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ABSTRACT

Objective With the emergence of experimental
therapies for Duchenne muscular dystrophy (DMD), it is
fundamental to understand the natural history of this
disorder to properly design clinical trials. The aims of
this study were to assess the effects produced on motor
function by different DMD genotypes and early initiation
of glucocorticoids.

Methods Through the NorthStar Network,
standardised clinical data including the NorthStar
Ambulatory Assessment score (NSAA) on 513 ambulant
UK boys with DMD were analysed from 2004 to 2012.
For the analysis of the genetic subpopulation, we also
included data from 172 Italian boys with DMD. NSAA
raw scores were converted into linear scores.

Results On the linearised NSAA, we observed an
average decline of 8 units/year (4 units on raw NSAA
analysis) after age 7. The median age at loss of
ambulation (LOA) was 13 years (95% Cl 12.1 to 13.5);
2 years prior to LOA, the estimated mean linearised
NSAA score was 42/100 (13/34 raw scale). Starting
glucocorticoids between 3 and 5 years conferred an
additional gain in motor function of 3 units/year

(1.3 raw units) up to age 7. When analysing the effect
of genotype in the UK and ltalian cumulative cohorts,
individuals with deletions amenable to exons 44 and 46
skipping declined at a slower rate over 2 years (9 units
(4 raw units), p<0.001), while 53 and 51 skippable
deletions showed a faster decline of 14 (4.5; p<0.001)
and 5 linearised units (2.4 NSAA units; p=0.02),
respectively.

Conclusions Our study provides a novel insight on the
current natural history of DMD, which will be
instrumental for the design of future clinical trials.

INTRODUCTION

Duchenne muscular dystrophy (DMD) is a life-
limiting neuromuscular disorder, affecting 1/5000 live
males," which results in progressive weakness, loss of
ambulation (LOA) and death by the third-fourth
decade of life.”  In recent years, a number of experi-
mental therapeutic approaches have been developed
aiming at restoring the absent dystrophin protein in
muscles, including: exon skipping by antisense oligo-
mers,* * suppression of stop codon mutations,® ” and
gene therapy® ” targeting specific mutations of the
dystrophin gene. Other non-mutation-dependent
approaches include idebenone, a potent antioxidant; '

Y Manzur, "3 Francesco Muntoni, '3

tadalafil, which affects muscle blood flow; and the
upregulation of utrophin, a molecule which may com-
pensate for the lack of dystrophin in skeletal muscle.'’
The overall natural history of DMD has changed
significantly in recent years. With the introduction
of glucocorticoid (GC) therapy and systematic
implementation of the standards of care, LOA and
life expectancy are gradually shifting to a later age,
requiring continuous monitoring of the evolving
clinical course DMD.'*™" In addition, mutation-
specific therapeutic approaches have generated the
need for understanding the natural progression of
the targeted genotype subgroups, especially if differ-
ences from the overall DMD population exist. It is
recognised, for example, that some patients with
mutations skippable by exon 44 or 45 may present
an intermediate phenotype, due to an elevated
number of revertant fibres and residual dystrophin
expression;'® ' however, the influence of the differ-
ent genotypes on disease course appears to be
modest according to a recent study.'® Furthermore,
the course of DMD can also be influenced by age at
the starting GC and GC regimen."® 2° The standards
of care suggest initiating GC in the plateau phase;” *
the additional benefit of starting therapy at a
younger age has been reported in a small case-series
of children?! which invites further exploration.
Clinical trials design of rare progressive disor-
ders, such as DMD, poses various challenges: (1)
the number of patients who can be recruited into
studies is often limited. In case of exon skipping,
recruitment is mutation-specific, making it prob-
lematic to run large and well-powered studies; (2)
cohorts may be too small to allow for a placebo
arm, and small cohorts may not be representative
of the natural variability even within a genotype,
thereby leading to skewed results; (3) validated
outcome measures may only capture a snapshot of
the progression of the disorder and not be applic-
able to different stages of the condition, further
limiting the number of patients recruitable into
studies (eg, the 6 min walk distance test (MWD),*?
a validated primary outcome measure in a number
of clinical trials, can only be performed in ambu-
lant individuals); (4) most of the future genetic
therapy approaches will target small cohorts due to
the high costs of experimental therapies and chal-
lenges of running large multinational studies and
will also need long-term follow-up to allow
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ascertainment of potential side effects, thereby emphasising the
need for precise subgroup characterisation.

Large natural history studies, if systematically conducted, can
meaningfully inform the design of clinical trials, by offering an
up-to-date description of the progression of the condition
according to concurrent standards of care, and a valid platform
of natural history data to guide both inclusion criteria and
outcome measure selection.

In our study, which focused on the NorthStar Ambulatory
Assessment (NSAA) as a measure of motor function, our objec-
tives were as follows: (1) to assess the NSAA evolution in ambu-
lant boys with DMD in the UK treated according to the agreed
standards of care; (2) to describe the rate of progression of a
subgroup of young boys with DMD in the UK treated with GC
below 35 years of age; (3) to describe the NSAA rate of decline
in DMD stratified for DMD genetic mutations including indivi-
duals in the UK and in the Italian neuromuscular clinical
network.

METHODS

Through the UK NorthStar Network and database, which
encompasses 17 neuromuscular centres, clinical data from 2004
to 2012 on 513 ambulant boys with DMD between 3 and
16 years of age (mean age 9.5 years) were included in the ana-
lysis. The database systematically collects clinical information on
boys with DMD in the UK. The diagnosis is confirmed in most
cases by DNA diagnostic technique covering all DMD gene
exons and/or a muscle biopsy. Mutations were classified accord-
ing to the Leiden Muscular Dystrophy database.”® All patients
included in the analysis were treated according to the standards
of care,” * comprising therapy with GC administered either as
daily prednisolone/deflazacort or intermittently (ie, prednisol-
one 10 days on:10 days off or alternate days'® 2°).

For the analysis of the young patient with DMD, we
addressed the evolution in UK boys from 3 years onwards, com-
paring those who started GC before and after § years of age, as
this would be a relevant population for future clinical trials.

NorthStar Ambulatory Assessment

The NSAA is a validated unidimensional functional scale for
ambulant boys with DMD.?* #° The scale is suitable for multi-
centric studies,”** and is widely used internationally, in clinical
settings and as secondary outcome measures in clinical trials.
Both traditional and modern psychometric (Rasch) analysis has
confirmed this to be a robust scale.?” Recently, an updated line-
arised version of the scale has been developed following an
in-depth Rasch analysis, to improve the interpretation and cap-
turin%gof clinically meaningful changes across the breadth of the
scale.

Statistical methods for the UK data set

We used frequencies and percentages to describe the number of
boys with each mutation. We described the median and other
percentiles for age at LOA, along with 95% CI using the
Kaplan-Meier method.

Previous work showed a difference in the relationship
between motor function and age, up to 7 years of age compared
with later on in childhood;!31% 18 20 29 30 therefore, we
decided to look at these two time periods separately for the pur-
poses of this study.

NSAA score was our primary outcome; additionally, we con-
verted the raw NSAA total scores into linearised scores. Using
the Rasch methodology reported recently,”® the conversion was
performed via a logit transformation, and this formed a

linearised score on a 0-100 scale. We used this linearised trans-
formation of the NSAA scale in all subsequent analyses and
present the results in terms of this linearisation. The benefit of
this approach is that the change score means the same across the
breadth of the scale. Furthermore, analyses were repeated for
the raw NSAA score scale and results are presented in brackets
as raw scores are perhaps more readily understood by clinicians.
The tranformed score was calculated using the total NSAA score
minus 2 (ie. the score for “lifts head” as this item misfits the
construct for ambulation) Now out of 32, the raw scores were
converted to 100 points on the new scale as reported.”® For
some children, the lifts head component of the NSAA scale was
missing; therefore, it was not possible to convert their total
NSSA score to the linearised score. We performed a sensitivity
analysis considering several possible values for the missing lifts
head score and derived the corresponding linearised scale. We
found that the results from these analyses were robust and there
was no impact on subsequent findings. We fitted a separate
multilevel model for each age period (data over age 7 years and
data under 7 years), with a random effect for patient, nested
within a random effect for centre. We modelled the relationship
between NSAA and age and adjusted for age at start of GC and
treatment regimen. In addition, by including interaction terms
in our models, we explored whether the rate of deterioration
after age 7 or improvement in motor function up to age 7
varied according to the type of mutation: duplication, deletion
or point mutation. For the early time period, we explored
whether there was a difference in improvement in NSAA
between those boys who started treatment early (before age 5)
and those who started later (between 5 and 6.5 years), by fitting
an interaction term. Simple comparisons for items in the NSAA
scale were made between early and late starters using t tests.
Similarly, BMI z scores®' were compared between early and late
starters.

Fractional polynomials were used to check for any non-
linearity in the relationship between independent factors and
NSAA outcome.

Populations with skippable deletions—UK and Italian

data sets

Genetic information was available for 442 of 513 UK boys
(figure 1). Mimicking the setting of phase II and phase III clin-
ical trials for the subanalysis of the skippable genotypes, we
included:

(1) All boys with DMD >35 years of age; (2) with a trans-
formed NSAA total score of 52/100 at time O/baseline (corre-
sponding to ~230 m 6MWD;'? (3) and on stable GC for a
minimum of 3 months at baseline; (4) boys with at least
24 months of longitudinal data.

This resulted in a reduced data set of 223 boys with DMD
from UK, which was combined with 172 boys with DMD with
the follow-up by the neuromuscular Italian clinical network coor-
dinated by the Department of Paediatric Neurology, Catholic
University, Rome. Of the Italian boys with DMD, 74 had specific
skippable deletions: 20 with deletion exons 44/46 skippable;
1 with exon 44 skippable; 17 with exon 51 skippable, 1 with
exon 51 or 53 skippable; 25 with exon 53 skippable; 8 with
exon 50 skippable; 2 with exon 52 skippable.

Statistical methods for skippable populations

We compared the change in linearised NSAA over time between
skippable exons for the UK and Italian data combined. For the
Italian patients, data were available at fixed time points, at
12 months and 24 months follow-up. We created a similar
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Figure 1
registered in the NorthStar database.

format of data from the UK NorthStar database using fixed data
+1 month and combined the two data sets together (n=223
+172=395 DMD). Since a small minority of boys with DMD
can benefit from skipping more than one exon, we fitted a series
of multilevel models, each including two interaction terms to
compare the rate of decline in NSAA between those boys with
and without a particular exon skip. The first interaction term
compared the decline over 12 months, and the second the
decline over 24 months. All models included a random effect
for patients nested within the country; we adjusted for age at
the follow-up and treatment regimen.

All analyses were conducted in Stata, and for all tests a
p value of <0-05 was considered statistically significant.’?

RESULTS

UK NorthStar data set

Age at LOA

In the UK NorthStar database, ambulation was lost in 137/513
boys between 9.5 and 16 years, including all GC treatment regi-
mens. The median LOA was 13 years (95% CI 12.1 to 13.5).
We also calculated the 10th centile: 9.5 years (95% CI 9.1 to
9.9); the 25th centile: 10.9 years (95% CI 10.1 to 11.1); and
the 75th centile: 16 years (95% CI 15 to na).

NSAA slope of decline in boys >7 years of age

It has been previously reported that DMD boys gain motor
function up to 7 years of age, after which they start to
decline.’? 1 20 22 29 30 1y our cohort, the overall slope coeffi-
cient was —7.8 (95% CI —-8.8 to —6.9; —=3.7, 95% CI —4.1 to
—3.3), meaning that our DMD population, on average, lost 8
linearised NSAA units/year after age 7 (figure 2). The estimated
linearised NSAA score at age 7 was 73.4 (95% CI 70.3 to 76.5;
27.4, 95% CI 26.1 to 28.6). When compared to the whole
DMD population, a positive interaction coefficient 0.7 (95% CI
—1.9 to 3.3; raw NSAA:0.5 (95% CI —0.7 to 1.7)) suggested a
possible trend for a slower decline in boys with duplications
(p=0.5), and a trend towards a more rapid decline in boys with
point mutations (interaction coefficient=—1.5; 95% CI —4.1 to

Point mutations (n=62)

14%

Duplications (n=54)

12%

Exon 44 skippable
deletions (n=12)
3%

Exon 44 /46 skippable
deletions (n=16)
4%

Exon 51 skippable Exon 45 skippable
deletions (n=57) deletions (n=36)
13% 8%

Genotype breakdown of individuals registered in the UK NorthStar Clinical database. Genetic information was available for 442 UK boys

1.1; p=0.2; raw NSAA:—0.3 95% CI —-1.5 to 1.0); however,
neither of these differences was significant.

In order to determine which NSAA score may best predict
LOA within 24 and 12 months, assuming a mean LOA of
13 years, we estimated the mean linearised NSAA score from
our model, which in our population was 41.9 units (95% CI
38.5 t0 45.35 12.6, 95% CI 11.2 to 14.1) 2 years prior to losing
ambulation, and 34 units (95% CI 30.1 to 38.0) (8.9, 95% CI
7.2 to 10.7) 1 year prior to LOA.
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Figure 2 Linearised NorthStar Ambulatory Assessment (NSAA) slope
of decline in boys > 7 years of age. With an average linearised NSAA
score of 73.4 (95% Cl 70.3 to 76.5) at age 7 (raw NSAA: 27.4, 95% Cl
26.1 to 28.6), the overall slope coefficient was —7.8 (95% Cl —8.8 to
—6.9; raw NSAA: —3.7, 95% Cl —4.1 to —3.3), meaning that our
Duchenne muscular dystrophy (DMD) population on average lost 8
linearised NSAA units for each year, after age 7. At 8 years of age, the
mean linearised NSAA was 65.5 (95% Cl 62.7 to 68.4; 23.7, 95% Cl
22.6 to 24.8), while at 10 years of age it was estimated to be about
49.7 units (95% Cl 46.8 to 52.8; 16.3, 95% Cl 15.1 to 17.5). The
mean linearised NSAA score was 42 units and 34 units 24 and

12 months before losing ambulation (equivalent to 13 and 9 raw
scores, respectively).
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NSAA in young boys with DMD

Prior to 7 years of age, young DMD boys improve their motor
function, with an overall gain of 4.0 linearised units/year (95%
CI 2.2 to 5.8 p<0.001; 1.4, 95% CI 0.6 to 2.1), adjusting for
the GC treatment regimen. As part of this analysis, we explored
the impact that starting GC before age 5 may have on DMD as
measured by the NSAA. When comparing 78 DMD boys, who
started daily/intermittent GC before age 5 (mean age at
start=4.5 years) with 163 boys who started GC between ages 5
and 6.5 (mean age at start=35.7 years), the coefficient of inter-
action was —2.7, (95% CI —6.8 to 1.3, p=0.2), favouring early
starters by almost 3 linearised units a year (figure 3; Raw
NSAA:-1.3, 95% CI -3.0 to 0.3, p=0.1). By age 7, the mean
total NSAA was different between the two groups (p<0.01):
73.8 (95% CI 67.5 to 80.1; 27.0, 95% CI 24.6 to 29.4) in
early starters and 68.7 (95% CI 64.1 to 73.4; 25.1, 95% CI
23.2 to 26.9) in the late-starter group.

A difference between the two groups was observed in the fol-
lowing items of the scale: standing on heels (p=0.002),
jumping (p=0.004), hopping (p=0.001), lifting head
(p=0.009), standing to sit (p=0.008) and the 10m run
(p=0.05). The mean SD BMI for early starters and late starters
showed no statistical difference at 7 years (p=0.2).

NSAA in UK and Italian skippable populations

For this subanalysis, we included 395 DMD (ie, 223 UK+172
Italian) boys meeting the age/motor function and GC require-
ment for inclusion criteria in most of the ongoing clinical trials
as described in the methods above. The whole population
showed a decline of 5 units (95% CI-6.5 to —3.5; p<0.001) at
12 months and 13.8 (95% CI —-15.7 to —12.0; p<0.001) at
24 months. When compared to the whole DMD population,
boys skippable by exons 44 (n=27) and 46 (n=34) showed a
slower decline, which became significant at 24 months
follow-up (table 1 and figure 4). The interaction coefficient for
the population skippable by exon 44 was 2.5 (95% CI -3.2 to
8.3) at lyear (p=0.39) and 9.1 (95% CI 2.3 to 15.9) at

100
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Age (years)

e Early starters
¢ Late starters

Prediction for early starters
=== Prediction for late starters

Figure 3  NorthStar Ambulatory Assessment (NSAA) in boys with
Duchenne muscular dystrophy (DMD) <7 years of age. The interaction
coefficient between 78 boys with DMD who started daily or
intermittent glucocorticoid (GC) before the age of 5 with 163 boys who
started steroids between ages 5 and 6.5 years was —2.7 (95% Cl —6.8
to 1.3, p=0.2; raw NSAA: —1.3, 95% Cl —3.0 to 0.3), p=0.1 favouring
early starters. By age 7, the mean total NSAA was 73.8 (95% Cl 67.5
to 80.1) in early starters and 68.7 (95% Cl 64.1 to 73.4) in late starters
(p<0.01; raw NSAA: (27.0, 95% Cl 24.6 to 29.4 in early starters and
25.1, 95% Cl 23.2 to 26.9 in late starters).

24 months (p<0.001), suggesting that over the course of
2 years boys with exon 44 skippable deletions lost nine points
less on the transformed NSAA scale than the remaining DMD
population (table 1A and figure 4). Similarly, boys skippable by
exon 46 showed a slower decline at 24 months with an inter-
action coefficient of 8.8 (95% CI 2.6 to 15.1; p<0.01). On the
other hand, the negative interaction coefficient for the popula-
tion skippable by exon 53 (n=41) was suggestive of a more
rapid decline overall: —6.5 (95% CI —11.2 to —1.7; p<0.01) at
12 months and—14.2 (95% CI -19.9 to -8.5; p<0.001) at
24 months (table 1A and figure 4). Similarly, boys skippable by
exon 51 (n=61) showed an increased loss of 5.7 linearised
NSAA units at 2 years (interaction coefficient —5.7, p=0.02).
We report the raw NSAA scores and interaction coefficients in
table 1B. All the above comparisons are adjusted for treatment
and age at follow-up. We found no significant difference among
the remaining populations.

DISCUSSION

In this study, we address a number of important issues regarding
the progression of DMD, which inform patients/families and
the design and interpretation of experimental therapies.

We recently reported on the general characteristics of children
followed in the UK Northstar clinical network.” In the current
study, we describe the effect of age on disease progression on a
linearised NSAA scale; we explore the effect of initiating GC at
a younger age than the current guidelines; in addition, we assess
the possible influence of DMD genotype on disease progression

Table 1 Linearised (A) and raw (B) NSAA total score: interactions
coefficients for skippable genotypes at 12 and 24 months

Linearised NSAA Linearised NSAA 12

(A) 12 months +24 months
ALL DMD —5.0 (6.5 to —3.5) —13.8 (—15.7 to —12.0)
(n=395) p<0.001 p<0.001

Skip 44 (n=27)
Skip 45 (n=31)
Skip 46 (n=34)

2.5 (-3.2 to 8.3; p=0.39)
1.8 (—3.6 to 7.4; p=0.50)
2.8 (—2.4 to 8.0; p=0.29)

9.1 (2.3 to 15.9; p<0.001)**
—3.2 (=9.7 to 3.5; p=0.35)
8.8 (2.6 to 15.1; p<0.01)*

Skip 50 (n=8) 4.3 (—6.6 to 15.2; p=0.44) 8.3-4.0 to 20.7; p=0.19)

Skip 51 (n=61) —2.5 (-6.7 to 1.8; p=025) 5.7 (-10.6 to —0.9; p=0.02)*

Skip 52 (n=9) 1.0 (-6.7 t0 8.8; p=0.79) 9.2 (0.4 to 18.0; p=0.04)*

Skip 53 (n=41) —6.5(-11.2t0 -1.7; —14.2 (-19.9 to -8.5;
p<0.05)* p<0.001)**

(B) NSAA 12 months NSAA 12+24 months

ALL DMD —2.1 (=2.7 to —1.5) —5.8 (=6.5 to —5.1) p<0.001

(n=395) p<0.001

Skip 44 (n=27)
Skip 45 (n=31)
Skip 46 (n=34)

1.3 (=0.9 to 3.5; p=0.25)
0.3 (1.8 to 2.5; p=0.75)
1.3 (=0.6 to 3.3; p=0.19)

3.9 (1.3 to 6.5; p<0.01)*
—0.6 (—3.2 to 1.9; p=0.6)
3.5 (1.1 to 5.9; p<0.01)*

Skip 50 (n=8) 1.9 (2.2 t0 6.1; p=0.37) 3.0(-1.8 to 7.7; p=0.22)

Skip 51 (n=61) —1.0 (2.6 to 0.6; p=022)  —2.4 (-4.2 to —0.5; p=0.01)*

Skip 52 (n=9) 0.4 (=2.6 to 3.3; p=0.80) 3.0 (—0.4 to 6.4; p=0.08)

Skip 53 (n=41) —2.0 (-3.8 to —0.1; —4.5 (-6.7 to —=2.3;
p=0.04)* p<0.001)**

*p<0.05; **p<0.001

The overall slope of decline is described for the overall DMD population at 12 and
24 months. Skippable genotypes are compared with all DMD, at 1 and 2 years.
Interaction coefficients (p value) suggest that boys skippable by exons 44 and 46
decline at a slower rate over the course of 2 years, while boys skippable by exons 51
and 53 decline faster.

DMD, Duchenne muscular dystrophy; NSAA, NorthStar Ambulatory Assessment.
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Figure 4 Mean (95% Cl) linearised NorthStar Ambulatory Assessment
(NSAA) total score mean (A) and change from baseline (B) for skippable
genotypes at 12 and 24 months. The overall slope of decline over

24 months is described in boys with Duchenne muscular dystrophy (DMD)
>5 years of age, with a minimum NSAA of 52/100 (raw NSAA: 17/34), and
at least 3 months on glucocorticoids at baseline. (For illustration purposes
only, the plots are shifted to avoid overlap of the 95% Cl bars).

by gathering data from a very large group of UK and Italian
boys with DMD stratified by genomic mutations.

The benefit of the linearised scores is that the change score
means the same across the breadth of the scale, whereas with
the raw score a drop of several points at a mid-level of ability
might actually mean a small loss of function (difficulty getting
on and off a small step but still independently) and a drop of
one point at either end of the scale might suddenly mean a loss
of independence rising from the floor or loss of ability to run.

To characterise the disease on linearised NSAA, through the
collaboration of the UK NorthStar clinical network, we report
the course of DMD in >500 GC-treated UK boys. We describe
the slope of progression after age 7, when motor function starts
to decline. With an average linearised NSAA score of 73 at age
7 (=27/34 in the raw scale), we observed that the overall rate of
decline on the transformed NSAA scale is 8 linearised units/
year. Recent data suggest that in the linearised NSAA scale, ~10
units are considered to capture a significant clinically meaning-
ful change, irrespective of the scores along the scale that drive
such a loss.*® This loss can mean the loss of the ability to stand
on one leg or get up from the floor independently. Therefore,
the linearised NSAA can reliably support clinical trials as a

secondary outcome measure for ambulant DMD, with the
potential to capture either stabilisation from the predicted
8-unit loss, or potentially even an improvement from baseline
during the course of a 1-year study. When conducting clinical
trials for ambulant boys, one possible outcome is that the boys
may lose ambulation during the course of the study, affecting
the overall interpretation of the study. From our cohort of
NorthStar-registered individuals, we found that in the 137 UK
boys who lost ambulation between 9.5 and 16 years, the median
age was 13 years (95% CI 12.1 to 13.5). However, as age alone
cannot serve as a predictor of LOA, we also report the estimated
mean linearised NSAA score at 12 and 24 months prior to LOA
(ie, at ages 12 and 11 years, respectively), which in our database
were 34 and 42 units (approximately 9 and 13 in the raw scale,
respectively). When selecting inclusion criteria for clinical trials
in ambulant boys, a baseline total linearised NSAA score of 50
(~16 of the raw scale) would therefore give reassurance that the
boys are very unlikely to lose ambulation over the course of a
2-year study. Mazzone et al'? reported that in their Italian
cohort followed for 24 months, the equivalent assurance was
given by performing 330 m in the 6MWD. Only 2% of the
boys, who at baseline walked at least 330 m, lost ambulation in
the subsequent 2 years. Equally in their cohort of boys, approxi-
mately 98% of boys with an NSAA score of 17/34 (~52 units in
the linearised NSAA) were ambulant after 2 years, confirming
our observation.'?

If recruiting older patients with DMD in clinical trials poses
the problem that they may lose ambulation during the course of
the study, recruiting younger individuals poses the opposite
problem: a number of patients with DMD improve their motor
function up to age 7,"3 ' 2% 2% thereby complicating the inter-
pretation of a potential drug effect against the natural disease
course. In our study, we report a functional gain of ~3 units/
year between 4-7 years (~1.5 raw NSAA), with a mean NSAA
score at age 7 of 73 (p=0.02; =27/34). We further report an
improvement of 3 additional linearised units/year in 36 boys
who had started GC <$§ years (mean age: 3.4 years) when com-
pared with boys who started GC >3, with a difference of 10
units by age 7 (p<0.01) but no difference in SD BMI in this
early phase of therapy. We lack sufficient longitudinal data to
conclude that this initial benefit is also sustained during the
decline phase and that the age of LOA is further postponed,
although data from smaller cohorts also appear to substantiate
an increased efficacy of early GC initiation.?" Additionally, we
lack sufficient longitudinal data to show if the cumulative GC
therapy has an enhanced detrimental effect on the side effect
profile. However, despite the limitation of our relatively small
cohort (n=78), the positive impact of early initiation of GC
therapy is of interest and demands future exploration.
Furthermore, our analysis provides an insight on the motor
function in this age group of patients, who are likely candidates
for future clinical trials.

As part of our study, we also explore progression of disease in
mutations amenable to genetic therapies. A number of current
experimental approaches for DMD are mutation specific,” ® 7 3372
emphasising the importance of investigating, within the disease
spectrum, possible existing variations in the natural course of each
genetic subtype, which could impact on clinical trials. Exon skip-
ping by antisense oligomer is now in phase III studies for exon 51;
molecules targeting exons 44, 45 and 53 are undergoing early clin-
ical studies. In our study, we observed that individuals with dupli-
cations deteriorate minimally slower (~1 unit/year) when
compared with individuals with point mutations and deletions;
however, this did not meet significance. In a substudy, we
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combined the Italian and UK data sets, to focus the analysis on
skippable deletions and reproduce the setting of a clinical trial. We
observed that boys skippable by exon 53 do progress more rapidly,
losing an additional 14 units over 2 years (~4-5 raw units), when
compared with the whole DMD population (p=0.001). Similarly,
individuals skippable by exon 51 declined faster, losing an add-
itional 5 units (2.5 raw units; p=0.02). In contrast, boys with dele-
tions skippable by exon 44 showed a less rapid decline measured
as nine linearised units over 24 months (p<0.001; ~4 raw units).
Within the spectrum of severity of DMD, variability in phenotype
among skippable deletions has been previously reported. Pane
et alP® observed that boys skippable by exon 44 had better baseline
results in the 6MWD and less drastic changes over the course of
1 year when compared with boys skippable by exon 53. Despite a
similar trend, their results at 1 year did not reach statistical signifi-
cance. The results of this study are consistent with this observation,
as we could not detect a significant difference at 12 months, but
only at 24 months. Similarly, Servais et al’” reported that patients
treatable by exon 53 skipping have a more severe phenotype when
upper limb function was assessed in a cohort of 14 DMD; add-
itionally, LOA had occurred 1 year earlier in 90 boys, 53 skippable,
when compared with 400 other boys with DMD. Residual dys-
trophin level can partially explain such an observed phenomenon.
Recent studies showed that a larger presence of revertant fibres,
which may favour a better outcome, is found in patients with
mutations in the region of exons 45—47,'® 7 when compared with
levels of dystrophin found in patients with mutations in the region
of exons 47-55. Residual dystrophin levels can therefore play a
role as a weak modifier of DMD progression, although further
exploration in larger cohorts should be performed in order to
power studies precisely. The size effect of these differences is small
and in practice negligible for studies lasting 1 year or less, but
should be considered for those of longer duration. This might be
particularly important in clinical trials where a treatment arm is
compared to natural history data or a subset of patients. In particu-
lar, our data would discourage the recruitment of patients with
deletions skippable for exon 44 as a comparator group for patients
with 53 skippable deletions, and vice versa. Moreover, other
disease modifiers are increasingly being reported in DMD, includ-
ing polymorphisms in SPP1%® 3% and LTBP4.*® This latter gene was
very recently independently validated in separate patient with
DMD populations.*! When interpreting response to treatment,
the combination of disease modifiers should therefore be
accounted for.

In summary, our study describes up-to-date natural history
data of the linearised NSAA scale in a large cohort of boys with
DMD in the UK and Italy. The NSAA is currently included in
clinical trials as a secondary outcome measure. Increased knowl-
edge of the natural course of the disorder and its covariates
(ie, age at starting GC and gene mutations), which can influence
the sensitivity of clinical trials, will help in the design of future
studies and interpretation of their results.
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