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Summary

With the realization that bacteria display phenotypic variability among cells and exhibit complex 

subcellular organization critical for cellular function and behavior, microscopy has re-emerged as 

a primary tool in bacterial research during the last decade. However, the bottleneck in today’s 

single-cell studies is quantitative image analysis of cells and fluorescent signals. Here, we address 

current limitations through the development of Oufti, a stand-alone, open-source software package 

for automated measurements of microbial cells and fluorescence signals from microscopy images. 

Oufti provides computational solutions for tracking touching cells in confluent samples, handles 

various cell morphologies, offers algorithms for quantitative analysis of both diffraction and non-

diffraction-limited fluorescence signals, and is scalable for high-throughput analysis of massive 

datasets, all with subpixel precision. All functionalities are integrated in a single package. The 

graphical user interface, which includes interactive modules for segmentation, image analysis, and 

post-processing analysis, makes the software broadly accessible to users irrespective of their 

computational skills.
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Introduction

It is now well-established that even isogenic populations of bacterial cells display significant 

cell-to-cell variability that can be exploited by cells to survive stressful environments. In 

addition, bacterial cells feature sophisticated spatial, and often dynamic, subcellular 

organization that is essential for cellular function and behavior. As a result, microscopy 

techniques for single-cell analysis have become essential tools for the study of virtually all 

aspects of bacterial physiology, morphogenesis and behavior. However, extracting 

quantitative and statistically meaningful information remains a major rate-limiting step. To 

help address this issue, we previously released an open source MATLAB-based software 

package, known as MicrobeTracker, that identifies and tracks cells from phase contrast 

images (Sliusarenko et al., 2011). In addition to a cell contour, cell detection results in the 

creation of a ‘cell mesh.’ The cell mesh is a geometric representation of the cell that includes 

a centerline, cell pole coordinates, and evenly spaced polygon vertex pairs orthogonal to the 

long cell axis. These reliable properties enable straightforward extraction of cellular 

dimensions and spatial decomposition of fluorescent signals into cellular coordinates 

(Sliusarenko et al., 2011). MicrobeTracker has been used for a variety of studies, producing 

over 150 citations to date. However, some inherent constraints prevent MicrobeTracker from 

addressing current needs of its growing user base (> 1,500 registered users). For instance, it 

fails to detect cells in dense samples such as microcolonies, microfluidic chambers or any 

confluent cell samples where cells are touching each other. Furthermore, the application 

cannot handle large (> 2Gb) datasets. This is at odds with the growing need for high 

computational throughput due to increased sizes of camera chips, advances in microfluidics 

and other microscopy-related techniques that can generate thousands to millions of cells to 

analyze. Furthermore, MicrobeTracker can fail to accurately detect cell morphologies that 

significantly deviate from rod shapes, limiting the types of species that can be analyzed. 

MicrobeTracker also requires a MATLAB environment, and thus a MATLAB license, 

which can be prohibitively expensive.

Here, we describe a stand-alone open-source software package named Oufti that improves 

upon the design of MicrobeTracker to address the aforementioned limitations while 

retaining subpixel cell identification. The software can be downloaded from http://

www.oufti.org/download/. The Oufti package also includes an algorithm for automated 

detection and characterization of fluorescent diffraction-limited objects in challenging 

samples where signals overlap. In addition, Oufti includes routines for subpixel detection of 

non-diffraction-limited objects, allowing quantitative characterization of nucleoids, 

filamentous structures, and subcellular objects with regular or irregular shapes. For user 

convenience, the software package provides plotting tools for data analysis, display of 

results, as well as various tools for visualization of the cell cycle and for subpixel image 

alignment and movie construction. Oufti has a user-friendly graphic user interface (GUI) 

and interactive modules so that knowledge in programming is not required for use. Oufti is 

available for Windows, Mac and Linux operating systems, has multi-thread computation, 

and is supported by a comprehensive website that includes documentation, examples, and 

interactive tutorials (please go to http://www.oufti.org to evaluate the Oufti website).
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Results and Discussion

A description of the software package is available in the Experimental Procedures section; 

for more details, please see the Oufti website. Below we illustrate key features of the 

software package.

Cell identification in confluent cell samples

When grown on solid surfaces, bacterial cells form microcolonies where cells remain in 

tight contact with each other. Growth in microfluidic devices can also produce cells that 

remain in close contact, challenging segmentation algorithms. Oufti has the ability to 

identify cells and produce cell meshes even when cells form a confluent monolayer. A 

graphical user-interface facilitates determination of the best segmentation parameters that 

isolate individual cells. As an example of cell detection in a highly crowded sample, Fig. 1 

shows Oufti contours of about 300 Escherichia coli cells in a tightly packed microfluidic 

chamber.

High-throughput analysis

A key feature of Oufti is its high-throughput capability. Due to its efficient memory 

management and multi-threading capabilities, the software can reliably process massive 

image datasets, opening the door to high-throughput analysis of large strain libraries or 

microfluidic experiments. To illustrate its performance, we analyzed a multi-chamber 

microfluidic experiment where a monolayer of E. coli cells was imaged by phase contrast 

every 8 s for 10 h, generating a dataset of about 2×106 cells. Fig. 2A illustrates Oufti’s high-

throughput workflow, and Video 1 showcases its ability to track individual cells in a 

microfluidic chamber over thousands of images. By using Oufti, the users can obtain a 

dataset from which they can extract, at the single-cell level, a vast amount of data regarding 

growth, cellular dimensions, cell lineage, cell cycle, growth rate, cell constriction, etc. (see 

Fig. 2B–F for examples), providing a wealth of information with a high degree of statistical 

power.

Precision, accuracy and computational efficiency of cell detection

Many studies require high-precision information in cell coordinates. This is crucial to obtain 

reliable measurements of cellular dimensions or to determine the spatio-temporal dynamics 

of fluorescently labeled molecules or structures. Oufti has two built-in cell detection 

methods, referred to as ‘pixel’ and ‘subpixel’ algorithms, that the user can select based on 

specific experimental needs. The pixel method entirely relies on pixel-based operations for 

cell identification, but has a local averaging function that creates smoothed (i.e., non-

pixelated) cell contours and meshes. On the other hand, the subpixel algorithm employs a 

subpixel fitting routine. To evaluate how sensitive the pixel and subpixel algorithms are to 

noise (e.g., from the camera or small deviations in focus), we determined their accuracy 

(proximity to the true cell contour) and precision (reproducibility of cell contour 

localization).

To calculate precision, we took 301 images of 116 growth-inhibited E. coli cells, obtained 

their contours for each frame and calculated the dispersion of localization for each cell edge 

Paintdakhi et al. Page 3

Mol Microbiol. Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Fig. S1). Under our imaging conditions, we found that both pixel and subpixel algorithms 

are highly precise as the variance in cell edge position was very low (Fig. 3A). However, the 

precision of the subpixel method was superior, with a peak in variance of 0.0016 pixels2 (6.6 

nm2) compared to 0.02 pixels2 (82 nm2) for the pixel method.

To measure the accuracy of cell edge determination, we simulated phase-contrast images of 

E. coli and compared cell edge localization to the true boundary of the simulated cells (Fig. 

3B). We found that the average localization error is about 0.4 pixels (26 nm) for pixel-based 

cell detection (Fig. 3C), which is close to the theoretical limit for any pixel-based method. 

Using the subpixel algorithm improves the accuracy, giving a mean localization error of 

0.23 pixels (15 nm, Fig. 3C).

Oufti can readily analyze most image datasets on a standard laptop or desktop. For example, 

a conventional PC desktop (Windows 7 with Intel i7-3770 3.4 GhZ, 16 Gb, 4 threads) 

processes 1,200 Caulobacter crescentus cells from a large (2048×2048 pixels) sCMOS 

image in about 2.5 min with Oufti’s subpixel algorithm (Supporting information, Fig. S2), 

about 2.7 times faster than with MicrobeTracker. Using Oufti’s pixel algorithm brings the 

processing time for cell identification down to 6.6 s (with cell mesh) or 4.2 s (cell contour 

but no cell mesh), improving speed over MicrobeTracker by about 5 and 10 times, 

respectively. Oufti’s compatibility with high performance computing (HPC) further extends 

its potential for massive dataset size, where the only limitation comes from the number of 

CPU threads available on the host system.

Algorithm selection should be based on the sample and experiment. The subpixel algorithm 

is best used on confluent cell samples, poorly contrasted images, experiments for which the 

algorithm’s greater precision and accuracy would make a difference, or time-lapse 

experiments when cell lineages need to be tracked and cells need to be split because of 

division. In other situations, the user may want to use the pixel-based algorithm, which is 

comparatively much faster.

Identification of various cell morphologies

Oufti can handle various cell morphologies commonly found in the bacterial world, 

including —but not limited to—rods, curved rods, spheres, long filaments, and helices, even 

with the subpixel algorithm (Fig. 4A–C). It can also accommodate irregular shapes (Fig. 

4D), although less robustly with the subpixel algorithm. The software can create cell meshes 

that allow determination of spatial information relative to cellular coordinates, regardless of 

cell morphology. A key step for obtaining cell meshes is segmentation (see Tutorial on Oufti 

website). Oufti has an interactive window where users can update segmentation parameters 

and visualize the results live. In addition, the user has the option of dragging, deleting, 

adding, splitting, joining and refining cell meshes.

Detection of overlapping fluorescent foci

Beyond cell tracking and analysis, Oufti detects and quantifies fluorescence signals in cells, 

similar to MicrobeTracker (Sliusarenko et al., 2011). In addition, Oufti includes a module 

named spotDetection that identifies and characterizes cellular components (e.g., RNAs, 
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chromosomal loci, plasmids and some protein clusters) that appear as diffraction-limited 

spots in epifluorescence images. Software tools are already available for spot analysis 

(Sliusarenko et al., 2011, Skinner et al., 2013, Herbert et al., 2014). However, they tend to 

perform well only when cells have a few foci that are well-resolved from one another. This 

requirement is not always satisfied. For example, in fluorescence in situ hybridization 

(FISH) microscopy images, small regulatory RNAs tend to form multiple foci that vary in 

intensity and often overlap with each other, as exemplified with the small RNA SgrS 

involved in phosphosugar stress response in E. coli (Fig. 5A). The spotDetection module 

enables precise spot identification and localization in such challenging samples (Fig. 5B). 

This module identifies potential fluorescent foci by filtering images in multiple spatial 

scales. Each potential spot is then fit by 1 to 4 Gaussian functions. Note that the multi-

Gaussian analysis in spotDetection is optional as it adds significant computation time and a 

single-Gaussian analysis may be more appropriate when prior knowledge on the nature of 

the spots is available.

To measure the accuracy of spotDetection, we simulated diffraction-limited spots of varying 

intensities on a noise spectrum reconstructed from a CCD camera. The mean localization 

error for our simulated data was about 8 nm, 10 nm, 19 nm and 16 nm for signal-to-noise 

ratio values of 2.72, 2.29, 1.86 and 1.43, respectively (Fig. 5C). We also examined the 

performance of spotDetection in more challenging samples where simulated spot pairs 

overlapped (Fig. 5D). Even for overlapping spots that appeared as single spots by eye (spot 

inter-distance d below 225 nm), the localization error remained small (Fig. 5D).

Quantitative characterization of non-diffraction-limited objects

A number of cellular components (e.g., nucleoids, filamentous structures, subcellular objects 

with regular or irregular shapes, or proteins that form spatial gradients or patterns) produce 

signals that are not diffraction-limited and therefore cannot be characterized with a spot 

detection tool, which is designed for diffraction-limited signals. Therefore, we developed 

and implemented a subpixel method called objectDetection for characterizing the shape, 

cellular coordinates and intensity characteristics of signals that are beyond the diffraction 

limit. Fig. 6A and Video 2 illustrate the application of this utility to detect nucleoids and 

analyze their dynamics in growing and dividing E. coli cells. With this tool, we can extract 

quantitative information of detected objects. As an example, we quantified the area of 

nucleoids and cells over the course of the E. coli cell cycle (Fig. 6B shows 4 examples). 

Analysis of more than 700 cells shows that cells maintain a constant relationship between 

cell and nucleoid areas over the cell cycle (Fig. 6C).

Post-processing features

Oufti has additional useful modules enabling users to obtain plots and statistics without 

MATLAB. For example, for time-lapse experiments, Oufti offers cellListFilter, a tool that 

allows the user to visualize the growth curves of individual cells (Fig. 7A) or filter cells 

based on parameters such as cell length at birth, growth rate, cell cycle time, and root mean 

squared error of the growth curve’s exponential fit (shown on the Oufti website). This 

function can be used to curate datasets (to remove or manually correct poor cell contours) or 

to select a subset of cells with specific quantitative traits (Fig. 7B–C). The 
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‘movieConstruction’ module adjusts for shifts of images occurring during the time-lapse 

experiment by performing subpixel alignment of a region of interest over a set of time-lapse 

images defined by the user. The resulting aligned image series is then assembled and 

returned as a movie (Video 3). In the ‘cellCycleViewer’ module, the user can select a cell in 

any frame and immediately view the corresponding frame at birth and division (shown on 

the Oufti website). The ‘spotViewer’ module enables the user to verify spot identification 

and localization. In this application, the user can also manually select (or de-select) 

fluorescence foci for automatic two-dimensional (2D) Gaussian fitting (shown on the Oufti 

website).

User friendliness and accessibility

One of our goals was to make the software accessible to scientists with no formal 

computational experience. To this end, all modules have been integrated in a single, stand-

alone package that is controlled by a user-friendly GUI; no MATLAB license is required. 

The Oufti application is interactive, and allows manual intervention throughout the analysis. 

The GUI also has a number of interactive modules embedded for real-time result 

monitoring.

All Oufti analyses are returned in MATLAB format, but can be exported as a *.csv file, 

which is compatible with Excel and other programming environments. For user 

convenience, Oufti is packaged with easy-to-use modules that can be used for data analysis 

once cell and signal detection is completed (see the Oufti website). In the software package, 

these tools are categorized in the “Tools” drop-down menu within the main GUI. Beyond 

tools for displaying cells/signals and for plotting their statistics, more advanced plots such as 

demographs (Hocking et al., 2012) and kymographs can be easily produced (see the Oufti 

website).

It is our hope that the robustness, versatility and wide user accessibility of the Oufti software 

package will open the door to new quantitative studies for researchers across the broad field 

of microbial sciences. Oufti applicability can extend beyond microbe-related studies, as its 

toolbox has functionality across a wide range of images.

Experimental Procedures

Cell detection

Oufti builds on MicrobeTracker’s methods (Sliusarenko et al., 2011). Cell detection occurs 

from either phase-contrast or fluorescence images by one of three user-selected 

segmentation methods that return binary images. For Laplacian of Gaussian cell detection 

(LoG), the image is convolved with a LoG kernel. Pixel locations where the magnitude of 

the LoG-filtered image is greater than the user-defined parameter logthresh are saved as cell 

edges. The second option is the valley detection implemented from MicrobeTracker 

(Sliusarenko et al., 2011). The final option is a cross-detection method; it combines LoG 

filtering with valley detection and is computed as
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(1)

where l is the LoG filtered image, v is computed by the Valley detection method, γ is the 

mean of the 0.99 quantile of the gradient of the Gaussian filtered image, α is the standard 

deviation of LoG of an image, and β determines the thresholding strength over the cross of 

the two methods. Matlab’s bwtraceboundary function is used to convert binary segmented 

images into pixel-based cell contours.

For the ‘pixel’ algorithm, the cell contours are optionally smoothed with Fourier smoothing, 

and the user may also choose to create cell meshes (Sliusarenko et al., 2011). To reduce 

processing time, the algorithm is implemented as a multi-threaded process.

The subpixel algorithm, which is also a multi-threaded process, uses the aforementioned 

pixelated cell contours as initial guesses in an energy minimization procedure. The energy 

minimization function (Equation 2) deforms a sphero-cylinder to image objects determined 

from segmentation, as implemented from MicrobeTracker (Sliusarenko et al., 2011), with 

the modification that I0, the threshold value measured from an image region of interest, is 

computed locally.

(2)

where I is the image, D is the computed edge of an image, f⃗a is the attraction force, f⃗r is the 

repulsion force. The terms are monotonic and controlled by user-adjustable parameters a, b, 

c, d, and e. The local computation of I0 induces a local force to attract the contour to the 

object edges, thus resulting in greater accuracy of cell contours. Using a local threshold 

value for attraction forces requires fewer iterations for the energy minimization process, thus 

allowing more robust identification of cells that are confluent or that have complex 

morphologies.

The energy minimization process is generally robust for tracking cells in time-lapse 

experiments. If the optimization fails due to a large image shift in space, the user may elect 

for Oufti to align the images by measuring image differences by Fourier correlation (Guizar-

Sicairos et al., 2008) and applying the corresponding shift. In this case, the user simply 

needs to click on the ‘Align’ button prior to image analysis.

To improve computational efficiency and memory management, Oufti’s modules are 

implemented in several languages. C++ routines were written to replace built-in MATLAB 

functions to improve computational speed.

Data handling

Oufti returns numerical data that are hierarchically organized by frame and individual cells. 

For each cell, output includes cell dimensions, cell polarity, cell birth and division events, 
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lineage information, fluorescence profiles, and optional data relevant to detected spots and 

objects.

Oufti includes a ‘high-throughput’ mode, which can be selected by the user in the GUI. A 

Perl routine was created to truncate large data files and accommodate high-throughput 

analysis of large datasets. In the high-throughput mode, data is saved on the fly, frame-by-

frame, as a comma-delimited output file, with a ‘.out’ extension. Saving data in this format 

reduces the output file size compared to MATLAB’s output format, which becomes 

essential for large datasets. Oufti includes a module in the Tools tab, where users can import 

large ‘.out’ files into MATLAB format for visualization and post-processing purposes (see 

Oufti website for details).

Spot detection

By default, a Gaussian kernel is used to filter images by the a’trous wavelet method 

(Holschneider Matthias, 1990). The a’trous wavelet transformation of a function f(x) is 

computed between the difference of two consecutive approximations

(3)

where at level j, the smoothed approximation Aj(k) at pixel x is given by the convolution

(4)

where h(l) is a low-pass filter. The extension to 2D is done by convolution in the column 

and row direction with respect to x and y coordinates of the image. Objects determined from 

a filtered and thresholded image are used as initial guesses for spot localization via 2D 

Gaussian fitting

(5)

where b is the global background, h is the amplitude, x0 and y0 are the spot coordinates, and 

σ is the spread of the Gaussian. This procedure has the advantage of being able to readily 

distinguish between spots that are at or beyond the diffraction limit. Spots that are 

diffraction-limited are fit with a single Gaussian model and spots beyond the diffraction 

limit are fit with a mixture of 1–4 Gaussians. The Gaussian mixture with the best fit is 

returned. Fitting results are returned in image coordinates as well as projections onto the cell 

coordinate space.

Simulations to measure the accuracy of spotDetection

Diffraction-limited objects were simulated as
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(6)

where μx and μy are the x and y coordinates of the spot center, and σ is the standard deviation 

of the point spread function on our optical setup. f(x,y) was evaluated over all x and y less 

than or equal to 2 floor((20 σ)/2) + 1. Diffraction-limited objects were calculated as A f(x,y), 

where A was a normally distributed parameter (with mean of 10 and standard deviation of 

1.5) that controls spot amplitude. These objects were then added to camera noise, which was 

simulated by Poisson distributed random numbers of mean 100. This Poisson distribution 

was found to be similar to dark images on our optical set-up. To achieve different signal-to-

noise ratios (SN), spot amplitudes were multiplied by a constant factor 100, 200, 300, or 400 

to create SN of 1.43, 1.86, 2.29, and 2.72, respectively. Spot amplitudes in the spot-pair 

simulations were drawn from a normal distribution of mean 4000 and sigma 600.

In addition to single-spot simulations, we performed simulations to create spot pairs at 

varying distances in order to test the ability of spotDetection to distinguish overlapping 

spots. Once spots were produced as described above, second spots were produced similarly 

and their coordinates were determined as [x, y] + [cos(θ), sin(θ)]*d, where θ was drawn from 

a uniform distribution, (0, 2π), and d was a parameter that determines the radial distance 

between spot pairs.

Object detection

Images are pre-processed with a user-specified background subtraction algorithm: algorithm 

1 for a subtraction of the average intracellular pixel value, algorithm 2 for a subtraction of 

the mean value of pixels that are not part of objects that are at least diffraction-limited in 

size, algorithm 3 for a combination of the first two methods, or algorithm 4 for a subtraction 

of the mean pixel value of the dim set returned from Otsu’s method (Otsu, 1979). Following 

background subtraction, raw fluorescence images are convolved with a second derivative 

and Gaussian filter (Laplacian of Gaussian, LoG)

(7)

where x and y are pixel coordinates and σ is a user-specified parameter that controls the size 

of the convolution kernel. A cubic spline up-samples the convolution product by a user-

defined factor. Up-sampled pixels that are zero-crossing components and cross zero with a 

magnitude beyond a user-defined magnitude parameter are returned as edge vertices. Edge 

vertices are assembled into polygons and returned as image feature contours.

Precision of cell edge localization

To evaluate the precision of the pixel and subpixel cell detection algorithms, we measured 

the fluctuations of cell mesh creation between frames obtained from a time-lapse 

microscopy experiment of non-growing E. coli K12 strain BW25113. Cells were grown at 

37°C in M9 supplemented medium (containing 0.2% glucose, 0.1% casamino acid, 1 μg/ml 

thiamine) to mid-log exponential phase. Growth was arrested by the addition of 2 mM 2,4-
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dinitrophenol (DNP, final concentration). After 10 min at 37°C, cells were spotted on a 1% 

agarose pad made with the same medium and containing 2 mM DNP. They were then 

imaged by phase contrast microscopy on an Eclipse Ti-E microscope (Nikon) equipped with 

Perfect Focus System (Nikon), an ORCA-Flash4.0 CMOS camera (Hamamatsu Photonics), 

a phase-contrast objective Plan Apochromat 100x/1.45 NA (Nikon) and a SOLA light 

Engine® light source (Lumencor Beaverton) set at the specified intensity (25%, 50% or 

75%). NIS-Element Ar software (Nikon) was used for image acquisition every 0.5 sec using 

an 80-ms exposure time. For cell detection with the pixel algorithm, the parameter fsmooth 

was set to 0 to prevent Oufti from performing Fourier smoothing of the cell meshes. After 

mesh creation with the pixel or subpixel algorithm, image shifts between frames were 

calculated locally to each cell by maximizing the image Fourier correlation (Guizar-Sicairos 

et al., 2008). The image shift from each frame for each cell was applied to the corresponding 

cell mesh so that all cell meshes were aligned to frame 1. A re-sampling template was then 

constructed for each cell from its cell mesh at its first frame. Each template consisted of 

lines orthogonal to each cell mesh edge and centered on that edge. The intersection of each 

cell mesh edge from each frame and the nearest template was calculated to create one-

dimensional localization distributions for each cell mesh edge.

Accuracy of cell edge localization

To assess the accuracy of cell mesh creation, we simulated 22,500 2D phase-contrast images 

of rod-shaped cells with microlith (Mehta & Oldenbourg, 2014) with a phase-shift of pi/2, 

phase ring inner numerical aperture of 0.2, phase ring outer numerical aperture of 1.21, 

absorption of 2, wavelength of 546 nm. Virtual cells were simulated as rods with semi-

circular end-caps, random orientation and a refractive index of 1.395 (Bryant et al., 1969). 

Simulated images were scaled from 0 to 100 and camera noise was modeled by adding 

random numbers from a Poisson distribution of mean 100. The accuracy of cell contours 

was determined by measuring the distance from each cell contour vertex to the simulated 

object boundary.

Microfluidic experiments

E. coli BW25113 cells were loaded and grown in microfluidic chambers (Campos et al., 

2014, Ullman et al., 2013) in M9 supplemented medium (0.2% glucose, 0.1% casamino 

acid, 1 μg/ml thiamine) at 30°C for about 5 generations prior to imaging. Microscopy was 

performed on an Eclipse Ti-E microscope (Nikon) equipped with Perfect Focus System 

(Nikon), an Orca-R2 camera (Hamamatsu Photonics) and a phase-contrast objective Plan 

Apochromat 100x/1.45 NA (Carl Zeiss). Time-lapse images were acquired using NIS-

Element Ar software (Nikon) and images were taken every 8 s with an exposure time of 100 

ms in the phase-contrast channel.

Determination of cell division

For Fig. 2D, the cell division events were identified by measuring cell constriction. If the 

cell was constricted to a degree greater than the user-defined parameter splitThreshold, Oufti 

divided the cell and began tracking the two new daughter cells. For Fig. 2E, the constriction 

degree was computed from the cell contour and the inverted phase image. The intensity 
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profile was integrated over the cell and smoothed with a kernel of size 3 pixels with 

geometric weighting ([0.25 0.5 0.25]). The minimum value (depth of constriction) was then 

compared to the maximal values on each side of the dip in the profile to obtain a degree of 

constriction from 0 (no constriction) to 1 (fully constricted). A constriction degree value was 

computed for each cell at each time point, generating a constriction profile for each cell. For 

cell-to-cell comparison and averaging purposes, the constriction profile of each cell was then 

resampled, using linear interpolation, to match the size of the smallest constriction profile, 

keeping equivalent weights for cells with different numbers of observations (because of 

different interdivision times).

Fluorescence in situ hybridization microscopy experiment

E. coli MG1655 was grown in M9 supplemented medium (containing 0.2% glycerol, 0.1% 

casamino acid, 1 μg/ml thiamine) at 37°C until mid-exponential growth phase. The 

expression of SgrS sRNA was then induced by adding 0.1% α-methylglucoside for 3 min at 

37°C. RNA FISH was performed as previously described (Montero Llopis et al., 2010) with 

some modifications. Instead of using lysozyme, cells were permeabilized in 70% ethanol at 

room temperature for 10 min. The slides were then incubated at 37°C for 60 min in a 50% 

formamide solution (50% formamide, 2x DEPC-treated SSC). Hybridization was performed 

using a mixture of 6 LNA probes (2.5 nM each) at 42°C for 90 min in 50% formamide 

solution containing 10% dextran sulfate, 2 mM VRC, 40 U RNase inhibitor, 0.1% RNase-

free BSA, 0.5 mg/ml E. coli tRNA, 35 μg/ml calf-thymus DNA. The slides were 

subsequently washed twice in 55% formamide and 2xSSC solution for 15 min at 37°C, 

followed by a 5-min wash with 1xSSC solution at 37°C. Images were acquired with a 100X/

1.40 NA phase contrast objective (Carl Zeiss) on a Nikon Eclipse Ti-U controlled by 

MetaMorph (Molecular Devices) and equipped with a Hamamatsu Orca-II ER LCD camera. 

The sequences of the LNA probes were (with the LNA nucleotide underlined): 5′-

AACCAGCACAACTTCGCTGT, TTGTGGGACGCTTAACCAAC, 

CAGTCCTTCAAGCATGGTTA, AATTGCGGTCATCCCACTGC, 

ATGCAGGCAAGTCAACTTTC, CACCAATACTCAGTCACACA. All probes were 

modified with a TYE563 fluorescent dye (Exiqon) at the 5′-end.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Oufti detects individual cells in cell monolayers
(A) Monolayer of wild-type E. coli strain BW25113 in a microfluidic chamber. Scale bar on 

the bottom left represents 5 μm. (B) Same as (A), but with 322 curated cell contours (green) 

defined with Oufti using the subpixel algorithm.
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Fig. 2. High throughput analysis of a microfluidic experiment with Oufti
(A) Oufti work-flow includes parallel computation, exploiting multiple threads on the user’s 

computer. Following image processing (cell segmentation, cell detection, cell mesh creation, 

cell joining and/or splitting, etc.), a data parser for the text-formatted output organizes data 

to be analyzed with various post-processing functions. (B) Wild-type E. coli strain 

BW25113 was grown in microfluidic chambers in M9 supplemented medium at 30°C for 

about 10 h. Cells were detected and tracked over time using the subpixel algorithm. The plot 

shows the growth of each cell (normalized by length at birth) during the 10-h experiment. 

(C–F) Note that all plots were created with MATLAB scripts using the Oufti output results. 
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These plots are presented as examples of post-analysis that can be done with Oufti-generated 

datasets. (C) Scatter plot of cell volume at birth versus time (n = 2,234 cells). The 

distribution of cell volumes at birth is shown as a histogram along the y-axis of the scatter 

plot. (D) Scatter plot of the interdivision time versus the relative growth rate (n = 2,234 

cells). The distribution of both parameters is shown as a histogram along the corresponding 

axis. The relative growth rate was calculated by fitting LbeBt to cell length as a function of 

time, where Lb is cell length at birth, B is the growth rate and t is time. (E) The red line ± 1 

SD (gray shading) shows the average cell constriction profile for the detected 2,234 cells, 

from no detectable constriction (constriction degree = 0) to cell division (constriction degree 

= 1). (F) Degree of correlation (Kendall rank sum correlation coefficient) from one 

generation to another for the cell length at birth, the relative growth rate, the interdivision 

time and the normalized interdivision time.

Paintdakhi et al. Page 15

Mol Microbiol. Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. Precision and accuracy of the pixel and subpixel cell detection methods
(A) Variance of cell contour edge localization (14,660 edges from 116 cells, each sampled 

301 times in a time-lapse experiment) from cell detection with the pixel and subpixel 

algorithms. Variance is measured in pixels2 (bottom x axis) and nm2 (top x axis). (B) Top 

left, simulated 2D phase-contrast image. The scale bar represents 1 μm. Top right, same but 

with the true edge location (red). Bottom left, same but with cell contour obtained with the 

pixel algorithm (blue). Bottom right, same but with cell contour obtained with subpixel 

algorithm (green). (C) Histogram of distance of cell contour edge localization to true cell 

edge coordinate (2,348,162 vertices from 22,500 cells). The localization error is measured in 

pixels (bottom x axis) and nm (top x axis).
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Fig. 4. Oufti detects a variety of cell morphologies, even with the subpixel method
Phase contrast images of (A) E. coli minC mutant, (B) Borrelia burgdorferi, (C) C. 

crescentus and (D) E. coli rodZ mutant cells. The cell contours computed with Oufti’s 

subpixel algorithm are depicted with yellow or red lines. Cell contours were obtained 

without curation except for the irregularly shaped rodZ mutant cells.
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Fig. 5. Detection and quantitative characterization of fluorescently labeled SgrS RNAs using 
spotDetection
(A) Probing E. coli SgrS small RNA using FISH microscopy reveals multiple fluorescent 

spots. The fluorescence image with Oufti cell contour is shown in log-scale to visualize the 

full spectrum of fluorescence spot intensities. (B) same as (A) but with spotDetection 

identification of fluorescent RNA foci (in red). (C) Localization error of spotDetection on 

diffraction-limited spots of varying signal-to-noise ratios (SN) from simulated images. Spots 

were detected using optimized parameters. Top inset shows example of single spots with 

corresponding SN values. Even when multiple Gaussian fitting was used, all spots were 

classified as single spots and fit with a single Gaussian. (D) Spot localization error for 
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simulated spot pairs separated by a fixed distance d (top inset shows representative examples 

of spot pairs with their inter-spot distances). Graph inset shows the fraction of detected spot 

pairs as a function of inter-spot distance.
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Fig. 6. Detection and cell cycle quantification of nucleoid areas using objectDetection
(A) Montage of fluorescence images from a microfluidic experiment showing E. coli cells 

with HU-mCherry-labeled nucleoids. The red and yellow contours show the cell and 

nucleoid contours, as determined by Oufti and its embedded objectDetection module, 

respectively. (B) Area of the cytoplasm (red) and nucleoid (blue) for four individual cells 

measured over the cell cycle. (C) Distribution of cell (red) and nucleoid (blue) areas for 740 

cells are shown as intensity gradient. Black lines show the mean values. The inset plots the 

distribution of nucleoid-to-cell area ratio (gray) as intensity gradient and with mean (black 

line).
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Fig. 7. The cellListFilter module
This module allows the user to quickly visualize the growth curves of all cells detected in a 

time-lapse experiment, as well as identify and select a subset of them for further refinement 

or analysis of the cell contours. (A) Typical output of the growth curve visualizing tool. (B) 

Cells with abnormal growth curves can be easily selected by choosing the growth curves 

that significantly deviate from exponential growth. A typical output is shown on the left 

panel where growth curves deviating from an exponential fit (root mean squared error 

RMSE >0.04) are highlighted in red on the left panel. The distribution of the RMSE values 

for all the growth curves fit is shown as a histogram on the right panel, with RMSE values > 

Paintdakhi et al. Page 21

Mol Microbiol. Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



0.04 highlighted in red. (C) The capability of selecting a subset of cells based on their 

growth rate or length at birth is illustrated with the blue and orange growth curves on the left 

panels, corresponding to the blue and orange bars on the histograms on the right panels. 

Cells and growth curves that are not included in the selection are represented with gray 

growth curves and bars.
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