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Drug discovery based on mining metabolites from 
actinobacteria, based on enormous screens of culture 
supernatants against pathogenic bacteria, was successful 
from 1950 to 1970 and generated many of the antibac-
terial drugs we now have at our disposal. However, the 
repeated re-discovery of known antibacterials from this 
source led to the abandonment of this approach during 
the 1990s. The prevailing view by the mid-1990s was that 
there was no new chemical diversity left to discover from 
this source. However, the advent of genome sequenc-
ing revealed that the reservoir of biosynthetic genes for 
these compounds, including polyketides, non-ribosomal 
peptides and other classes, is much larger than had been 
previously appreciated [19, 90, 138]. We now know that 
each actinomycete genome encodes 20–50 biosynthetic 
gene clusters for secondary metabolites [134]. It is not 
currently possible to assign a product structure or bio-
logical activity to most of these biosynthetic pathways. 
Indeed, many of the secondary metabolites produced 
by well-characterized model strains such as Streptomy-
ces coelicolor, Streptomyces griseus and Streptomyces 
avermitilis are still unknown. As a result, there has been 
renewed emphasis on the discovery and characterization 
of these cryptic metabolites through the use of new bio-
informatic approaches, innovative culture techniques, 
genetic manipulation, chemical manipulation and new 
screening regimens [40, 41, 69, 194, 103, 109, 117, 127, 
136, 151, 165, 173].

There are several explanations for why so many second-
ary metabolites have eluded discovery. One view is that 
many secondary metabolic genes are expressed at low lev-
els in the laboratory and that their products cannot therefore 
be easily detected. Another is that there may be a ‘screen-
ing bias’ in the existing discovery regimens. For example, 
the vast majority of screening has been for antibiotics—it is 
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Introduction

Actinobacteria are gram-positive bacteria that are ubiqui-
tous in soil and marine sediments. There are an exception-
ally diverse number of genera that include Streptomyces, 
Micromonospora, Amycalotopsis, Salinospora, Saccha-
ropolyspora, Actinomycetes and many others. These organ-
isms have evolved striking developmental and physiologi-
cal adaptations that allow them to compete and survive in 
crowded environments. One notable feature is their ability 
to produce biologically active small molecules, referred to 
variously as ‘natural products’, ‘secondary metabolites’, 
and ‘specialized metabolites’ that have been isolated and 
used as antibiotics and other therapeutics.
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possible that some of the uncharacterized chemical matter 
act on other targets.

The primary focus in this field since its inception has 
been on the discovery of new antibiotics. This charge has 

been renewed most recently due to a pressing need for new 
approaches to treating resistant pathogens [15, 16]. Never-
theless, we wonder whether some of the diversity of natu-
ral products is being overlooked. It is known for example, 

Table 1   The eukaryotic targets 
of actinomycete metabolites

Drug Producer Primary target

Nucleotide synthesis

 Actinomycin D Streptomyces spp. DNA

 Bleomycin Streptomyces verticillus DNA, RNA

 Calicheamicin Micromonospora echinospora DNA

 Doxorubicin Streptomyces peucetius DNA

 Mitomycin Streptomyces spp. DNA

Sterols

 Amphotericin B Streptomyces nodosus Ergosterol

 Candicidin Streptomyces griseus Ergosterol

 Natamycin Streptomyces natalensis Ergosterol

 Nystatin Streptomyces noursei Ergosterol

Immunosuppression

 Ascomycin Streptomyces hygroscopicus FKBP12, Calcineurin

 FK506 Streptomyces tsukubaensis FKBP12, Calcineurin

 Rapamycin Streptomyces hygroscopicus FKBP12, mTOR

Mitochondrial function

 Antimycin A Streptomyces spp. Cytochrome C reductase

 Oligomycin Streptomyces distatochromogenes ATP synthase

Protein degradation

 Epoxomicin Streptomyces hygroscopicus 20S proteasome

 Salinosporamide A Salinospora spp. 20S proteasome

Neurotransmission

 Avermectin Streptomyces avermectinius GluCl channel

 Milbemycin Streptomyces hygroscopicus GluCl channel

 Spinosyn Saccharopolyspora spinosa nACh receptor

Membrane

 Ionomycin Streptomyces conglobatus Lipid bilayer

 Nigiricin Streptomyces hygroscopicus Lipid bilayer

 Valinomycin Streptomyces spp. Lipid bilayer

Vacuolar pH

 Bafilomycin Streptomyces griseus V-ATPase

 Concanamycin Streptomyces neyagawaensis V-ATPase

Signaling

 Lavendustin A Streptomyces griseolavendus Tyrosine kinase

 Sangivamycin Streptomyces rimosus Protein kinase C

 Staurosporine Streptomyces staurosporeus Protein kinase C

Other

 Borrelidin Streptomyces parvulus Threonyl-tRNA synthetase

 Cycloheximide Streptomyces griseus 60S ribosome

 Geldanamycin Streptomyces hygroscopicus Hsp90

 Leptomycin B Streptomyces spp. CRM1 (exportin)

 Rebeccamycin Streptomyces spp. Topoisomerase I

 Trichostatin A Streptomyces spp. HDAC (class I and II)

 Tunicamycin Streptomyces spp. UDP-HexNAc
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that there are many secondary metabolites that interact 
with eukaryotic cells (Table 1). These include known sec-
ondary metabolites commonly used as clinical antifungal, 
anticancer, immunosuppressive, antiangiogenic, and anti-
protozoal drugs [20]. As we will describe in this review, 
the target diversity of these eukaryote-directed compounds 
exceeds that of the antibacterials. Indeed, another explana-
tion for the failure to discover some of this diversity could 
be that the screening bias towards finding antibacterials has 
caused compounds that are expressed in the lab to go unde-
tected due to the fact that the wrong assay was employed. 
Our intent, therefore, is to examine a selection of known 
eukaryote-directed secondary metabolites in the interest of 
stimulating the discovery of secondary metabolites that act 
on eukaryotic targets. In addition to providing new probes 
of intricate biological pathways, such molecules could pro-
vide leads for new therapeutics against many diseases.

Targeting DNA synthesis: doxorubicin

One of the mainstays of cancer chemotherapy involves the 
use of the anthracycline drugs epirubicin, pirarubicin, acla-
rubicin and idarubicin, all of which are derived from the 
foundational drug doxorubicin. These drugs are routinely 
used against malignancies such as adult acute leukemia, 
breast carcinoma, non-Hodgkin’s lymphoma and ovarian 
carcinoma [39, 89]. Indeed, the first clinically approved 
nano-drug (Doxil®) was a liposomally encapsulated form 
of doxorubicin used for the treatment of AIDS-induced 
Kaposi’s sarcoma and solid tumours [17].

The first member of this class, daunorubicin, was iso-
lated from Streptomyces peucetius in 1963 and found to be 
effective against murine tumours [48]. However, clinical 
trials revealed severe cardiotoxicity so the compound was 
abandoned [170]. In an effort to find a more therapeuti-
cally favourable analogue, Arcamone et al. mutagenized S. 
peucetius and isolated strains that produced an altered, and 

more clinically favourable form of the drug that was named 
doxorubicin [4]. Doxorubicin is still toxic however it can 
be dosed so as to maximize its anticancer activity and mini-
mize damage to normal tissue. Both compounds are planar 
tetracyclic structures attached to an amino sugar moiety: 
doxorubicin differs from daunorubicin by a single hydroxyl 
group (Fig. 1a).

The earliest indication of doxorubicin’s mechanism of 
action came from in  vivo assays showing reduced RNA 
synthesis in HeLa cells [49]. In that same year, Calendi 
et  al. observed distinct changes in the physical properties 
of DNA when incubated with the drug in vitro [33]. Indeed, 
crystal structures [63] and NMR spectroscopy [195] of 
doxorubicin-DNA complexes show that the drug interca-
lates between the nitrogenous base pairs by planar insertion 
(Fig. 1b).

Doxorubicin was found to induce double strand breaks 
in the DNA of leukemic cells where the ends of the bro-
ken strands were associated with a protein complex. The 
protein was subsequently identified as topoisomerase II, 
the homodimeric enzyme responsible for relieving posi-
tive supercoiling by a double-strand cleavage and rejoin-
ing mechanism [172]. This and other work led to a model 
where doxorubicin intercalates DNA causing topoisomer-
ase II to become trapped resulting in a ternary complex and 
a double-strand break [119]. The exact molecular mecha-
nism of this process is not fully understood, however sev-
eral mutagenesis studies in yeast implicate the CAP-like 
DNA-binding domain of topoisomerase II as a direct target 
[130, 144].

This model is widely recognized as doxorubicin’s pri-
mary mechanism of targeting proliferative cancerous cells 
in  vivo. However there is support for alternative mecha-
nisms in the literature. This includes most notably the gen-
eration of reactive oxygen species (ROS) [101] and gene-
specific damage [35, 93]. It is possible that these alternative 
mechanisms occur simultaneously and are concentration 
dependant [66].

Fig. 1   a The chemical structure 
of daunorubicin and doxoru-
bicin (Prod. S. peucetius). b 
Crystal structure of DNA-dox-
orubicin associated complexes. 
The tetracyclic rings intercalate 
between base pairs while the 
aminosugar rests in the minor 
groove of DNA (PDB:1D12)



236	 J Ind Microbiol Biotechnol (2016) 43:233–248

1 3

Targeting fungal membranes: amphotericin B

Many antibiotics produced by actinomycetes target fungal 
cells [20]. The most clinically relevant class in this cate-
gory are the polyene macrolides, particularly amphotericin 
B, isolated in 1953 at the Squibb Institute from the fer-
mentation of S. nodosus [52]. Amphotericin B is a main-
stay for managing systemic fungal infections. Ampho-
tericin B is active against many fungal pathogen species 
in  vitro including Candida albicans [10, 145], Aspergil-
lus fumigatus [8, 55], Cryptococcus neoformans [10, 44], 
Blastomyces dermatitidis [114, 166], Histoplasma cap-
sulatum [114], Rhizopus sp. [55, 56] and Mucroales sp. 
[156]. Despite amphotericin B’s long-standing monothera-
peutic use over the last 50 years, few resistant strains have 
emerged.

This is due to a tradeoff between tolerability and the 
fitness that is believed to limit resistance from develop-
ing [179]. However, a number of amphotericin B-resistant 
strains of Aspergillus [167], Cryptococcus [123] and Can-
dida [190] have emerged in the clinic in recent years. In 

addition, amphotericin B treatment is often associated with 
adverse effects including nephrotoxicity [186] and anemia 
[116, 121, 193]. Interestingly, amphotericin B-induced 
anemia has been shown to occur through the inhibition of 
the transcription factor hypoxia-inducible factor-1 (HIF-1), 
thereby reducing the expression of erythropoietin (EPO) 
which controls red blood cell proliferation [121, 193].

Amphotericin B is comprised of an amphipathic mac-
rolactone ring with a mycosamine attachment (Fig.  2a). 
These molecular features work together to bind fungal-
specific sterols such as ergosterol in the membrane, caus-
ing ion-leakage [11, 28]. Hydrogen bonds formed between 
the mycosamine of amphotericin B and the hydroxyl group 
present in both ergosterol (fungal) and cholesterol (human) 
are essential for binding to occur [141]. Amphotericin B’s 
selective toxicity towards fungi is due to a more stable 
interaction between its seven conjugated double bonds with 
ergosterol [150, 177], presumed to be the result of reduced 
conformational flexibility [12].

An early model of amphotericin B’s mechanism of 
action was the ‘barrel-stave’ [125, 176]. In this model, 

Fig. 2   a The chemical structure of amphotericin B (Prod. S. nodo-
sus). Highlighted are the drug’s molecular features that confer its 
specificity for ergosterol in fungi rather than cholesterol in mamma-

lian cells. b Models of amphotericin B-ergosterol interactions with 
the lipid bilayer in fungi
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eight amphotericin B-sterol complexes are aligned perpen-
dicularly to the lipid bilayer forming a channel with the 
hydrophobic face on the exterior and the hydrophilic face 
pointing towards the interior (Fig. 2b). K+ ions would then 
leak out of the cell resulting in membrane depolarization 
and eventually cell death [5, 108]. Furthermore, ampho-
tericin B forms ion channels more easily in the presence 
of ergosterol [88]. Recent studies by Gray et al. have chal-
lenged the notion that ion leakage by pore formation is the 
sole biochemical feature in its mechanism of action [70]. In 
particular, they found that a chemically modified analogue, 
C35deOAmB, lacking the ability to form pores, retained 
its antifungal potency. Likewise, the related polyene nata-
mycin possesses antifungal activity despite its inability to 
form pores in the membrane [184]. An alternative model 
therefore, is that amphotericin B binds to the membrane 
monomerically, parallel to the lipid moieties (adsorption) 
[46, 131] or in aggregates (sponge) [2] to sequester ergos-
terol thereby causing a global reduction of sterol levels in 
the membrane. This in turn could limit the sterol’s function 
in maintaining the structural integrity and fluidity of the 
lipid bilayer as well as enabling the function of membrane-
bound enzymes that influence a wide range of diverse sig-
nalling cascades [115, 185]. While it is likely that mono-
meric, aggregated and pore-forming states of amphotericin 
B occur simultaneously, the ratios at which these forma-
tions exist at various concentrations remain unknown.

Ongoing debate about its mechanism of action and tox-
icity suggests that modification of this drug, or the isola-
tion and investigation of new congeners from other actino-
mycetes could drive the development of better antifungal 
drugs. More recently, novel derivatization of amphotericin 
B using diphenylphosphoryl azide (DPPA) led to two ana-
logues: AmBMU and AmBAU, which were shown to be 
effective in evading resistance to Candida while having 
greater selectivity for ergosterol and were thus less toxic to 
human blood cells [45]. Notably, this study also revealed 
that amphotericin B-resistant strains of Candida are non-
pathogenic in mice suggesting that minor changes in ergos-
terol significantly reduces pathogenicity. In addition, robust 
methods of synthesizing less toxic analogues of ampho-
tericin B have been developed using the iterative cross-cou-
pling of polyene building blocks which could potentially 
provide more potential candidates for improving drug effi-
cacy [113].

It is widely agreed that additional antifungal drugs are 
needed to combat resistant strains and improve therapeutic 
outcomes associated with opportunistic mycoses includ-
ing candiasis, cryptococcal meningitis and aspergillosis 
which often do not respond well to a limited number of 
current drug regimens [54, 146]. Indeed, fungal infections 
that were previously treated successfully with this drug are 
showing increasing resistance [67].

Targeting cell growth (mTOR): rapamycin

The macrocylic lactone antibiotic rapamycin has had an 
enormous impact on medicine and on our understanding of 
eukaryotic cells. Its story began in 1964 when a Canadian 
expedition team collected soil samples from Easter Island 
in the southeastern point of the Polynesian Triangle in the 
Pacific Ocean. This soil sample was then investigated at 
Ayerst Laboratories in Montreal where the molecule, rapa-
mycin (from Rapa Nui, the indigenous name for Easter 
Island), later derived from the isolated strain S. hygroscopi-
cus, showed remarkable antifungal activity against Candida 
[178]. Persistent efforts led to rapamycin’s rise to acclaim 
where it was found to possess potent immunosuppressive 
and antiproliferative properties [86, 124], leading in turn to 
further investigation of its mode of action.

Initially, the structurally related immunosuppressant 
FK506 was found to target the 12-kDa FK506-binding pro-
tein (FKBP12), a peptidylprolyl romatase [81, 164]. The 
complex then acquires a gain-of-function ability to suppress 
the activation of T-cells in the immune system through a 
third target, calcineurin [104]. Similarly, rapamycin also 
binds to FKBP12 however mounting evidence suggested 
that FK506 and rapamycin varied in their mechanism of 
immunosuppression in murine T-cells [23, 50, 51], sug-
gesting that the tertiary target of the rapamycin-FKBP12 
complex was not the same as FK506. A landmark study by 
Heitman et  al. was carried out in the budding yeast Sac-
charomyces cerevisiae in which genetic screens led to the 
identification of dominant mutations in TOR1 and TOR2 
that were shown to confer rapamycin resistance [83]. This 
suggested that the encoded TOR (target of rapamycin) pro-
teins—paralogous serine/threonine kinase subunits—were 
the targets of the FKBP-rapamycin complex that ultimately 
resulted in immunosuppression and growth reduction. It 
was subsequently found that rapamycin binds proteins in 
a mammalian cells that shared extensive sequence simi-
larity to the TOR1, providing not only direct evidence of 
the rapmaycin-FKBP binding targets but also showing that 
the mechanistic targets are highly conserved in lower and 
higher eukaryotes [29, 42, 153, 154]. X-ray crystallography 
further elucidated the drug’s mode of action showing that 
rapamycin has two binding sites [13, 37] (Fig.  3a). Most 
eukaryotic organisms possess one TOR protein. The mTOR 
(mammalian target of rapamycin) is a large (289 kDa) pro-
tein that belongs to the phosphoinositide kinase-related 
kinase (PIKK) family. It associates with other proteins to 
form two functionally distinct complexes: mTORC1 and 
mTORC2.

Proteins that act upstream of mTORC1 mediate intra-
cellular responses to a variety of intra- and extracellular 
cues: growth factors [61], oxygen levels [9], energy [27, 
102], mitogens [38, 57] and amino acids [10, 25]. TSC 1/2 
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(tuberous sclerosis 1 and 2) are key upstream regulators 
that inhibit mTORC1 by repressing the formation of the 
GTP-bound state of Rheb (Ras homolog enriched in brain) 
[91, 171]. Two downstream effectors phosphorylated by 
mTORC1 are the eukaryotic translation initiation factor 4E 
(eIF4E)-bindng protein 1 (4E-BP1) and S6 kinase (S6K) 
[21, 30, 32, 80]. The current model posits that mTORC1 
senses environmental cues and works to positively regu-
late downstream signals of protein synthesis by controlling 
components within the translation machinery (Fig. 3b).

The mTORC2 signalling network was initially thought 
to be rapamycin insensitive [95, 157] however, recent 
studies suggest that mTORC2 does respond to rapamycin 
in certain cell types after prolonged exposure to the drug 
[147, 158]. Less is known about the mTORC2 pathway 
however it has been shown to associate with the ribosome 
and is required for activation [196]. mTORC2 has been 
shown to regulate three kinases: Akt [159], serum- and glu-
cocorticoid-induced protein kinase 1 (SKG1) [65] and pro-
tein kinase C-α (PKCα) [157]. Akt works to phosphorylate 
downstream processes of survival, apoptosis, growth and 
proliferation as well as directly feedback into mTORC1 
signaling through the inhibition of TSC [72, 92, 94], SKG1 
affects ion transport and growth [162] and PKCα affects 
the remodelling of the actin cytoskeleton [87, 95, 157].

In addition to mediating rapamycin’s clinical use for 
preventing graft rejection after organ transplantation and 
for treating autoimmune disorders, the components of the 
mTOR pathway have also been implicated in many other 
conditions including obesity related type 2 diabetes [105, 
112, 148, 174, 175] and cancer [73, 182, 189]. Indeed, 
mutations in negative and positive regulators of mTOR 

signaling are among the most common tumour suppressors 
and oncogenes that arise in cancer patients. As a result, a 
number of rapamycin derivatives (rapalogues) have been 
approved for the treatment of various cancers [18]. More 
recently, rapamycin has been explored as a treatment for 
age related diseases after the drug remarkably was shown 
to increase the lifespan of yeast [149], nematodes [152], 
fruit flies [24] and mice [3, 82, 129].

Rapamycin exemplifies the enormous value that eukar-
yotic targeting compounds can have through the explora-
tion of the drug’s mode of action. In addition to the drug 
and its derivatives being useful therapeutics with a variety 
of applications, they serve as chemical probes that can be 
used to elucidate the inner workings of complex biological 
pathways.

Targeting neurotransmission: avermectin

The avermectins are a class of macrocyclic lactones that 
have broad-spectrum activity against nematodes and 
insects, but that lack antimicrobial activity. In the 1970s 
researchers at the Kitasato Institute isolated S. avermitilis 
(also referred to as S. avermectinius) from a soil sample on 
a golf course in Shizuoka Prefecture, Japan. The fermen-
tation of this microbe was found to have potent activity 
against helminth parasitic worm Nematospiroides dubius 
and remarkably cured the worm-infected mice with little 
to no toxicity [31]. Soon following, these compounds were 
identified as a mixture of eight isomers of which avermec-
tins B1a and B1b were found to be the most potent deriva-
tives [139] (Fig. 4a).

Fig. 3   a The chemical structure and binding regions of rapamycin 
(Prod. S. hygroscopicus). b In mammals, rapamycin forms a ter-
nary complex with FKBP12 (FK506-binding protein 12) and mTOR 

within the mTORC1 (mammalian target of rapamycin complex 1). 
This pathway is implicated in sensing environmental cues that regu-
late major cellular outputs
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Avermectin disrupts glutamate-gated chloride channels 
(GluCls) in nematodes [6, 7] and insects [43, 99] that play 
a critical role in muscle contraction required for locomo-
tion and feeding. The GluCl channel belongs to a Cys-loop 
receptor family and is comprised of five subunits. These 
respond to glutamate to allow the influx of chloride ions 
to transmit an action potential from the presynaptic to the 
postsynaptic neuron (Fig. 4b). Avermectin disrupts this pro-
cess by irreversibly inserting itself between the transmem-
brane domains thereby causing ions to constitutively leak 
through the compromised channel [84]. This results in the 
hyperpolarization of the neuromuscular synapses causing 
paralysis and subsequent death. It is selective for nematode 

parasites because mammals do not have GluCls but instead 
have the evolutionarily related gamma-aminobutyric acid 
(GABA) receptor channels [188]. While avermectin can 
bind GABA receptors in the mammalian central nervous 
system, the pharmacological effectiveness of the drug is 
owed to its inability to cross the blood–brain barrier [160, 
161].

Initially, avermectin was studied for use in veterinary 
medicine and animal husbandry. The medical formulation 
of the drug, ivermectin, became useful in agriculture, sav-
ing livestock affected by ectoparasitic arthropods and endo-
parasitic helminth nematodes [34]. But the most signifi-
cant contribution that this drug has had was its use to treat 
river blindness, a disease caused by the parasite Oncocerca 
volvulus that is transmitted by the black fly. Ivermectin is 
credited for significantly reducing morbidity and transmis-
sion of onchocercal infections in the endemic regions of 
sub-Saharan Africa and Latin America preventing an esti-
mated 600,000 cases of river blindness [26].

Targeting nucleo‑cytoplasmic transport: 
leptomycin B

Like many compounds that target the eukaryotic cell, lep-
tomycin B and its derivatives were originally identified in 
screens for antifungal and antitumor antibiotics [77–79, 
110]. In 1994, Nishi et al. identified a mutant of the crm1 
(chromosome region maintenance) gene that conferred 
leptomycin B resistance in fission yeast [135]. This gene, 
previously reported by Adachi and Yanagida [1], affected 
higher order chromosomal structure and resulted in an 
identical phenotype when mutated compared to leptomycin 
B-treated cells [135]. This provided strong evidence that 
the molecular target of leptomycin B was CRM1, a protein 
that belongs to the importin-β-like family of nuclear trans-
port machinery that mediates the export of proteins and 
RNAs out of the nucleus [192].

In order to understand how leptomycin B works, it is 
important to first recognize the role that the nuclear enve-
lope plays in the cell. That is, the physical separation of 
the genome and cytoplasm, a central feature of eukaryotic 
cells. The trafficking of proteins and RNA is a highly coor-
dinated process that takes place across the nuclear enve-
lope which is contiguous with the endoplasmic reticulum 
and contains anywhere between 200 and 2000 nuclear pore 
complexes (NPC) that facilitate bi-directional transport 
between the nuclear and cytoplasmic compartments.

Later, in a screen carried out by Wolff et al. leptomycin 
B was identified as an inhibitor of the nuclear export of Rev, 
a protein required for trafficking of HIV-1 mRNA from the 
nucleus to the cytoplasm [187]. This coincided well with 
the fact that leptomycin B prevents the cargo-loading of 

Fig. 4   a The chemical structure of avmermectin B1a and B1b (Pro-
duced by S. avermitilis). b (Left) At the neuromuscular junction, 
action potentials are transmitted from the presynaptic to the post-
synaptic cell via the neurotransmitter glutamate binding to the GluCl 
(glutamate-gated chloride channel) allowing the influx of chloride 
ions. (Right) Avermectin acts as a GluCl agonist by increasing ion 
influx resulting in irreversible hyperpolarization
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proteins that carry leucine-rich nuclear export signals (NES) 
that are to be transported to the cytoplasm through the 
nuclear pore [62] (Fig. 5b). It does so by forming a covalent 
bond with CRM1 where inactivation is thought to occur by 
a Michael-type addition between the α, β- unsaturated lac-
tone terminus of the compound and a key cysteine residue 
that is essential for leptomycin B sensitivity [111] (Fig. 5a).

The specificity of leptomycin B has been used to validate 
the CRM1-dependent export of many NES- containing pro-
teins including actin [181], cytokines [140], tyrosine kinases 
[169], cyclin-CDK [75, 191], MDM2/p53 [64], inhibitors of 
NF-κB transcription [155] and MHC class II complexes [36]. 
Inhibition by this drug results in the accumulation of these 
key regulatory proteins which eventually leads to cell death.

Efforts have been made to improve the therapeutic efficacy 
through the synthesis of leptomycin B semi-synthetic deriva-
tives [132]. However, in contrast to many of the well-known 
actinomycete-derived molecules that target eukaryotic organ-
isms, leptomycin B has gained most of its notoriety as a pow-
erful experimental tool to probe biological complexity.

Targeting the proteasome: epoxomicin

The 20S proteasome is found in all eukaryotic cells where 
it serves to degrade proteins during their natural turn-over 

cycle or proteins that have been misfolded or have sus-
tained other damage. One way that proteins are targeted for 
proteolysis is via a post-translational modification called 
‘ubiquitination’. This involves the ligation of a small regu-
latory protein called ubiquitin to the protein; ubiquitin is 
then recognized by the proteasome resulting in targeting of 
the modified adduct for degradation [68].

The α’,β’-epoxyketone epoxomicin specifically targets 
proteasomes, a key protease of intracellular protein deg-
radation. Epoxomicin was discovered in 1992 through a 
screening programme at Bristol-Myers Squibb in Tokyo, 
Japan and is produced by the unidentified actinomycete 
strain Q996-17 where it was initially reported having anti-
tumor activity against B16 melanoma cells in mice [76].

The chemical structure of epoxomicin consists of four 
linked peptides with an unusual terminal epoxy ketone 
group (Fig.  6a). This chemical moiety is highly reactive 
and is therefore considered the ‘warhead’ or ‘pharmaco-
phore’ of the drug due to the triangular epoxy ring having 
highly strained 60° bond angles which are more stable once 
decyclized by nucleophilic attack. This inherent instabil-
ity led to the near abandonment of further development of 
the drug [100]. However, efforts to understand the epox-
omicin’s mode of action were continued hoping to gain a 
better understanding of its antitumor activity.

The peptidic nature of epoxomicin allowed Meng et al. 
to synthesize the drug with ease which was then bioti-
nylated to chemically attach and immobilize the drug 
to an affinity column [128]. This, remarkably, led to the 
epoxomicin-binding proteins being identified as compo-
nents of the catalytic β subunits of the 20S proteasome: 
low-molecular mass polypeptide-7 (LMP7, β5i), subunit 
X (PSMB5), which confer chymotrypsin-like activity and 
multicatalytic endopeptidase complex like 1 (MECL1, 
β2i), subunit Z (β2), which confer trypsin-like activity to 
the proteasome. Consistent with the fact that epoxomicin 
preferentially inhibits the β5 subunit of the core proteaso-
mal particle, epoxomicin is highly selective against chy-
motrypsin-like activity—that is the inhibition of protein 
cleavage after aromatic and hydrophobic amino acid resi-
dues such as tyrosine, tryptophan and phenylalanine [53, 
128] (Fig. 6b).

Groll et  al. then co-crystallized epoxomicin bound to 
the yeast 20S proteasome to elucidate the exact molecu-
lar mechanism of the epoxomicin-proteasome interaction. 
The three-dimensional molecular interaction between the 
drug and the proteasomal catalytic subunit revealed that a 
covalent linkage with the N-terminal threonine of the pro-
teasome forms a six-membered morpholino ring [71, 183]. 
Also showing that epoxomicin fits well into the pocket sur-
rounding the threonine residue within the active site, pref-
erentially binding to the chymotrypsin-like pocket, and at 
higher concentration than the trypsin-like pocket.

Fig. 5   a The chemical structure of leptomycin B. b Nucleo-cyto-
plasmic transport of protein cargo with a leucine-rich NES (nuclear 
export signal) by exportin/CRM1. Leptomycin B inhibits the loading 
of exportin with the cargo and Ran-GTP by alkylation
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To understand epoxomicin’s activity on a cellular level, 
we will shortly recapitulate the function of the proteasome, 
the key protease for short-lived proteins regulating a broad 
variety of cellular processes such as cell cycle progres-
sion, gene expression, protein quality control and stress 
response. Well known proteasomal substrates include cyc-
lins [14, 22], caspases [133, 168], p53 [122], p27 [120] 
BCL2 [118] and nuclear factor κB (NF- κB) [142]. The 
inhibition of their proteolysis triggers apoptosis. Thus, 
chemically induced apoptosis by proteasome inhibitors 
such as Bortezomib (Velcade®) are successfully used to 
combat the progression of certain cancer cells.

Several lines of evidence suggest a heightened depend-
ency on protein quality-control mechanisms mediated by 
the ubiquitin–proteasome system in cancer cells [74, 85, 
120]. Because of this, epoxomicin in combination with pro-
teasome inhibitors are exceptional candidates as antineo-
plastic therapeutics that can have a very potent cytotoxic 
effects in cancer cells. In phase I and II clinical trials, inhi-
bition of the 20S proteasome is highly cytotoxic to plasma 
cell cancer multiple myeloma [163] and mantle cell lym-
phoma [137]. The high expression of proteasomes in pro-
liferative blood cells also suggests that proteasome inhibi-
tors are potentially suited to haematopoietic malignancies 
[97]. The drug form of epoxomicin (Carfilzomib) is now 
released as an FDA-approved treatment for relapsed multi-
ple myeloma and is currently undergoing phase III clinical 
trials [96, 100, 126, 180]. Presumably, higher expression of 
proteasomes in blood cells compared to peripheral tissues 
may diminish the drug’s access to solid tumors which may 
limit proteasome inhibitors to blood cancers [47].

Epoxomicin is a rare compound that specifically tar-
gets a unique process in eukaryotic organisms, namely 

chymotrypsin-like activity of the proteasome. Similarly, 
some other actinomycete-derived proteasome inhibitors: 
lactacystin [58] and salinosporamide [59], also inhibit the 
β5 catalytic subunit of the 20S proteasome which suggests 
that the proteasome may be a common target for natural 
products of microbial-origin. There are likely a number 
of natural products that inhibit the proteasome yet to be 
discovered.

Eukaryotic targets are more diverse 
than prokaryotic targets

Target diversity

The targets of antibacterials are conspicuously concen-
trated in four pathways: DNA synthesis, RNA synthesis, 
protein synthesis and cell wall synthesis [106]. Indeed, 
there are often multiple targetable proteins in each path-
way. For example, tetracycline targets the small 30S ribo-
somal subunit, chloramphenicol targets the large ribosomal 
subunit and kirromycin targets EF-Tu. Aside from a few 
minor antibiotics and antibiotic targets (e.g., platensimycin 
inhibits fatty acid biosynthesis and daptomycin disrupts the 
cell membrane) these central components of macromolecu-
lar synthesis are the targets of virtually all naturally occur-
ring antibiotics that are known at this time.

To date we have identified far fewer eukaryote-active 
compounds than prokaryote-active compounds among the 
secondary metabolites produced by actinobacteria. How-
ever, the contrast in target diversity could not be greater 
(Fig. 7). Indeed, Table 1 reveals at least 20 distinct molecu-
lar targets in most of the major organelles of the eukaryotic 

Fig. 6   a The chemical structure 
of epoxomicin. b Epoxomicin 
inhibits the β5 subunit of the 
core 20S proteasome thereby 
inhibiting protein degradation
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cell. In fact, the common antibacterial targets (DNA syn-
thesis, RNA synthesis and cell wall synthesis) are under-
represented relative to the high number of other identified 
molecular targets in eukaryotic cells.

There are many biosynthetic processes for which there 
are no natural product inhibitor, and others for which 
there are only one or two that are known. This, again, is 
in marked contrast with the antibiotics where dozens of 
distinct compounds are known that inhibit common targets 
within bacteria. This suggests that we have yet to reach 
saturation of possible eukaryotic targets and that additional 
compounds of interest await discovery. We wonder in par-
ticular, whether there are bacterially produced inhibitors 
of peroxisome biogenesis and function, centrosomes, or 
even components of key signaling pathways like the Janus 
kinase/signal transducers (JAK-STAT) pathway, the mito-
gen-activated protein kinase (MAPK) cascade or regulators 
of the cell cycle cascade.

How might these questions be addressed? We suggest, 
as a foundational concept, that any eukaryotic pathway that 

has been in contact with actinobacteria since its appearance 
in evolutionary time has a potential biochemical target for 
a secondary metabolite. The remarkable (though far from 
exhaustive) description of compound/target interactions 
that we have provided certainly supports this. Therefore, 
we propose that more concerted screening campaigns of 
actinobacterial metabolites against model eukaryotes is a 
timely and exciting response to this question. These screens 
should harness more than just live/dead screening. In other 
words, we should look for interesting developmental and 
behavioural phenotypes using the well-developed model 
systems. And in designing screens, we should harness the 
known molecular biology of the various pathways of inter-
est. In doing so, and by avoiding simple live/dead screens 
only against microbes, we could avoid the rediscovery of 
known compounds such as daunorubicin, bafilomycin and 
cycloheximide and focus our attention on novel chemical 
scaffolds.

For example, the roundworm Caenorhabditis elegans 
could be screened for compounds that act via components 

Fig. 7   The highly diverse eukaryotic targets of actinomycete metabolites
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the nervous system and confer motility defects [98]. The fly 
Drosophila melanogaster could be screened for compounds 
that interfere with a myriad of developmental pathways, 
most of which are conserved in humans [143]. Fruiting 
body formation in the amoeboid organism Dictyostelium 
discoideum could serve as a reporter for cell adhesion and 
cell sorting [60]. The simple mustard plant Arabidopsis 
thaliana offers numerous possibilities for the identification 
of compounds that interact with the photosynthetic appa-
ratus or other conserved pathways in the plant Kingdom 
[107]. Indeed, chemical perturbation of the life cycles of 
many well-characterized eukaryotic organisms also offers 
the potential for unique insights into both morphogenesis 
and hidden mechanistic details of eukaryotic cell biology.

We note that the road blocks encountered in antibacte-
rial screening will also be encountered in these searches. 
Low levels of expression of many secondary metabolic 
compounds would necessitate strategies for the search for 
cryptic metabolites, many of which now exist. And the 
rediscovery of known compounds will also confound some 
screens. However, this confluence of technologies, the rap-
idly expanding database of actinobacterial genomes, and 
the wide-spread interest in chemical inhibitors of eukary-
otic life suggests that the time has never been better for 
a concerted search for new eukaryote-active secondary 
metabolites.
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