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Abstract

 Background—Traumatic brain injury (TBI) often leads to mood and cognitive complications, 

impacting functional recovery. Understanding neurobiological alterations common in post-TBI 

depression (PTD) and cognition may identify novel biomarkers for TBI complications. Brain-

derived neurotrophic factor (BDNF) is a likely target based on evidence of reduced BDNF 

signaling in experimental TBI and depression models and its role in learning and memory.

 Objective—Evaluate BDNF as a biomarker for PTD, cognitive impairment, and functional 

cognition in a prospective cohort with severe TBI.

 Methods—Participants with TBI (n=113) were evaluated for PTD (Patient Health 

Questionnaire-9), cognitive impairment (cognitive composite score) and functional cognition 

(Functional Independence Measure–Cognition, FIM-Cog). BDNF levels were measured in 

cerebrospinal fluid (CSF) and serum 0–6 days post-injury and in serum at 6 and 12 months post-

injury.

 Results—Serum BDNF was reduced after TBI versus controls at all time-points. Acute serum 

BDNF positively correlated with Memory composites (6 months: r=0.43, p=0.019, n=30; 12 

months: r=0.53, p=0.005, n=26) and FIM-Memory scores (6 months: r=0.35, p=0.019, n=45; 12 

months: r=0.38, p=0.018, n=38). Acute serum BDNF negatively correlated with 12 month PHQ-9 

scores (r=−0.38, p=0.044, n=29). At 12 months, chronic serum BDNF tended to be lower in 

participants with PTD (p=0.07) and correlated with PHQ-9 scores (r=−0.41, p=0.019, n=32).

 Conclusions—Acute BDNF associations with memory recovery may implicate hippocampal 

damage/degeneration. Comparatively, BDNF associations with PTD status were not as strong as 
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associations with PTD severity. Further investigation may delineate longitudinal BDNF patterns, 

and BDNF responsive treatments, reflecting mood and cognitive recovery following TBI.
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 Introduction

Traumatic brain injury (TBI) is increasingly recognized as a chronic medical condition with 

accompanying mood and cognitive complications. Impaired cognition and negative mood 

can adversely affect quality of life and influence return to work or school following TBI1–4. 

Identifying sensitive TBI biomarkers for these two major complications may be useful for 

evaluating therapeutic needs and to measure responses to pharmacological and/or behavioral 

interventions.

Post-TBI depression (PTD) is the most common neurobehavioral complication following 

TBI. Individuals with TBI are 10 times more likely than the general population to experience 

a depressive episode during their first year of recovery (53%5 compared to 6%6 per 12 

months in the general population). The identification of an early biomarker for PTD 

development would aid in screening and early intervention, by identifying those at greatest 

risk of depression and with the greatest need for high frequency tracking and follow-up. 

Additionally, a biomarker that is reflective of PTD symptoms may be useful in monitoring 

and improving treatment effectiveness, by informing dose or timing of interventions.

In non-brain injured populations, individuals with depression often have comorbid cognitive 

impairment, likely due to common underlying pathology7. While individuals with 

depression report a varying number of cognitive difficulties8, memory impairment is 

consistently problematic9. Similar to individuals with depression, individuals with TBI 

commonly exhibit significant memory, executive function, and attentional difficulties after 

their injury10–13. We recently reported that individuals with PTD have no additional 

cognitive deficits compared to non-depressed individuals with TBI14. Yet, in this same study, 

individuals with PTD had significantly greater functional cognitive limitations than those 

without PTD, suggesting that, for individuals with TBI, remittance of depressive symptoms 

may lead to improved functional cognitive15, which may be a result of overlapping 

biological pathways or co-occurring symptomology. Depression and cognitive dysfunction 

have known effects on multidimensional outcomes16–19 relevant to the Rehabilomics 

framework20, strongly supporting an analysis of biomarker relationships to both conditions.

One potential biomarker that may be relevant to the neurobiological substrates involved with 

both mood and cognitive dysfunction post-TBI is brain-derived neurotrophic factor (BDNF). 

BDNF, a neurotrophin involved in neuronal survival and synaptic plasticity, has been 

implicated in depression21, memory and learning22, and TBI pathology23–25. In the 

hippocampus, BDNF affects synaptogenesis and maintenance, particularly through long-

term potentiation associated with activity-dependent secretion of BDNF26. BDNF is also 

reportedly an underlying substrate for persistent long-term memory storage27,28.
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Reduced BDNF is known to be associated with depression, and serum BDNF levels are a 

consistent marker for depressive symptomology in neurologically intact populations29. 

Serum BDNF levels are decreased in untreated depression but increase with antidepressant 

treatment, indicating the viability for BDNF serum levels as a biomarker of depressive 

symptoms29–31. In TBI, serum BDNF is acutely decreased, correlating with injury 

severity32. Hippocampal BDNF is chronically decreased in experimental TBI25, and 

hippocampal BDNF expression has been linked to spatial memory in experimental TBI 

studies23. Importantly, therapies that increase brain BDNF expression, like environmental 

enrichment25 and exercise23,33,34, show promise for mood and cognitive recovery post-TBI. 

This body of work suggests that BDNF may be a viable biomarker for long-term 

complications like depression and memory impairments that impact TBI recovery.

In this study, we assessed BDNF as a viable biomarker for PTD, cognitive impairments, and 

functional cognitive limitations (with specific attention to memory) in the first year 

following TBI. BDNF serum levels have never been examined in clinical TBI beyond the 

first week or in relation to PTD or cognition. Thus, BDNF serum levels may be a novel 

biomarker reflecting these complications and may help elucidate convergent pathways to 

target for treatment and symptom monitoring in cognitive and depressive symptomology 

post-TBI.

 Methods

 Participants

Participants in this study, approved by the University of Pittsburgh’s Institutional Review 

Board, were recruited while receiving care at inpatient and/or outpatient clinics within the 

University of Pittsburgh Medical Center (UPMC). All participants sustained a non-

penetrating traumatic brain injury (TBI), with evidence of intracranial injury on Computed 

Tomography (CT). Exclusion criteria included: cardiac arrest or documented prolonged 

hypoxia or hypotension prior to admission, or penetrating TBI. All participants survived for 

at least one year post-injury and were a subset of a larger study investigating biomarkers and 

genetic factors related to individual recovery following TBI.

Healthy adult controls were also recruited for comparison in biomarker analysis. Criteria for 

enrollment of controls included: (i) 18–70 years old; and (ii) no current or past history of 

brain injury, neurological disease, psychiatric disease, or bleeding disorder. Current 

depressive symptoms were not collected for this control group. All healthy control 

participants were Caucasian and ranged from 18–60 years old, with 40% women. Women 

were excluded if they were pregnant, were taking oral contraceptives or hormone 

replacement therapy, or had any history of reproductive or endocrine disorder.

Injury severity was described using the best GCS obtained within the first 24 hours post-

injury. Demographic information, including age, sex, and education, was collected by chart 

review as well as through participant or caregiver interviews. Similarly, antidepressant use at 

6 and 12 months was extracted from both participant interview and chart review. An 

individual was considered taking an antidepressant if any of the following medications were 

prescribed within 1 month of the 6 or 12 month assessment: fluoxetine, citalopram, 
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sertraline, escitalopram, paroxetine, trazodone, duloxetine, venlafaxine, bupropion, and 

mirtazapine. A pre-injury history of mood disorders, including depression, bipolar disorder, 

and anxiety, was established by self-report and chart review.

 Cognitive Assessment

Participants’ functional cognitive limitations were assessed with the FIM-Cog35,36 

conducted via interview37 at both 6 and 12 months. FIM-Cog has five component scales: 

expression, comprehension, social interaction, problem solving, and memory. Each scale is 

rated from one to seven, with a 5 or lower indicative of need for caregiver assistance. The 

sum of these five components was considered the FIM-Cog Score.

Previous studies in TBI38–42 have illustrated the use of composites or global test statistics to 

evaluate general cognitive performance and to improve study design consistency through 

aggregation of multiple tests43–45. Similar to previous studies14,41, cognitive impairment 

was measured at both 6 and 12 months post-injury using a cognitive composite score 

developed with a battery of 8 neuropsychological tests targeting 4 domains of cognition 

(attention, language fluency, memory, and executive function). Attention was measured 

using the Trails Making Test A46 and the combined score of the forward and backward digit 

span tests from the Wechsler Adult Intelligence Scale-R47. Memory was evaluated using the 

Rey-Osterreith Complex Figure Test48 and the Long Delay Free Recall Subsection of the 

California Verbal Learning Test49 (CVLT-II). Language Fluency domain scores were 

calculated using Controlled Oral Word Association50 Animals Subsection and the Delis-

Kaplan Executive Function Systems Verbal Fluency Letter Fluency subsection. Lastly, 

executive function was measured using the Trails Making Test B46 and the Stroop Task51 

Interference Sub-score. These tests were selected as representative measures for their 

associated domains. Raw scores from each test were converted into T-scores using 

appropriate metrics (i.e. education, age, sex, race) based on norms indicated by the test 

manufacturer. T-scores were averaged within each domain to create a domain sub-score. To 

calculate an overall cognitive composite score, participants had to complete at least one test 

in each of the four domains. Mean values across domain sub-scores were calculated for the 

overall cognitive composite score. Additionally, as T-scores have a mean of 50 and a 

standard deviation of 10, a t-score cut-off of 40 was used to delineate impaired (greater than 

1 SD below the mean) vs. unimpaired performance in the TBI population. This cut-off is 

traditionally used in neuropsychological assessment to indicate the presence of mild 

cognitive impairment52.

 Depressive Symptom Assessment

At 6 and 12 months, depressive symptoms were evaluated using the Patient Health 

Questionnaire-9 (PHQ9), a brief self-report symptom inventory based on the 9 DSM-IV 

diagnostic criteria for Major Depressive Disorder (MDD). The PHQ-9 asks participants to 

rate how often they have experienced symptoms of depression, on a scale between 0 (None) 

and 3 (Nearly Every Day), over a two-week period. Higher total scores (PHQ-9 Total) reflect 

greater number of and/or greater severity of depressive symptoms, with the maximum score 

being 27. Participants were grouped as “depressed” vs. “non-depressed” using the PHQ-9 

questions as they map to DSM diagnostic criteria (previously described)53. For a 
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categorization of depression (PTD), individuals responded positively to at least five 

symptom questions on the PHQ-9, with at least one pertaining to a cardinal symptom 

(anhedonia or depression). Compared to the Structured Clinical Interview for DSM 

Diagnosis (SCID)53, this method has been validated in populations with TBI showing a 

sensitivity of 93% and a specificity of 89%. Importantly, the PHQ-9 is reliably able to 

discriminate between chronic TBI symptoms and depression symptoms54.

 BDNF Sample Cohort, Collection, and Processing

BDNF levels were measured in CSF and serum. When possible, CSF samples were collected 

via passive drainage up to twice daily for six days post-injury by an external ventricular 

drain (EVD) placed for clinical care. Serum was collected, via venipuncture, daily for the 

first six days and chronically at 6 months and 12 months post-injury via venipuncture. Acute 

CSF and serum samples were binned by day, and an average was calculated for each day 

post-injury for each participant.

CSF and serum samples were stored at −80° and were thawed immediately only for 

measurement. BDNF was assayed by an enzyme-linked immunosorbent assay (ELISA) kit 

(RayBiotech, Georgia, USA). Briefly, standards (of varying BDNF concentrations) and 

samples were pipetted onto a 96-well plate pre-coated with human BDNF antibody. 

Following shaking for 2.5 hours at room-temp, the plate was washed and then incubated 

with biotinylated BDNF antibody for 1 hour. HRP-conjugated streptavidin was then added 

for an incubation of 45 minutes. The addition of a tetramethylbenzidine substrate allows for 

a color reaction. Concentrations were calculated using mean absorbance of each sample at 

460 nm, as it correlates to the amount of BDNF present in samples, as plotted on a per-assay 

standard curve. Samples were diluted within the range of the ELISA kit (no dilution for 

CSF, 1:250 for serum samples), with a sensitivity of 80 pg/ml, and a kit supplied intra-assay 

variation of <10%, and an inter-assay variation of <12%.

For biomarker analysis, participants (n=113) were assayed for BDNF levels in CSF or serum 

samples. BDNF levels have been shown to be moderated by racial background55. As the 

study population was 91.9% Caucasian, there was not enough power to detect racial 

differences between BDNF level associations and outcome in the current dataset. As a result, 

we limited BDNF level associations to Caucasians only, with the plan to collect further data 

that include additional racial groups. There were 97 participants with CSF samples (n=446) 

and 81 with acute serum samples (n=204). One acute serum sample measurement and 4 CSF 

sample measurements were removed as outliers (based on ±1.5*interquartile range). Chronic 

serum samples were collected at 6 and 12 months (±1 month) post-injury and averaged for 

each time-point for each participant. At 6 months, there were 54 participants with 112 

samples. At 12 months, there were 36 participants with 36 samples. A subset of participants 

(n=44) had both acute and chronic samples.

For biomarker comparisons, healthy controls were recruited as a reference group (n=9). 

Control CSF was obtained via lumbar puncture for research purposes, and was not a part of 

a clinical work-up. Serum and CSF samples were obtained at ~7am to match samples from 

participants with TBI, avoiding possible confounding effects of diurnal variation.
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 Statistical Analysis

Analysis was conducted using Statistical Analysis Software (version 9.4; SAS Institute). 

Descriptive analysis included mean and standard deviation and/or median for continuous and 

ordinal variables such as age, GCS, and education. Frequencies were calculated for 

categorical variables such as sex and antidepressant use. Demographic and relevant clinical 

information was assessed for relationships with BDNF levels using Student’s t-tests or 

ANOVA to compare means. Non-parametric tests (Mann-Whitney and Kruskal-Wallis) were 

used when appropriate. Outliers were assessed using ±1.5 * interquartile range. Pearson’s or 

Spearman’s rho (r) correlations were used to assess relationships between two continuous 

variables.

 Results

Specific cohort demographics are shown in Table 1. Overall, participants had a GCS (best in 

24hrs) of 3–15 (mean GCS, 7.7 ± 2.8, median=7). Participants were aged 16–72 (mean age 

33.1±13.3 years) and 17.7% of participants were women. In comparison, healthy controls 

were aged 18–60 (mean age 27.6±13.3 years) and 35.7% were women. At 6 months post-

injury, 38.3% of participants with TBI had PTD, while 30.3% had PTD at 12 months. 

Participants with PTD tended to have a higher mean age compared to those without PTD (6 

months, p=0.094; 12 months, p=0.098). At 6 months, women were more likely to be 

depressed than men (62.5% of women compared to 30.4% of men, p=0.018). Participants 

with premorbid mood disorders had higher PTD rates at both 6 (22.6 versus 5.6%, p=0.022) 

and 12 months (33.4 versus 8.3%, p=0.007) compared to those without premorbid mood 

disorders. At 6 months, 51.6% of participants with PTD were taking an antidepressant, 

compared to 26.4% of those with no PTD (p=0.021). There was no significant difference in 

antidepressant use between PTD groups at 12 months. Table 2 shows relationships between 

BDNF levels and demographic variables. Only sex was associated with BDNF levels at any 

time point. At 12 months, women had lower BDNF levels compared to men (p=0.009). 

Importantly, acute serum and CSF levels tended to be negatively correlated (r=−0.31, 

p=0.069, n=35).

 BDNF associations with PTD, Cognitive Impairment, and Cognitive Function

As shown in Figure 1A, daily mean CSF BDNF levels among TBI participants did not differ 

from healthy control levels. Conversely, daily mean serum BDNF levels in participants with 

TBI were consistently reduced compared to healthy control levels beginning day 0 

(206.27±16.4ng/mL versus 277.86±28.1ng/mL for healthy controls, p=0.024) and remained 

below healthy controls for all days (all comparisons p<0.01, n=49, Figure 1B). Serum 

BDNF levels at 6 (205.57±10.2ng/mL, p=0.011) and 12 (188.67±13.5ng/mL, p=0.008) 

months were also below healthy control levels.

BDNF levels were examined for associations to PTD status and symptom severity. CSF 

BDNF levels were higher in participants with PTD at 6 months, though this association was 

not significant (p=0.089). Acute serum BDNF levels in participants with PTD tended to be 

reduced compared to those with no PTD at 6 months (p=0.074). Acute serum BDNF did not 

predict PTD status at 12 months. Figure 2 shows chronic serum BDNF levels by PTD status. 
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At 6 months, there were no significant differences in chronic serum BDNF by PTD status 

(p=0.174). Yet, those with PTD had significantly lower serum BDNF compared to controls 

(p=0.012), while those without PTD did not differ significantly from controls (p=0.070). At 

12 months, participants with PTD tended to have lower serum BDNF levels than those 

without PTD (p=0.066). Participants with and without PTD showed lower chronic serum 

BDNF levels compared to controls (p=0.037, 0.004, respectively). Table 3 shows 

associations between BDNF levels and PTD severity (PHQ-9 Total Score). Acute serum 

BDNF was negatively correlated with PHQ-9 scores at 12 months (r=−0.38, p=0.044, n=29) 

such that lower serum BDNF levels were associated with higher (worse) PHQ-9 scores. 

Similarly, chronic levels at 12 months were negatively correlated with PHQ-9 scores (r=
−0.41, p=0.019, n=32).

BDNF levels were examined for associations to cognitive impairments and functional 

cognitive limitations (Table 3). Acute serum BDNF levels were positively correlated with 

memory composite scores at 6 (r=0.53, p=0.005, n=30) and 12 months (r=0.38, p=0.018, 

n=26), Figure 3. Using a t-score cut off of 40 to designate impaired performance, acute 

BDNF levels were reduced in those individuals with a memory composite score<40 

(impaired) compared to those with memory composites >40 at 6 months (146.9±8.4 vs 

168.2±8.4, p=0.024) and 12 months (144.9±10.9 vs 167.2±7.5, p=0.027). CSF BDNF and 

chronic serum BDNF levels were not associated with any cognitive composite components. 

Acute serum BDNF levels were positively correlated with FIM-Cog at 6 months (r=0.31, 

p=0.041, n=45). All FIM-Cog component scales were positively associated with higher 

serum BDNF at 6 months (Table 3). CSF BDNF levels tended to show a negative correlation 

with FIM-Cog at 6 months (r=−0.24, p=0.090, n=53), with a significant association with 

FIM-Problem Solving (r=−0.33, p=0.015). At 12 months, acute serum BDNF levels were 

positively correlated to FIM-Memory (r=0.38, p=0.018); CSF BDNF did not show any 

significant correlations to 12 month FIM-Cog or FIM-Cog components. There were no 

significant relationships between chronic BDNF and functional cognition at either 6 or 12 

months.

 Discussion

In this study we investigated BDNF levels as a common biomarker for PTD pathology, 

cognitive dysfunction, and functional cognitive impairment post-TBI. As PTD and cognitive 

difficulties often co-occur post-injury, we aimed to evaluate BDNF as a biomarker 

representing common pathology underlying these complications. In this study, acute serum 

BDNF levels were associated with chronic memory impairments, global functional cognitive 

limitations, and depressive symptom severity. Chronic serum BDNF levels, however, were 

not associated with any cognitive outcomes, but tended be lower in individuals with PTD. 

Yet, while acute CSF levels tended to correlate with acute serum, they were not predictive of 

chronic outcome measures. These findings are summarized in Figure 4.

This work has two potentially important implications: first, acute serum BDNF may be a 

viable predictive biomarker for both mood and cognitive complications within the first year 

post-TBI, indicating a possible treatment window in the acute phase that could have 

implications for long-term mood and cognitive recovery; second, that chronic serum BDNF 
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may be reflective of PTD severity, suggesting a potential biomarker for tracking treatment 

response and effectiveness in real-time. While future studies will need to evaluate this work 

in larger cohorts, the findings presented here suggests BDNF may be a viable treatment 

target with dynamic utility across recovery.

Serum BDNF levels were low immediately after injury, consistent with previous studies32,56. 

Also, our own previous work demonstrates low serum BDNF levels as a mortality marker 

following TBI, suggesting immediate reductions in serum BDNF levels are indicative of 

greater TBI related pathology. Kalish (2010) demonstrated immediate reductions in serum 

BDNF, but this finding was associated with GCS32. In our current study, there is no 

relationship between GCS and acute serum BDNF. However, our population included 

participants with moderate to severe injury, while the Kalish (2010) study included mild 

TBI32. We also report that serum BDNF levels remain reduced chronically, adding evidence 

to the emerging concept of TBI as a chronic condition with long-term pathophysiological 

alterations.

In uninjured populations, BDNF serum levels are consistently reduced among individuals 

experiencing depressive symptoms57. Under uninjured conditions, serum BDNF levels likely 

reflect CNS functioning, as BDNF is primarily synthesized in the brain and secreted in an 

activity dependent manner58. Several studies suggest serum increases in BDNF are due to 

brain level changes59,60. Serum BDNF is likely reflective of BDNF expression in the 

hippocampus, where tissue BDNF levels are decreased in correlation with stress and 

depression61. Hippocampal BDNF signaling is also implicated in mechanisms of 

antidepressant treatment62. In rat models, intracerebral BDNF infusions have antidepressant 

effects, while decreased BDNF signaling results in decreased hippocampal neurogenesis63.

Reduced BDNF may be indicative of a depressive state following neurological insult. 

Following acute stroke, there were relative reductions in acute serum BDNF for those with 

depressive symptoms that did not occur in those without depression within the same 

timeframe64. Similarly, our chronic BDNF levels at 12 months correlated with depressive 

symptom severity within the corresponding timeframe. However, there was limited 

discriminatory ability of BDNF levels at chronic time-points, possibly due to issues with 

sample size and variability in biomarker values. Additionally, there may also be a “floor 

effect” following TBI, where BDNF levels are already significantly lower than controls, 

impairing our ability to discriminate PTD status.

The data from this study suggest acute serum BDNF levels are highly associated with 

memory impairment post-TBI. Other studies have demonstrated similar relationships 

between serum BDNF levels and cognitive impairment65. Specifically, in patient populations 

(schizophrenia, bipolar disorder, mild cognitive impairment) and healthy controls66, there 

are relationships between BDNF levels and memory67. Animal studies using conditional 

BDNF knock-out mice show impaired hippocampal-dependent cognition and behavior68. 

Thus, injury induced acute reductions in serum BDNF may be indicative of the degree of 

direct damage to the hippocampus. Similarly, levels may also be indicative of an acute injury 

state that is conducive to neuronal death and atrophy that would predict later memory 

performance. Low BDNF signaling in the hippocampus may diminish synaptic plasticity and 
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neurogenesis, negatively affecting these chronic recovery endpoints. Future studies are 

needed to examine the relationship between acute BDNF levels and chronic hippocampal 

volume, as this may aid interpretation of these findings. As experimental TBI models show 

that hippocampal BDNF expression is correlated with cognitive recovery23, it will be critical 

to understand if/how early interventions targeting BDNF might improve chronic memory 

problems. Participants with lower BDNF levels acutely do tend to have lower levels 

chronically. One recent study demonstrated detrimental effects of long-term BDNF 

reductions on age-related decline in animal models69. Thus, understanding the trajectory of 

BDNF profiles, and their relationship to memory performance, could guide treatment and 

intervention strategies and improve longterm outcomes. Acute BDNF serum levels did not 

correlate with any other measures of cognitive performance, but were significantly 

associated with multiple components of functional cognition. This finding may be due to the 

importance of memory in other aspects of functional cognition70.

BDNF CSF levels did not show consistent associations with mood or cognitive recovery. 

However, higher CSF levels tended to be associated with worse outcomes on the FIM-Cog 

subcomponents. This trend is consistent with our previous work56 showing high levels of 

CSF were associated with greater mortality post-TBI. However, it is important to understand 

interactions between CSF and serum BDNF levels. In fact, we show a trend for a negative 

correlation between CSF and serum BDNF (consistent with previous work56). While it has 

been suggested that BDNF can cross the blood brain barrier (BBB) in both directions under 

normal conditions71,72, BBB disruption following TBI could allow for increased BDNF 

transit into the brain, especially during the initial days after TBI71,73. This increased transit 

from blood into CSF could reflect a possible protective process, as platelets dump BDNF in 

response to vascular injury74. Therefore, lower BDNF levels in serum acutely may be 

suggestive of more extensive injury, and subsequent expenditure of systemic stores of BDNF 

into the CNS, correlating with later development of chronic conditions.

In line with personalized medicine and Rehabilomics20, it is important to consider several 

demographic, medical, and genetic factors that may influence BDNF levels. Some studies 

suggest BDNF levels vary by BDNF genetic variation75. Future studies in larger cohorts are 

needed to determine the effect of BDNF variation on chronic BDNF levels after TBI. It will 

also be important to evaluate serum BDNF post-TBI in relation to therapies that stimulate 

BDNF signaling (e.g. exercise, SSRIs). In uninjured populations, serum BDNF levels are 

decreased in untreated depression but increase with antidepressant treatment29–31. However, 

this study was not designed to evaluate the utility of BDNF as a biomarker of PTD 

remittance following antidepressant use. A limitation in this study is the inclusion of 

individuals on antidepressants, however, BDNF levels are thought to be more indicative of 

depressive symptomology and remittance than antidepressant use76. Additionally, many 

individuals who are on antidepressants are still depressed; the opposing effects of 

antidepressant use and depression may reduce associations with BDNF levels. Future studies 

in PTD will need to examine these relationships in carefully designed studies where 

relationships between BDNF levels, antidepressant type/dose, and depressive symptoms are 

examined.
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It is also possible that this study was underpowered to detect some associations between 

BDNF and TBI-related outcomes given possible effects of demographics like age and sex on 

BDNF levels77. In this study, age and sex were not consistently associated with BDNF 

levels, though BDNF levels were significantly lower in women at 12 months post-injury. 

Future studies are needed to examine the impact of demographic variables on BDNF levels 

specifically following TBI and in concert with TBI outcomes.

There are other important limitations to consider concerning this study and BDNF 

evaluations. Similarly, it will be important to understand the relationship between BDNF 

levels in participants with PTD, with and without cognitive impairment. A general limitation 

is the assumption that serum BDNF levels represent brain levels, as there is a substantial 

peripheral production of BDNF in vascular endothelial cells74 and stored in platelets78. 

Literature suggests platelet release is not altered in depression57, but it is unclear if platelet 

release could be altered in PTD or TBI, or how peripheral stores of BDNF might influence 

our findings. As a reference group for biomarker levels, the sample size is small and cannot 

account for potential genetic or other sources of variability. Controls were not screened for 

depressive symptoms. It is possible that some healthy controls could have depressive 

symptoms or other disorders that they did not report at the time of their interview. However, 

if that is the case in controls, then our results comparing individuals with TBI to controls 

would be biased toward the null.

The work presented here provides preliminary evidence of potential utility for BDNF as a 

predictive biomarker for cognitive recovery following TBI. Larger studies are needed to 

evaluate BDNF utility in discriminating PTD status, however our data indicate that BDNF 

may be associated with depressive symptoms post-TBI. Examining BDNF levels in stratified 

cohorts with and without PTD and cognitive impairment may elucidate the specificity of 

BDNF as a biomarker post-TBI. It will be important to understand, mechanistically, utilizing 

animal models, what the resulting BDNF levels in this study indicate about underlying TBI 

pathology and possible treatment development. Future studies are likely needed to evaluate 

temporal BDNF trajectories over time and across recovery, as PTD and cognitive 

impairments develop and/or resolve, for a better understanding of BDNF effects on TBI 

recovery.
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Figure 1. 
Daily brain derived neurotrophic factor (BDNF) levels over the first 7 days post-injury, 

compared to healthy controls (mean in black line, standard error in light gray dashed lines). 

(A) Daily mean CSF BDNF levels do not differ significantly from control levels. (B) Daily 

mean serum BDNF levels fall below control levels at day 0 post-injury and remain reduced 

through day 6 (day 0, p<0.05, day 1–6, p<0.001).
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Figure 2. 
Serum brain derived neurotrophic factor (BDNF) levels during chronic recovery at 6 and 12 

months were examined in participants with PTD and no PTD. At 6 months (A), there were 

no significant differences in serum BDNF by PTD status (p=0.174). At 12 months (B), 

participants with PTD had lower serum BDNF levels compared to participants with no PTD, 

though this was not significant (p=0.066). Levels in participants with PTD were reduced 

compared to control levels at 6 months and 12 months; similarly BDNF levels for 

participants with no PTD were reduced compared to controls (p<0.05 for all comparisons).
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Figure 3. 
Serum brain derived neurotrophic factor (BDNF) levels during the first week post-injury 

were investigated for predictive associations with memory impairment at 6 and 12 months 

post-injury. At 6 months (A), acute serum BDNF levels predicted performance on memory 

composite (r=0.53, p=0.005). At 12 months (B), acute serum BDNF levels predicted 

performance on memory composite (r=0.38, p=0.018). A dashed line denotes the T-score 

cut-off for impairment on the memory composite.
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Figure 4. 
The following schematic summarizes the main findings regarding associations between 

brain derived neurotrophic factor (BDNF) levels and depression or cognition following 

traumatic brain injury (TBI). Dashed lines and boxes depict trends in the data while solid 

lines and boxes represent significant findings. These data are shown across a timeline from 

the date of injury through the 1st week (acute) and then 6 and 12 months post-injury 

(chronic). Memory refers to cognitive composites of neuropsychological tests examining 

memory. PTD, post-TBI depression. FIM, functional independence measure.
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