NGI similarity metric. Our quantitative evaluation over ROIs
around the bones showed a mean UQI of 18.4 for no correc-
tion, 53.3 and 56.1 for the proposed method using GC and
NGI, respectively, and 53.7 for the MB reference approach.
Increased streaking was observed for GC, whereas the visual
image quality for NGI was close to that of the MB approach.
In contrast to the MB method, the proposed method does not
require the attachment of markers which will improve the
clinical workflow and patient comfort. Further, we found that
the MB method causes small, nonrigid deformations at the
bone outline which indicates that markers may not accurately
reflect the internal motion at tibia and femur. Therefore, we
believe that the proposed method is a promising alternative to
MB motion management.

For future work, we plan further improvements of the
2D/3D registration algorithms, e.g., by incorporating an an-
alytic gradient computation. Furthermore, we plan a thorough
evaluation of the impact of residual registration errors on the
relative positioning of bones.
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