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The Forkhead box M1 (FOXM1) is a transcription factor that has been implicated in normal cell growth and proliferation through
control of cell cycle transition and mitotic spindle. It is implicated in carcinogenesis of various malignancies where it is activated
by either amplification, increased stability, enhanced transcription, dysfunction of regulatory pathways, or activation of PI3K/AKT,
epidermal growth factor receptor, Raf/MEK/MAPK, and Hedgehog pathways. This review describes the role of FOXM1 in breast
cancer. This includes how FOXM1 impacts on different subtypes of breast cancer, that is, luminal/estrogen receptor positive
(ER+), expressing human epidermal growth factor receptor 2 (HER2), basal-like breast cancer (BBC), and triple negative breast
cancer (TNBC).The review also describes different tested preclinical therapeutic strategies targeting FOXM1. Developing clinically
applicable therapies that specifically inhibit FOXM1 activity is a logical next step in biomarker-driven approaches against breast
cancer but will not be without its challenges due to the unique properties of this transcription factor.

1. Introduction

The Forkhead box family is a group of over 50 mammalian
proteins that is characterized by a winged helix DNA-binding
domain [1]. Forkhead box M1 (FOXM1) is a transcription
factor that has beenwell studied and implicated in normal cell
growth as well as carcinogenesis. A growing body of evidence
suggests a role for FOXM1 in various malignancies including
breast [2], liver [3], lung [4], prostate [5], and colorectal
cancer [6]. More importantly, different pathways have been
elucidated but the exact mechanism remains unclear as
multiple transcription factors and downstream regulatory
genes are being discovered [7].

The focus of this reviewwill be on the correlation between
FOXM1 and (1) hormone and growth factor receptors path-
ways associated with breast cancer and (2) resistance to breast
cancer therapies. We will first briefly discuss the structure
of FOXM1 and its role in both normal cell functioning and
carcinogenesis.

2. FoxM1 Structure

Fox proteins share a DNA-binding domain, the Forkhead
box or winged helix domain (WHD); it consists of three
helices, three sheets, and two loops or wings forming a helix-
turn helix-like motif. Structural variations occur between the
second and third helices, whereas the helices and sheets are
highly conserved. DNAbinding occurs primarily through the
third helix, or recognition helix, and the second wing, which
bind to the major groove and minor groove of the DNA,
respectively [8].

FOXM1 protein binds the core consensus sequence
(A/C)AAACAAAC [9] and, in some instances, requires inter-
action with other factors for DNA-binding and transcrip-
tional activity [10]. Additionally, FOXM1 may also recruit
cyclin-dependent kinase (CDK) cyclin complexes through
the LXLmotif. Overall, there is amultitude of factors that play
a role in the transcription and target gene expression of Fox
proteins, including histone deacetylase (HDAC) and RUNX
[11].
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The FOXM1 gene is located on the chromosomal band
12p13 [12]. It consists of seven (I–VII) exons plus two
alternatively expressed exons (A1 and A2) generating three
alternatively spliced coding isoforms: FOXM1a, FOXM1b,
and FOXM1c. ExonA2 has been shown to be a transcriptional
repressor, whereas exon A1 does not have any apparent
transcriptional significance. FOXM1b is lacking exons A1 and
A2 sequences [9].

3. Role of FOXM1 in Normal Cell Functioning
and in Carcinogenesis

3.1. FOXM1 in Normal Cells. Studies have shown that FoxM1
exerts its effect through regulation of the cell cycle transition
points. It peaks at G1/S and G2/M phases and is essential
for mitosis through promotion of M phase entry [9, 13].
FOXM1 is located in the cytoplasm at late G1 and S phases
[14]. It is activated by mammalian mitotic kinase Polo-
like kinase-1 (Plk1) through binding to carboxyl terminal
domain of FOXM1 and through further phosphorylation of
two residues on this domain by cyclin-dependent kinase
1 (Cdk1) [15], cyclin E-CDK2 [16], and Raf-MEK-ERK-
mediated phosphorylation [14]. FoxM1 has been shown to
regulate the transcription of genes involved in cell cycle
by binding to promoter of cyclin D1 and cyclin B1 genes
[17] and by direct activation of transcription of the Cdc25B
phosphatase promoter region [18]. In the hepatoblasts of
Foxm1b −/− murine embryos mitosis was associated with
decreased expression of the Aurora B kinase and Polo-like
kinase 1 (Plk1) and Cdc25A phosphatase [19]. Wang et al.
showed, using quantitative chromatin immunoprecipitation
and expression, that FoxM1 is necessary for transcription
of the Aurora B kinase, survivin, centromere protein A
(CENPA), and CENPB [20]. Other mechanisms of action
include upregulation of transcription of S phase kinase-
associated protein 2 (SKP2) and cyclin kinase subunit 1
(CKS1), subunits of the SKP1-Cullin 1-F-box ubiquitin ligase
complex, leading to degradation of p27 and p21 [20]. In vitro
experiments in mice detected FoxM1 in all proliferating cells,
both adult and embryonic; once the cell had differentiated,
it was noted that the expression of FoxM1 had significantly
decreased [21]. The significance of FoxM1 in normal cell
growth is supported by Krupczak-Hollis et al. [19] and Kim
et al. [22], who showed that absence of FoxM1 in embryonic
cells led to major developmental defects in the liver and
lung and was ultimately fatal. Wonsey et al. [23] supported
this notion by demonstrating that the loss of FoxM1 led to
genetic mitotic spindle defects, delayed cells in mitosis, and
induced mitotic catastrophe. FoxM1 transcriptional activity
is controlled by the SmallUbiquitin-LikeModifier-2 (SUMO-
2) protein. This modification of FoxM1 peaks during G2 and
M phase. SUMOylation blocks the dimerization of FoxM1,
thereby alleviating FoxM1 autorepression [24].

3.2. FOXM1 in Carcinogenesis. The first evidence of a cor-
relation between FOXM1 and human cancer was reported
by Teh et al. in 2002 [25]. Their data revealed a high level
of FOXM1 expression in human basal cell carcinomas, as

a downstream target of the oncogenic transcription factor,
glioma-associated oncogene homolog 1 (GLI1). Halasi and
Gartel [26] suggested several mechanisms that would explain
the increased expression and activity of FoxM1 in cancer:
(1) FoxM1 locus amplification as seen in both solid [27] and
hematologic malignancies [28], (2) a high level of stability
or expression of FoxM1 in cancer cells initiated through
different pathways, (3) enhanced transcription of FoxM1
through promoter binding of various factors such as E2
transcription factor (E2F), c-Myc, and hypoxia-inducible
factor- (HIF-) 1, (4) mutations of the tumor suppressor p53
[29, 30], and (5) activation of FoxM1 by oncogenic signaling
pathways such as PI3/Akt, epidermal growth factor receptor
(EGFR), Raf/MEK/MAPK, and Hedgehog. Recently Wei et
al. [31] demonstrated direct activation by FoxM1 of SNAIL
gene, a key regulator of epithelial-mesenchymal transition
(EMT), and showed a direct correlation with expressions
of FoxM1 and Snail transcription factor in human lung
adenocarcinoma tissues.

The development of metastatic disease is one of the
essential hallmarks of carcinogenesis [32]. Studies have
shown that FoxM1 plays a critical role in not only tumor
metastasis, EMT, cell motility, invasion, and premetastatic
niche formation [33] but other key cancer hallmarks as
well (Figure 1)—reprogramming of energy metabolism; pro-
motion of genomic instability [34, 35], inflammation, cell
proliferation, and angiogenesis; evasion of growth/tumor
suppression; circumvention of apoptosis; and enabling of
replicative mortality [29].

4. Role of FOXM1 in Breast Cancer

4.1. FoxM1 in the Biology of Breast Cancer. The effect of
FOXM1 on biology of breast cancer was evaluated in 236
women with breast cancer. Expression of FOXM1 was associ-
ated with larger tumor size, lymphovascular invasion, lymph
nodes metastases, and higher stage of breast cancer. There
was no significant impact of FoxM1 expression on survival
when all breast cancer histologies were analyzed; however,
in a subgroup of patients with estrogen receptor (ER) pos-
itive tumors, low FOXM1 expression correlated with better
survival (hazard [low versus high] = 7.304, 95% confidence
interval [0.897–59.45], 𝑝 = 0.063) [36]. In another study of
501 ER positive tumors, FOXM1 was overexpressed in 20%
of tumors that correlated with higher recurrence rate and
shorter survival (𝑝 = 0.03), contributed to association of
FOXM1 with stem-cell like population, increased expression
of markers of EMT, and increased resistance to tamoxifen
therapy [37].

The complex and diverseways inwhich FOXM1 promotes
breast cancer tumorigenesis are depicted in Figure 2. Yang
et al. demonstrated that FOXM1 promoted EMT in breast
cancer by binding and activation of the promoter of SLUG
gene [38]. Xue et al. showed that FOXM1promotes breast can-
cer metastases by activation of the TGF-𝛽 pathway through
interactionwith SMAD3 (this preventedE3ubiquitin-protein
ligase transcriptional intermediary factor 1 𝛾 [TIF1 𝛾] binding
to SMAD3 and protected SMAD4 from ubiquitination) that
leads to stabilization of the SMAD3/SMAD4 complex [39].
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Figure 1: Schematic diagram of the biological role of FOXM1 in carcinogenesis. Recent research has shown that FOXM1 has a complex and
diverse role in carcinogenesis. The effects of FOXM1 are mediated by numerous downstream targets as shown in this figure. In addition,
several effects of FOXM1 on carcinogenesis are mediated by upstream regulators of FOXM1 (∗). Bcl-2: B-cell lymphoma/leukemia-2 protein;
Bmi-1: B lymphoma Mo-MLV insertion region 1 homolog; Cav-1: caveolin-1; CEP55: centrosomal protein 55 kDa; c-Myc: myelocytomatosis
viral oncogene homolog; COX-2: cyclooxygenase-2; CX3CR1: chemokine receptor CX3CR1; ER𝛼: estrogen receptor alpha; FLK-1: fetal liver
kinase-1; FOXF1: Forkhead box protein F1; FOXM1: human Forkhead box M1; HELLS: lymphoid specific helicase; HIF-1: hypoxia-inducible
factor-1; JNK1: C-JunNH

2
-terminal kinase-1; LOX: lysyl oxidase; LOXL2: lysyl oxidase homolog 2;MMP-2:matrixmetallopeptidase-2;MMP-

9: matrix metallopeptidase-9; MnSOD: manganese superoxide dismutase; OGT: O-linked 𝛽-N-acetylglucosamine transferase; p19ARF: p19
alternate reading frame; p21Cip1: cyclin-dependent kinase inhibitor 1; p27Kip1: p27 kinase inhibitor protein 1; RB: retinoblastoma; Skp2: S phase
kinase-associated protein 2; SOX2: Sry-related HMG box2; STRP1: short tandem repeat polymorphism 1; TOPO-2𝛼: topoisomerase-2 alpha;
VEGF: vascular endothelial growth factor.

FOXM1 also has a role in modulation of the extracellular
matrix by affecting levels of uPA, uPAR, MMP-2, MMP-
9, and VEGF [40]. The mechanism of VEGF induction
by FOXM1 was elucidated by Karadedou et al., in which
they demonstrated that FOXM1 binds to Forkhead response
element inVEGFpromoter [41]. Yu et al. showed that binding
of FOXM1 to platelet derived growth factor-A promoter led to
activation of the AKT pathway and increased breast cancer
tumorigenesis [42]. Nestal de Moraes et al. [43] have shown
that FOXM1 upregulates antiapoptotic genes XIAP and sur-
vivin by interacting with their promoters, contributing to
chemoresistance of breast cancer cells to docetaxel, paclitaxel,
and epirubicin. Moreover, coexpression of FOXM1, survivin,
and nuclear XIAP was associated with poor outcomes of
womenwith stage III breast cancer with significantly reduced
5- and 10-year survival rates versus women with tumors
without these features.

Breast cancer encompasses a heterogeneous group of
entities that vary greatly in terms of histology, therapy, and
prognosis. This notion was suggested by Sørlie et al. [44]
and later confirmed in the cancer genome atlas published
in 2012 [45]. Human breast malignancies can be divided
into five subtypes: normal breast-like, luminal A, luminal B,
HER2/Neu-enriched, and basal-like breast cancer (BBC).

4.2. FOXM1 and Luminal/Estrogen Receptor Positive (ER+)
Breast Cancer. The effect of estrogen on both normal and
malignant breast tissue is mediated through two types of
estrogen receptors (ER): ER𝛼 and ER𝛽. Although they bind
to estrogen with equal affinity, ER𝛼 and ER𝛽 respond differ-
ently to estrogen stimulation: activated ER𝛼 induces breast
epithelium proliferation, whereas ER𝛽 has antiproliferative
and proapoptotic effects [46]. Approximately 70% of breast
cancers are estrogen receptor positive (ER+) and these
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Figure 2: Schematic diagram of the biological role of FOXM1 in breast cancer tumorigenesis. Recent research has shown that the effects of
FOXM1 on breast cancer tumorigenesis aremediated by a number of diverse biologicalmechanisms. EMT: epithelial-mesenchymal transition;
TGF-𝛽: transforming growth factor-beta; uPA: urokinase; uPAR: urokinase receptor; MMP-2: matrix metallopeptidase-2; MMP-9: matrix
metallopeptidase-9; VEGF: vascular endothelial growth factor.

tumors are often better differentiated, grow slowly, and have
a favorable prognosis [47].

Early research about the Forkhead box family and growth
factors in breast cancer emerged in 2000. Jackson et al.
provided the first evidence of a link between epidermal
growth factor (EGF) and a Forkhead box family member,
FOXO3a, known at that time as FKHR [48]. Influenced by
these findings, Madureira et al. [49] and Karadedou [50]
found a positive correlation between ER𝛼 and FOXM1 and
an inverse correlation between ER𝛼 and FOXO3a. Their
results showed that FOXM1 is a physiologic regulator of
ER𝛼 expression in breast cancer cells, both at the pro-
tein and at mRNA levels. Consistent with these findings,
later studies confirmed the tumor suppressive qualities of
FOXO3a [51], including cases of ER+ breast malignancies
[52]. Carr et al. reported transcriptional repressor function
of FOXM1 inhibiting differentiation of luminal progenitor
cells by inducing methylation of promoter of the zinc fin-
ger transcription factor GATA-3 through association with
DNMT3b [53]. Millour et al. supported the critical role of
FOXM1 inmitogenic functions of ER𝛼 and estrogen in breast
malignancies [54]. Additionally, they showed that FOXM1
deregulationmay also contribute to antiestrogen insensitivity,
opening the door to practical applications of these findings
in the field of therapeutics. Whereas the focus of these
studies was on ER𝛼, Horimoto et al. studied the effects of
ER𝛽 expression on breast cancer [55]. Their investigations
showed that ER𝛽 had an antiproliferative effect through
repression of FOXM1 expression in breast cancer cells; this

effect was mediated by an estrogen-response element within
the proximal promoter region that is also a target of ER𝛼.

The correlation between FOXM1 and ER+ breast cancer
has also been shown on the genetic level. Ahn et al. created
a 70-gene signature which was found to be of prognostic
value in ER+ breast cancer patients in that FOXM1 suggested
poorer prognosis [56]. This signature was found to be most
helpful in cases of intermediate Oncotype recurrence scores.
Other studies included genome-wide mapping by Sanders et
al. which revealed a direct relationship between FOXM1 and
ER𝛼 [57]. Their analysis uncovered another signature of 38
FOXM1-regulated genes with a prognostic value.

4.3. FOXM1 and Human Epidermal Growth Factor Receptor
2 (HER2). The human epidermal growth factor receptor 2
(HER2) is a transmembrane tyrosine kinase receptor and a
member of the epidermal growth factor (EGF) family [58].
The amplification of HER2 can be seen in up to 25% of
breast cancer cases and has been shown to correlate with
high relapse rates and poor survival [59]. In 2008, Bektas
et al. provided the first evidence of a positive correlation
betweenHER2 status and FOXM1 expression in breast cancer
specimens, in comparison to normal breast tissue [60]. Addi-
tionally, their work verified the overexpression of FOXM1 in
breast cancer on both the RNA and protein level. Francis
et al. elaborated on the concept further through various in
vitro and in vivo experiments [61]. Their work suggested that
FOXM1 may in fact be a downstream target and marker of
HER2 overexpression in breast cancer. This study also had
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translational implications by showing a suppressive role for
lapatinib (a HER2 inhibitor) on FOXM1 expression at the
protein, mRNA, and gene promoter levels. Subsequent data
showed a role for FOXM1 in the development of trastuzumab
(a HER2 antibody) resistance [62].This is particularly impor-
tant because trastuzumab resistancemay develop quickly and
represents a challenge in the treatment of breast cancer.

4.4. FOXM1, Basal-Like Breast Cancer (BBC), and Triple Neg-
ative Breast Cancer (TNBC). Basal-like breast cancer (BBC)
is an aggressive phenotype of breastmalignancies that is often
associated with poor prognosis [63]. BBC cells lack hormone
estrogen receptors (ER) and progesterone receptors (PR) and
express genes that are usually seen in basal or myoepithelial
cells of normal breast tissue. Triple negative breast cancers
(TNBC), on the other hand, are tumors that lack HER2 in
addition to ER and PR. Although differences between these
two types of breast cancer have been demonstrated, BBC
and TNBC overlap significantly [64].These tumors represent
a therapeutic challenge because of lack of effective therapy.
Although TNBC accounts for only 15% of breast cancer
subtypes, it causes 25% of breast cancer-related deaths due to
its aggressive and refractory nature [65].

EMT has been correlated with TNBC [66], and NF-
kappaB is a transcription factor that has been shown to be
essential in EMT in breast cancer [67]. Arora et al. incor-
porated these two concepts in their search for a therapeutic
agent for TNBC [68]. They discovered that panepoxydone
(PP), a NF-kappaB inhibitor, halted proliferation, induced
apoptosis, and reversed EMT in breast cancer, in particular
TNBC. Interestingly, their work revealed a downregulatory
effect of PP on FOXM1 as well. A whole genome and
transcriptome sequencing of TNBC cells by Craig et al.
revealed consistent overexpression of FOXM1 in TNBC [69].
The role of FOXM1 has also been seen in BBC cancers,
including FOXM1-dependent overexpression of MELK, a
novel oncogenic kinase [70].

5. FOXM1 and Breast Cancer Therapeutics

Taking into consideration the significant role of FOXM1 in
breast cancer biology this transcription factor could become
an attractive target for cancer treatment. Herein, we describe
some breast cancer therapeutic strategies targeting FOXM1.

A FOXM1-specific small interfering RNA (siRNA) was
found to be effective in reducing the expression of FOXM1
proteins in vivo [71]. Treatment of breast cancer cells with
adenoviral vector expressing short hairpin downregulating
FOXM1 led to inhibition of breast cancer tumor formation
[72]. Overexpression of microRNA miR802 led to down-
regulation of FOXM1 and inhibited proliferation of breast
cancer cells [73]. A thiazole ring containing thiostrepton, an
antibiotic with antitumor activities [74], was shown to induce
arrest and death of breast cancer cells through downregulat-
ing FOXM1 expression [75]. As stated earlier [24], SUMO is
a posttranslational modifier that is essential for activation of
FOXM1. A SUMOylation protease, sentrin-specific protease
2 (SENP2), significantly decreased SUMOylation of FOXM1

and interferedwith its function [76]. Casticin, an active ingre-
dient derived from Fructus Viticis, the fruit of a traditional
Chinese medicine, has anticarcinogenic activity in breast
cancer [77]. Recent experiments showed that it can induce
apoptosis of breast cancer cells by reducing the expression of
FOXM1 [78].

FOXM1 has been shown to play a critical role in develop-
ment of resistance to breast cancer therapeutics. FOXM1 is a
downstream target of 14-3-3𝜁, a marker of endocrine therapy
resistance in breast cancer malignancy [79]. FOXM1 was
found to contribute to cisplatin (a platinum agent) resistance
in breast cancer cells. The effect was thought to be mediated
by the enhancement of DNA-damage repair pathways and
the promotion of cell cycle progression or inhibition of cell
cycle checkpoints and apoptosis [80]. FOXM1 overexpression
was implicated in the resistance to trastuzumab (a HER2
monoclonal antibody) and paclitaxel (a microtubule stabiliz-
ing agent). Treatment with a siRNA targeting FOXM1 or an
alternate reading frame- (ARF-) derived peptide resulted in
improved therapeutic sensitivity to these agents [81]. FOXM1
caused doxorubicin resistance in breast cancer by enhancing
DNA repair. The nuclear factor NF-kappa-B1 (NF𝜅B1) inter-
acted with FOXM1 in the presence of doxorubicin to protect
breast cancer cells from DNA damage [82]. Epirubicin could
activate ataxia-telangiectasia mutated (ATM) that promotes
E2F activity and FOXM1 expression [83]. In addition, a study
by de Olano et al. showed that the mechanism of epirubicin
resistance was mediated by activation of mitogen-activated
protein kinase-activated protein kinase 2 leading to increased
phosphorylation of transcription factor E2F1 at Ser-364
resulting in increased FOXM1 expression [84]. Khongkow et
al. demonstrated that FOXM1 reduced senescence induced
by epirubicin, by increasing expression of NBS1 leading
to enhanced homologous recombination DNA repair [85].
Another work by Khongkow et al. postulated that resistance
to paclitaxel, a tubulin targeting agent, can be mediated
by FOXM1 through enhancement of promoter activity of
transcriptional activity of KIF20A [86]. Both FOXM1 and
KIF20A are critical for normal formation of mitotic spindle
and thus could interfere with paclitaxel activity. Nestal de
Moraes et al. [43] demonstrated that resistance to epirubicin,
docetaxel, and paclitaxel was associated with activation of
XIAP and survivin by direct interaction of FOXM1 with
promoters of these antiapoptotic genes.

6. Conclusion

Forkhead boxM1 plays a significant role in breast carcinogen-
esis, disease progression tometastatic stage, and development
of resistance to subsequent cancer therapy, and thus it could
be an attractive target for therapeutic interventions in this
malignancy. However, due to incomplete understanding of
the biology of the FOX family of transcription factors that
has complex regulatory mechanisms, it has been a challenge
to develop a drug that functions specifically as a FOXM1
inhibitor [87]. In addition, druggability of FOXM1 has been
taxing because of lack of substrate binding pockets and
hydrophobic surfaces [88]. A recent discovery through high
throughput fluorescence polarization assay of a novel small
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molecule that specifically inhibits FOXM1 interaction with
DNA may be a first breakthrough in the design of selective
inhibitors of this transcription factor [89]. Once FOXM1
targeted agents are available, appropriate clinical testing in
different breast cancer subtypes is warranted, most likely
in a biomarker-driven setting. At present, however, there is
no clear biomarker developed to assess sensitivity of breast
cancer to FOXM1 inhibition. This could be a goal of early
pilot studies, especially in the most challenging breast cancer
subtype, triple negative disease.
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