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Abstract

Aromatase and estrogen receptor α (ER) are two key proteins for the proliferation of endocrine-

responsive and – resistant breast cancers. Aromatase is an enzyme involved in the conversion of 

androgen (such as testosterone) to estrogen (such as 17β-estradiol). It is also a very effective 

therapeutic target for the treatment of endocrine-responsive breast cancer. Comparing endocrine-

responsive and -resistant breast cancer, aromatase protein levels do not change significantly. 

Aromatase activity; however, can be increased via PI3K/Akt/IGFR signaling pathways in 

endocrine resistant cells. The activity of aromatase has been reported to be modulated by 

phosphorylation. The ER is an important steroid nuclear receptor in the proliferation of both 

endocrine-responsive and -resistant cells. Although the mutation or amplification of ER can cause 

endocrine resistance, it is not commonly found. Some point mutations and translocation events 

have been characterized and shown to promote estrogen-independent growth. Phosphorylation by 

cross-talk with growth factor pathways is one of the main mechanisms for ligand-independent 

activation of ER. Taken together, both ER and aromatase are important in ER-dependent breast 

cancer and the development of endocrine resistance.
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 1. Introduction

Breast cancers are mostly dependent on estrogens for proliferation and survival. Estrogens 

play an important role in hormone-receptor-positive breast cancer development, by binding 

to and activating the estrogen receptor (ER). Seventy-five percent of breast cancers are ER-

positive and 65% are also progesterone (PgR) positive [1]. Receptor positive status is a 

stimulant for breast cancer development; thus, elimination of the production of estrogen 
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from androgens and inhibition of the ER activation are important forms of hormonal therapy. 

Aromatase is an enzyme that converts androgens into estrogens, and aromatase inhibitors 

(AIs) can eliminate the production of estrogen. Furthermore, antiestrogens can bind to ER 

and antagonize its activity. Both of these strategies are successful in the clinic; however, 

some patients do not respond to the initial therapy, and a significant number of patients who 

respond will develop resistance to these therapies. A better understanding of the mechanisms 

of endocrine resistance will aid in the development of new therapeutic strategies to 

overcome the de novo and acquired resistance [2]. The structural and functional importance 

of ER and aromatase in endocrine-responsive and -resistant breast cancers will be discussed 

in more detail.

 2. Estrogen Receptor

 2.1 ER α and β Isoforms

The estrogen receptor exists in two isoforms: ERα and ERβ [3–5] with a 56% homology 

between the two isoforms [6]. Both ERs contain a DNA binding domain, a dimerization 

region, a ligand binding domain, and two transactivation domains—one located near the N-

terminus (AF-1) and another near the C-terminus (AF-2). They share high sequence 

homology in the DNA binding region, but they are not redundant genes because they have 

different expression patterns and functions [7]. Recent data indicates that ERα is implicated 

in promoting growth and survival of breast epithelial cells, both cancerous and non-

cancerous, while ERβ is involved in growth inhibitory properties [6, 8, 9]. The ERα is also 

able to form a heterodimer with ERβ, which has a similar binding affinity to DNA as the 

ERα homodimer, but a lower level of transcriptional activity [10]. Ligands such as estrogen 

(17β-estradiol/E2), tamoxifen and 4-hydroxytamoxifen (4-OHT), an activated derivative of 

tamoxifen, help to stabilize the ER binding to DNA; however, the antiestrogen ICI 182780 

(referred to as ICI in this review and also known as fulvestrant) affects ERα and ERβ DNA 

binding differently. DNA binding capability of ERβ is less affected by ICI than that of ERα 

[11]. Another difference in the ERα and ERβ is in the ligand binding affinities, where 

estrogens bind to both isoforms with similar affinities [12]. The importance of ERα in breast 

cancer cell growth has been well studied and documented. On the other hand, the 

involvement of ERβ in estrogen signaling and breast cancer is not fully defined and remains 

controversial [13, 14]; thus, will not be extensively discussed here. For simplicity, ERα will 

be referred to as ER.

 2.2 Estrogen Receptor Structure and Function

ER, a nuclear receptor, is mainly functional in the nucleus, where it activates transcription of 

ER-regulated genes, and its activity depends on binding of E2. ER is also found in the 

cytosol in an unliganded state, but enters the nucleus due to ligand-dependent and 

independent activation [6, 15–17]. Within the cytosol, ER is bound to chaperone proteins 

such as HSP90 and HSP70. Chaperones are essential for stability of proto-oncogenes and 

hormone receptors such as ER and PR [18, 19]. Upon E2 binding at the ligand binding 

domain (i.e., AF2) of ER, the receptor undergoes conformational changes. These changes 

include HSP dissociation from ER; ER dimerization; the receptor plus the bound hormone 

entering the nucleus; and the formation of a hydrophobic domain, exposing the two 
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activating function (AF) sites to which co-activators (NCoAs) or co-repressors (NCoRs) 

bind [4–6, 18].

ER function can be broadly classified as genomic or non-genomic. In the genomic pathway, 

ER forms a dimer upon binding of E2 (Figure 1). The activated ER dimer then translocates 

into the nucleus and can bind the ERE in the promoter regions to initiate the “classical” 

transcriptional activation or repression. The ER can also interact with other transcription 

factors such as activator protein 1 (AP1) and specificity protein 1 (SP1) to bind DNA 

indirectly, and cause the activation or repression of target genes. This is also known as the 

“non-classical” or “ERE-independent” genomic action. A third genomic mechanism 

involves ligand-independent ER activation (at the AF1 domain) by phosphorylation via 

kinases in the growth factor receptor signaling pathways. With the aid of kinase signaling 

pathways, ER and its co-activators can be phosphorylated, independent of ligand, through 

the genomic or non-genomic mechanisms; thus, leading to endocrine resistance. These 

kinases include stress related kinases: p38 MAPK or JNK; p44/42 MAPK; PI3K/Akt; or 

p90rsk [20–22].

 2.3 ER Phosphorylation

The C-terminus transactivation function 2 (AF2) of ER is activated by ligand binding of E2 

[23] while the N-terminus transactivation domain (AF1) is activated by phosphorylation at 

several residues. Mostly post-translational modifications occur in the N-terminus, upon 

ligand binding, and upon ligand-independent growth factor signaling pathways [4, 24, 25]. 

Of the 14 serine residues in the N-terminus, several have been researched extensively due to 

their phosphorylation abilities. Serines 104, 106, 118, and 167 when mutated to alanine 

decrease ER transcription. Most notably, S167 is phosphorylated by PI3K/AKT [21] and 

S118 is phosphorylated by the Ras-MAPK signaling cascades [22], which are both 

important for the activation of ER and mediate ER binding to co-activators. MAPK activated 

S118 phosphorylation mediates SRC3 binding [26], and increases hypersensitivity to E2 

[27]. S118 phosphorylation can lead to ligand-independent activation of ER; thus, leading to 

hormone-independent tumors [22, 28, 29]. In the clinical setting, many researchers have 

reported that S118 phosphorylation leads to good prognosis/response/relapse free survival 

(RFS) to hormonal therapy, specifically in letrozole, tamoxifen and AI/tamoxifen 

neoadjuvant therapy, respectively [30–32]. However, even though there are many conflicting 

outcomes, many report that S118 phosphorylation can be used as a predictive marker, 

especially in tamoxifen therapy [33–35]. Increased S118 phosphorylation has been found in 

AI-resistant breast cancer cells [36]. Moreover, AKT-stimulated S167 phosphorylation can 

also mediate ER binding to co-activator SRC3 in the presence of E2; thus, increase ER 

transcription [26, 28, 37]. One report correlated AKT phosphorylation of S167 to decreased 

survival of tamoxifen treated patients [38], while others report improved/prolonged survival 

of patients on endocrine therapy [39–41]. Furthermore, S305 phosphorylation has been also 

analyzed in clinical trials showing a negative RFS, poor clinical outcomes, and has been 

associated with aggressive tumors [42]. Clinical trial outcomes are summarized in Murphy et 
al. (2011) Table 5 [24].
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 2.4 ER Variants

In the non-genomic pathway, the ER is usually bound to the membrane proteins in regions 

known as lipid rafts. A recent study showed that a 36 kDa variant of ER is an important 

player in the non-genomic ER signaling, dimerizing with both ERα and ERβ [43]. Another 

ER variant 46 kDa can also be found on the cell membrane and plays a role in the 

endothelial nitric-oxide synthase (eNOS) pathway activation, causing the rapid release of 

nitric oxide [44]. These ERs interact with proteins of various kinase signaling pathways, 

such as PLC/PKC, Ras/Raf/MAPK, PI3K/AKT and cAMP/PKA [7]. G-protein coupled 

receptors have been reported to mediate signaling via the ER non-genomic pathway. For 

example: GPR30 has been identified to function as an ER [45, 46]; it is distributed between 

the cell and intracellular membranes [47, 48]; and it can activate EGFR [49]. These 

signaling events in the cytoplasm can crosstalk with the phosphorylation of other 

transcription factors; thus, indirectly regulating gene expression at the transcriptional level.

Computational search for the consensus ERE sequence has been attempted to identify 

potential ER binding sites, but the number of matches exceeds the actual binding sites found 

and resulted in many false positive predictions; thus, indicating that the presence of an ERE 

sequence does not dictate ER binding [50]. Due to the limited accuracy of computational 

predictions, the true ER binding sites need to be determined experimentally. There are other 

requirements for ER binding to the ERE, such as an open chromatin state or the presence of 

pioneer factors and co-regulators [51, 52]. ER can interact with other co-regulators and 

transcription factors such as AP1 and SP1 to activate or repress target genes via the “non-

classical” pathway [53]. One such example is FOXA1, which is a pioneer factor that initiates 

binding to chromatin and recruits other factors. In addition, ER can interact with other 

transcription factors and act as a distal enhancer. In fact, a significant portion of ER binding 

sites have been found outside the promoter regions of the target genes [54]. Our genome-

wide ER binding analysis in hormone resistant LTEDaro cells shows that ER is still able to 

bind to DNA in the absence of E2. There is also enrichment of ER binding sites close to 

transcriptional start sites, which is similar to the hormone responsive MCF-7aro cells treated 

with E2.

 3. Aromatase

 3.1 Aromatase and Aromatase Expression in the Breast

Aromatase is a key enzyme involved in the catalytic conversion adrenal androgens, such as 

testosterone and androstenedione, via three consecutive hydroxylation reactions, to aromatic 

estrogens (estradiol-E2 and estrone-E1, respectively) [55–57]. It belongs to the cytochrome 

p450 superfamily, which is characterized by the presence of a heme group. Aromatase is 

localized in the endoplasmic reticulum of estrogen-producing cells and it is a cytochrome 

P450 that requires NADPH-cytochrome P450 reductase (CPR) for catalysis. While the 

interaction between aromatase and CPR is essential for its catalytic activity, the structural 

basis of the electron transfer mechanisms between them is not completely understood. Our 

computer modeling studies have revealed that the FMN binding domain of CPR undergoes a 

structural rearrangement, allowing the proximal surface of aromatase to fit into the cleft 

Chan et al. Page 4

J Steroid Biochem Mol Biol. Author manuscript; available in PMC 2017 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



between the FMN and FAD binding domains of CPR. K108, on the surface of aromatase, 

was found to be involved in its interaction with CPR [58].

In humans, there is only one aromatase protein, but its expression is tightly regulated. 

Aromatase protein is expressed mainly in the ovaries of premenopausal women; in the 

placenta of pregnant women; and in the adipose fibroblast cells of postmenopausal women. 

Furthermore, the specific cell type expressing aromatase in the breast has been demonstrated 

to be mesenchymal stromal (preadipocytes) and epithelial cells [59]. Compared to normal 

cells, some breast epithelial and stromal cancer cells show several fold greater aromatase 

mRNA and protein levels [60].

The human aromatase gene consists of 10 exons: untranslated exon Is (I.1, I.2, 2a, I.3, I.4, I.

5, I.6, I.7, I.f, and PII) and translated exons II-X. The various exon Is are expressed in a 

tissue-specific manner and have a corresponding promoter located upstream which is 

regulated by different mechanisms [56]. Each 5′-exon I is spliced with the common 3′-

coding exon II; therefore, producing the same translated aromatase protein. Studies 

conducted have shown exons I.3 and PII, which are cAMP/prostaglandin E2 (PGE2) 

regulated promoters, as the major exon Is responsible for aromatase expression in breast 

cancer tissues [56, 57, 61–64]. However, in normal breast stromal cells and adipose tissue, 

promoter I.4, which is a glucocorticoid regulated promoter, is the major promoter that drives 

aromatase expression [56, 57, 61]. Harada reported that exon I.4 switches to exon I.3 in 

tumor fibroblast with the addition of forskolin which mimics PGE2 [65]. Prostaglandins are 

a group of hormone-like lipids which are produced in many organs, and they act in paracrine 

and autocrine manner to affect their target cells. Furthermore, PGE2 synthesized in breast 

cancer cells induce the cAMP signaling pathway leading to a switch from transcriptional 

promoter I.4 to promoters II and I.3 [65–71]. Breast adipose tissues from breast cancer 

patients show an increase in aromatase expression through promoters II and I.3 [66], also 

high aromatase activity in the quadrant containing the tumor has been detected [66, 72, 73]. 

Therefore, elevated levels of aromatase expression lead to local synthesis of estrogen 

production in the breast tumor [65, 74–79].

 3.2 Aromatase Deficiency in humans

Aromatase deficiency is an extremely rare disorder in humans. Only a small number of cases 

of women [80–82] and men [83–89] have been reported, majority of them are Caucasians. 

Affected women exhibit ambiguous genitalia at birth, elevated androgens and undetectable 

estrogens, primary amenorrhea, and failure of breast development at puberty. Affected men 

exhibit after puberty continuing linear growth, tall stature, unfused epiphyses, delayed bone 

age, eunuchoid skeletal proportions, genu valgum, decreased bone mineral density, 

overweight or obese, dyslipidemia, liver steatosis, insulin resistance, and impaired fertility.

A recent publication from our laboratory reports the identification of a man with clinical 

features of aromatase deficiency with novel heterozygous CYP19A1 mutations (Y81C and 

L451P) [90]. Three-dimensional modeling predicted that Y81C and L451P mutants 

disrupted the aromatase protein structure. Functional studies, on the basis of in vitro 
expression, showed that Y81C and L45P mutants significantly decreased the aromatase 

activity and its catalytic efficiency. Estrogen replacement in the patient increased bone 
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mineral density, accelerated bone maturation, improved lipid profile and liver steatosis, and 

improved glucose levels but had no effect on insulin resistance.

 3.3 Aromatase Inhibitors (AI)

Studies have confirmed the importance of aromatase in breast cancer proliferation leading to 

the development of AIs, which constituted a major breakthrough in breast cancer therapy 

(2). AIs [third generation which have great potency and specificity, and possess reduced 

toxicity: letrozole (LET), anastrozole (ANA), exemestane (EXE)] have been designed to 

combat ER-positive breast cancer. The structure of EXE (aromasin) mimics androgens; it 

can interact with ER and act as a weak agonist [91]; and it acts as a mechanism-based 

inhibitor that promotes aromatase degradation [92]. Due to its irreversible nature, EXE is a 

potent inhibitor with lengthy estrogen suppression [93]. On the other hand, non-steroidal 

inhibitors such as ANA (arimidex) and LET (femara) contain a triazole ring which binds 

non-covalently/reversibly to the heme iron group on the active site of the enzyme; thus, 

inhibiting the hydroxylation reactions in the steroidogenesis pathways. Research indicates 

that third generation aromatase inhibitors are highly effective without altering the other 

steroid biosynthesis pathways [94, 95].

The three-dimensional structure of androgen substrate-bound aromatase has been 

determined [96, 97]. Furthermore, extensive structure-function studies, through a 

combination of site-directed mutagenesis of the enzyme and inhibitor binding 

characterization with three AIs, have revealed that the AIs do not bind to the active site 

similarly. Our laboratory examined the aromatase–nonsteroidal inhibitor interaction by 

docking letrozole into the published aromatase structure using Glide Docking (Maestro, 

Schrödinger) software [58]. The distance between the heme of aromatase and the triazole 

functional group of letrozole in our model was 3.7 Å. Fifteen amino acids (I133, F134, 

F221, W224, A306, D309, T310, V313, V369, V370, V373, M374, L477, S478, and H480) 

were found within a 4 Å distance of the modeled letrozole structure. In our previous 

publications, we examined the roles of many of these active site residues through site-

directed mutational studies [98–100]. We observed a decreased letrozole binding affinity to 

the D309A mutant. In contrast, the E302D and T310S mutants showed an increase in 

letrozole binding.

The published X-ray structure of aromatase indicates that the F221, W224 and M374 

residues are located in the active site. Site-directed mutagenesis experiments have confirmed 

their importance in the binding of the androgen substrate as well as AIs, but these residues 

interact differently with steroidal inhibitors (exemestane) and non-steroidal inhibitors 

(letrozole and anastrozole). Furthermore, the residue W224 participates in the mechanism-

based inhibition of exemestane, as time-dependent inhibition is eliminated with mutation on 

this residue. Therefore, W224, E302, D309 and S478 are important active site residues 

involved in the mechanism of exemestane’s inhibition of aromatase [58].

 3.4 Antiestrogens and Clinical Trials with AIs

Antiestrogens are compounds that can antagonize the actions of estrogens in the treatment of 

ER-positive breast cancers. Tamoxifen (TAM) and fulvestrant (ICI 182780), the most widely 
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used antiestrogens, have very different mechanisms of action (Figure 2). ICI is a selective 

estrogen receptor downregulator (SERD) that accelerates the degradation of ER. It is also a 

pure antiestrogen because it has no agonist activity [101]. On the other hand, TAM is a 

selective estrogen receptor modulator (SERM) that mainly acts as an ER antagonist to 

prevent the estrogen-mediated cell growth in breast cancer. However, in other tissues such as 

the bone and endometrium [102], or in breast cancer cells that have become resistant to 

TAM, the drug acts as a partial agonist of ER and may recruit coregulatory proteins to 

modulate some estrogen responsive genes [103–105].

While many ER modulators have been developed, TAM is currently used for its high 

efficacy treatment of pre-menopausal women with ER-positive advanced breast cancer. Due 

to agonistic activities, which lower its efficacy, AIs have been developed to combat 

resistance to TAM therapy. The National Surgical Adjuvant Breast And Bowel Project 

(NSABP) results indicated that ER-positive pre- and post-menopausal women benefit from 5 

years of adjuvant TAM therapy [106] with a reduction of 47% of new contralateral breast 

cancer [107]; however, an increase of endometrial cancer incidence [107, 108] and deep-vein 

thrombosis was reported [109]. Furthermore, the International Breast Cancer Prevention 

Study (IBIS)-I trial showed 20mg/day of TAM for 5 years led to reduced incidence of breast 

cancer [110], and the adverse thromboembolic effects reduced after cessation of treatment 

[111].

Since 2002, clinical trials have used AIs as first-line therapy to TAM (20mg/day) [112]. 

ANA at 1mg/day [113, 114] and LET at 2.5mg/day [115], and LET being the most potent AI 

that can inhibit >99% of aromatase activity [116]. EXE is used as adjuvant therapy for 2 

years following 2–3 years of TAM therapy. Progression-free survival (PFS) and overall 

response rate (ORR) for EXE is greater than TAM [117]. Furthermore, data from the ANA, 

TAM, alone or in Combination (ATAC) clinical trial showed that AIs provide better disease-

free survival (DFS) and prolonged time to regression (TTR) [118, 119]. The Breast 

International Group (BIG) 1–98 trial indicated that sequential treatment with TAM is not 

advantageous for DFS or breast cancer recurrence to LET therapy in early breast cancer 

cases [120, 121]. Also efficacy of switching from TAM, after 2–3 years, to ANA [122–125] 

or LET [126] has been shown to be beneficial.

Given the clear clinical benefits, AIs are gradually replacing TAM as the therapy of choice 

for eligible postmenopausal patients with hormone-dependent breast cancers. However, the 

use of AIs also exhibit adverse effects such as: loss of bone density, musculoskeletal pain 

and arthralgia [127]. Progression to disease following use of non-steroidal AIs has lead 

physicians to switch non-steroidal AIs to steroidal AI while achieving clinical benefit [128]. 

Lack of AI cross-resistance cannot be explained by drug efficacy as all AIs inhibit total body 

aromatase to a similar degree; however, the exact mechanism(s) responsible are not fully 

elucidated [129–131].
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 4. AI resistance

 4.1 De Novo (Intrinsic) AI Resistance

De novo resistance refers to the lack of response to a drug upon initial treatment. Many 

potential mechanisms of endocrine resistance have been proposed, but there is no single 

explanation that can account for all cases. For example, lack of ER or PR expression is one 

way to explain de novo resistance, but the presence of ER and/or PR still fails to predict 

response to antiestrogens in some patients [132]. Altered expression of co-regulators may 

also explain the phenotype in some resistant cells [53]. Another study has shown that TAM 

resistance arises in about 30% of patients due to methylation of the ER promoter, leading to 

the loss of ER expression. Treatment with demethylating agents and histone deacetylase 

(HDAC) inhibitors reverses this transcriptional silencing and allow re-expression of ER 

which is responsive to TAM [133].

ER is expressed in about 75% of all breast cancers in postmenopausal women [134], but in 

clinical trials of LET, ANA, and TAM, a significant percentage of these patients had no 

clinical benefit, which means they exhibit de novo resistance [135]. For example, in breast 

cancer cells with high AIB1 and HER2 expression, TAM acts as a partial ER agonist and 

stimulates cell growth, which can be blocked by the EGFR inhibitor gefitinib [136]. 

Furthermore, over expression of HER2 or AKT in ER+ and aromatase+ MCF-7aro cells 

results in the resistance to the AI treatment [Cynthie paper]. In patients who do not exhibit 

de novo resistance, both TAM and AIs have proven to be very successful in controlling their 

cancer.

 4.2 Acquired AI Resistance

However, a significant number of patients who initially respond will eventually acquire 

resistance to the drugs. Breast cancer cell lines that acquired resistance to AIs or TAM still 

expressed ER [137, 138]. This strongly suggests that the loss of ER is not the main 

mechanism of acquired resistance, and ER may still play an important role after resistance to 

anti-hormonal drugs has developed. This further demonstrates the need to understand 

endocrine resistance at the molecular level in order to devise new strategies to overcome this 

problem.

It has been reported that ER downregulation may play a role in endocrine resistance. The 

CUE domain–containing protein-2 (CUEDC2) protein was found to play a role in the 

downregulation of ER through the ubiquitin-proteasome pathway. This protein was found to 

have a strong inverse correlation with ER expression in a large breast cancer patient cohort. 

Patients with high CUEDC2 expression had a worse response to TAM treatment and also a 

higher chance of relapse. The role of CUEDC2 was further confirmed in cell line studies by 

overexpressing this protein in a breast cancer cell line, and the results show that CUEDC2 

can inhibit the response to TAM treatment [139].

A closer look of the interactions between ER and the genome reveals an important role for 

pioneer factors and histone modifications, which both affect the accessibility of other 

transcription factors to the genome in the endocrine resistant phenotype. The NOTCH 

pathway was also found to be overactive in the endocrine resistant cells. One of the target 
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genes of NOTCH, a transcription factor called PBX1, was shown to be required for growth 

in the endocrine therapy-resistant cells. Based on the NOTCH-PBX activity, a gene 

expression signature was found to have predictive value for the response to endocrine 

therapy [140].

Another proposed mechanism of AI resistance is the presence of other estrogenic 

compounds that are catalyzed by other enzymes besides aromatase. Sikora et al., reported 

that in breast cancer cells deprived of estrogen, the treatment of androgens caused the 

upregulation of steroidgenic enzymes that convert 5α-dihydrotestosterone into 5α-

androstane-3β,17β-diol (3β Adiol), which acts as a weak estrogen to stimulate proliferation 

via the ER pathway[141]. Alternatively, estrogenic compounds such as synthetic estrogens, 

industrial pollutants, and phytoestrogens derived from exogenous sources may also 

contribute to AI resistance[142].

While several mechanisms have been proposed to explain the various phenomena observed 

in the AI-resistant cells, the key step is the activation of ER or change in ER behavior. 

However, the detailed mechanisms of how ER performs this function are just starting to be 

understood [143].

 4.3 Models for AI resistance: Long Term Estrogen Deprived and Endocrine-Resistant 
Cell Lines

To study the mechanisms of endocrine resistance in breast cancer, a clearly defined cell 

culture model is needed. The MCF-7 cell line is well established for the study of hormone-

dependent breast cancer. Wild-type MCF-7 cells do not express aromatase; therefore, we 

have developed an aromatase overexpressing MCF-7aro cell line to study the importance of 

aromatase in breast cancer [144]. There are two different types of AI resistance models, one 

induced by long term treatment of AI, and another induced by long term culture in the 

absence of estrogen (LTED). In the former case, the efficiency of AIs can be very high and 

thus the levels of estrogens are very low. In the latter case, the levels of estrogens are even 

lower and only traces of estrogen are present. In both cases, resistance is acquired through 

the adaptation to very low estrogen conditions, and the ER is still important for proliferation. 

In contrast, cells resistant to antiestrogens such as ICI do not require the ER for 

proliferation. For TAM resistance, the ER is also important, but the weak agonist activity of 

the TAM is still important for proliferation. Therefore, the AI resistance is different from 

TAM resistance because TAM requires the ER which is activated by ligand-independent 

mechanisms.

According to Jeng et al., the ability of the pure antiestrogen ICI to suppress LTED (Long 

Term Estrogen Deprived) cell growth indicates that in this AI resistance model, E2-

independent cell growth is still dependent on ER [145]. In addition, Dowsett et al. reported 

that expression of ER is higher in LTED cells compared to the parental cell line [134]. They 

also demonstrated that ICI can inhibit LTED cell growth and the inhibition is reversed by 

addition of E2, suggesting that ER becomes hypersensitive to very low amounts of E2 [134]. 

This shows that LTED cell growth is fully or partially dependent on the ER-ERE pathway, 

and this model fits well with data from several groups.
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Several other laboratories [29, 146–148] have independently derived LTED cell lines, which 

are created by culturing MCF-7 cells (without aromatase) in hormone-free media over a long 

period and used as endocrine-resistant models. In our lab, we derived the LTEDaro and four 

drug resistant cell lines from the MCF-7aro parental cell line: tamoxifen-resistant (TAMR), 

letrozole-resistant (LETR), anastrozole-resistant (ANAR), and exemestane-resistant (EXER) 

[36]. Furthermore, the LTLTCa is another letrozole-resistant cell line derived from 

MCF-7aro generated by the Brodie lab [149]. Microarray gene expression profiling of 

LTEDaro and AI-resistant lines in our lab showed very distinct gene expression profiles 

[36]. The LTEDaro and AI-resistant cells are able to proliferate with very low levels of E2 

but the methods to generate them are different. LTEDaro cells are grown in hormone-free 

media, whereas the AI-resistant cells are grown in the presence of hormones but the 

production of E2 is inhibited by the various AIs. The studies from our laboratory indicate 

that the resistant mechanisms of these models are different, and LTEDaro represents a late 

stage of endocrine resistance [150].

 5. Mutations and Modifications

 5.1 ER Mutations and Amplification

ER-positive breast cancers have diverse clinical features. In order to understand the 

correlation with somatic alterations, whole genome sequencing was performed on tumor 

biopsies from patients in neoadjuvant AI treatment studies. The results show that eighteen 

genes were significantly mutated, and although phenotypes of ER-positive breast cancer can 

be associated with patterns of somatic mutations related to genes in tumor biology pathways, 

the frequency of such mutations are relatively rare [151].

Patient-derived xenograft (PDX) models have been created from patients with poor-

prognosis and treatment-resistant tumors. These models were used to study the mutations in 

genomic sequence and its correlation with gene expression changes. There are several point 

mutations identified in the ESR1 (ER1) gene, as well as translocations that promote estrogen 

independent growth. This was confirmed in cell line studies expressing the ESR1/YAP1 

chimeric protein or the ESR1-Y537S mutant. Both forms of ESR1 induced estrogen 

independence. The ER has been shown to undergo gene amplification in LTED cells [152].

 5.2 Aromatase Gene Polymorphisms

Several aromatase gene polymorphisms have been reported to negatively or positively alter 

the expression of aromatase. Polymorphism of Val80 on exon 3 (rs700518) leads to a G to A 

base transition; thus, increasing the risk of AI-induced bone loss and enhanced bone 

resorption. When compared with healthy postmenopausal women, those with the A allele 

had lower bone mineral density (BMD) but no significant difference in estradiol levels 

compared to those with the G allele [153]. Furthermore, a polymorphism in the 3′UTR 

(rs10046), which leads to a T allele in the T/C base change, has been found to increase 

estrogen correlating to the tumor aromatase mRNA levels [154]. Homozygous carriers 

exhibit high BMD when treated with hormone replacement therapy [155]. Moreover, a SNP 

at exon I.2 (rs1062033) leading to a G to C base transversion exhibits an increase in 

aromatase expression; however, clinically, women with the CC allele exhibit low BMD 
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[156]. Other polymorphisms such as in the 3′UTR (rs4646) effects disease-free survival with 

LET therapy [157, 158]; the (TTTA)n polymorphism reduces AI-induced arthralgia in the 

1/8-repeat allele carriers [159]; and 5′region (rs6493497 and rs7176005) polymorphisms 

show differences in AI inhibition of aromatase activity [160].

 5.3 Post-transcriptional and Post-translational Modifications of the Aromatase Enzyme

Estrogen (17β-estradiol), through c-Src kinase, phosphorylates tyrosine and increases 

aromatase enzymatic activity and its protein levels in an autocrine manner. Via site-directed 

mutagenesis and in vitro kinase assay, it was shown that tyrosine 361 to be the 

phosphorylation site of c-Src kinase, and inhibition of this kinase would lead to reversal of 

estrogen induced tyrosine phosphorylation [161, 162]. Furthermore, the PI3K/Akt pathway 

impairs tyrosine phosphatase (PTP1B) from dephosphorylating aromatase; thus, sustaining 

the activity of aromatase [163]. This regulation of aromatase activity by estrogen was also 

seen in ER-negative cell line (SKBR3), ectopically expressing ERα, and in a high aromatase 

expressing cell line (R2C). Estrogen Treatment with ER antagonists (TAM or ICI), abrogates 

estrogen’s influence on aromatase phosphorylation [161]. Moreover, since ERα and growth 

factor signaling pathways interact and estrogen has been shown to activate IGF-1R and 

EGFR, it was reported that estrogen upregulates aromatase expression via these interactions 

as well [162, 164]; while, Catalano et al. showed that ERα, EGFR, c-Src and aromatase 

form a complex to increase aromatase activity and its tyrosine phosphorylation [161]. 

Furthermore, phosphorylation/dephosphorylation is an important post-translational regulator 

of aromatase. For example: phosphorylation of aromatase at Ser118 contributes to enzymatic 

stability [165]. Also, growth factors are a major contributor of aromatase activity in ER+ 

breast cancer. IGF-1 activates IGF-1R, PI3K/Akt and MAPK signaling pathways which 

increase aromatase activity in breast cancer cells [166].

 6. Conclusions

This comprehensive review covers the two important players in endocrine therapy: 

aromatase and ER. ER-positive breast cancer requires the aromatase enzyme for the 

conversion of androgen to estrogen/estradiol; thus, initiating the ER genomic signaling 

pathways. Moreover, the non-genomic ER signaling pathways utilize kinase signaling and 

ER co-regulators to activate ER independent of the ligand. Thus, the latest endocrine 

therapies involve AIs and ER antagonists to combat post and pre-menopausal ER-positive 

breast cancer, respectively. During treatment, either de novo or acquired resistance is seen 

with many patients. With de novo resistance, due to reduced influence of ER activity in these 

types of tumors, there is no response to a drug upon initial treatment. Furthermore, some 

patients acquire resistance after initially responding to a drug treatment while still 

maintaining ER expression. This strongly suggests that ER may still play an important role 

after acquiring resistance to anti-hormonal drugs has developed. Many reasons exist for 

resistance such as ER variants; ER/aromatase mutations; post-transcriptional/translational 

modifications of aromatase; or non-genomic ER signaling pathways leading to ER 

activation. In order to develop target specific drugs, research still needs to elucidate the exact 

mechanisms of endocrine resistance. Currently, TAM, a successful ER antagonist for pre- 

and post-menopausal women, and AIs, which show greater efficacy than TAM for post-
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menopausal women, are the best drugs on the market to combat this disease. Putting aside 

the issue of resistance to endocrine therapies, AIs and ER antagonists are still the best drugs 

to treat ER-positive breast cancers.
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Highlights

• Aromatrase and estrogen receptor (ER) play important roles in endocrine-

responsive and – resistant breast cancers.

• Steroidal and non-steroidal aromatase inhibitors (AIs) bind to aromatase 

differently.

• ER mutations have been identified and suggested to have roles in endocrine 

resistance.

• Phosphorylation of ER can result in ligand-independent activation of the 

receptor.

• The ligand-independent activation of ER is critical for the development of 

endocrine resistance.
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Figure 1. Three mechanisms of ER genomic signaling and the inhibition by antiestrogens and 
aromatase inhibitors
Testosterone (T) is converted into estrogen (E2) by the enzyme aromatase. Normal breast 

cells synthesize E2 which has autocrine and paracrine functions. Breast cancer cells express 

higher levels of aromatase; thus, their E2 concentration is higher than normal breast cell. 

Furthermore, ER-positive breast cells require E2 for growth and utilize certain genomic 

signaling pathways to transcribe ER-regulated genes. These pathways include: classical 

genomic (E2-ER complex binds to the ERE); ERE-independent genomic (E2-ER complex 

binds to transcription factor-TF-binding sites); and non-classical genomic (ER is 

phosphorylated in absence of E2 via kinase cascades).
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Figure 2. Structures of AIs
From left to right: EXE, ANA, LET. EXE is a steroidal AI with a structure similar to E2. 

ANA and LET are non-steroidal AIs. LET has the highest potency out of the three AIs.
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Figure 2. 
Structures of E2 and Antiestrogens

From left to right: E2, ICI, and TAM. ICI is a full ER antagonist and causes the degradation 

of ER. TAM is a competitive inhibitor of E2 with partial agonist activity.
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