
SVD Compression for Magnetic Resonance Fingerprinting in the 
Time Domain

Debra F. McGivney,
Department of Radiology, Case Western Reserve University, Cleveland, OH, 44106 USA, 
debra.mcgivney@case.edu

Eric Pierre,
Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106 
USA

Dan Ma,
Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106 
USA

Yun Jiang,
Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106 
USA

Haris Saybasili,
Siemens Healthcare USA, Inc., Chicago, IL, 60611 USA

Vikas Gulani, and
Department of Radiology, Case Western Reserve University, Cleveland, OH, 44106 USA

Mark A. Griswold
Department of Radiology, Case Western Reserve University, Cleveland, OH, 44106 USA

Abstract

Magnetic resonance fingerprinting is a technique for acquiring and processing MR data that 

simultaneously provides quantitative maps of different tissue parameters through a pattern 

recognition algorithm. A predefined dictionary models the possible signal evolutions simulated 

using the Bloch equations with different combinations of various MR parameters and pattern 

recognition is completed by computing the inner product between the observed signal and each of 

the predicted signals within the dictionary. Though this matching algorithm has been shown to 

accurately predict the MR parameters of interest, one desires a more efficient method to obtain the 

quantitative images. We propose to compress the dictionary using the singular value 

decomposition (SVD), which will provide a low-rank approximation. By compressing the size of 

the dictionary in the time domain, we are able to speed up the pattern recognition algorithm, by a 

factor of between 3.4-4.8, without sacrificing the high signal-to-noise ratio of the original scheme 

presented previously.

HHS Public Access
Author manuscript
IEEE Trans Med Imaging. Author manuscript; available in PMC 2016 February 14.

Published in final edited form as:
IEEE Trans Med Imaging. 2014 December ; 33(12): 2311–2322. doi:10.1109/TMI.2014.2337321.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

Magnetic resonance imaging; dimensionality reduction; pattern recognition and classification; 
singular value decomposition

I. Introduction

Magnetic resonance fingerprinting (MRF) [1] is a relatively new technique in the field of 

MR and one of its major contributions is to simultaneously provide quantitative maps of 

multiple tissue parameters via a novel data acquisition. At the heart of this quantitative 

mapping is a dictionary composed of simulated signal evolutions calculated using the Bloch 

equations with different combinations of the MR parameters of interest, such as T1, T2, and 

off-resonance. In the original implementation, the observed signal evolutions were matched 

to distinct dictionary entries using template matching, where the inner product was 

computed between an observed signal and each of the dictionary entries to find the 

maximum, thus retrieving the parameter combinations unique to that entry. While it was 

shown in [1] that this procedure is robust and can accurately predict the parameter values, it 

is desirable to reduce the number of computations needed while maintaining accuracy.

The singular value decomposition (SVD) [2] of a matrix is a useful tool that can provide 

information about the properties of a matrix and can be applied to a variety of problems, 

including the solution of linear least squares problems [3] and dimensionality reduction 

through principal component analysis (PCA) [4], [5]. Data compression using the SVD has 

been extensively studied, for example in the compression of ECG signals [6] and for images 

[7], [8]. The SVD has also been used to create digital watermarks for copyright protection 

[9], [10]. In the field of text mining, the SVD is applied to the term document matrix in a 

process known as latent semantic indexing [11], [12] to reveal the intrinsic structure of the 

matrix and to reduce its size. The SVD has been applied to transform gene expression data 

into “eigengenes” and “eigenarrays” [13] and also to model the distribution of yeast mRNA 

gene lengths [14]. Keeping in mind the close connection between the eigenvalue 

decomposition and the SVD, facial recognition is yet another area where matrix 

factorization plays a pivotal role in data compression and pattern recognition [15].

SVD encoded MR was introduced and implemented in [16], [17] to reduce acquisition time 

through dynamically adaptive imaging, though it has been argued [18], [19] that other 

methods for dynamic MRI are more suitable due to the tendency of SVD methods to 

reproduce features from the reference image. The SVD has also been considered to modify 

the block uniform resampling (BURS) algorithm for gridding nonuniform k-space data [20]. 

More recently, both the SVD and eigenvalue decomposition have been used in parallel MRI 

as a way to calculate coil sensitivity maps, establishing a clear link between SENSE and 

GRAPPA [21], [22], and the SVD has also been used on low-tip-angle gradient-echo images 

to calculate the  and  fields [23].

The goal of this paper is to apply the SVD to the MRF dictionary to reduce its size in the 

time domain, resulting in faster reconstruction of the tissue parameters without sacrificing 

the accuracy of this process, already demonstrated in [1].
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II. Quantitative Imaging from MRF

One of the main contributions of MRF to the field of magnetic resonance imaging is its 

ability to efficiently and simultaneously produce quantitative images of tissue parameters. 

Rather than assuming an exponential signal evolution model, in [1] a pseudorandom 

acquisition scheme is considered, where parameters such as repetition time, flip angle, and 

sampling pattern are varied randomly to create spatial and temporal incoherence between 

signals coming from different materials. The random nature of the acquisition scheme 

allows for specific tissues to exhibit unique signal evolutions, or fingerprints, that can 

identify each to its inherent MR parameters. In the initial implementation, a dictionary is 

calculated by solving the Bloch equations to simulate signal evolutions as functions of 

different combinations of T1 and T2 relaxation times and off-resonance frequencies. Given 

the large range of these parameters that one might expect to see in vivo, the dictionary is a 

comprehensive database of these fingerprints, which will allow for an accurate mapping of 

the MR parameters.

In the original work presented in [1], an inversion recovery balanced steady state free-

precession (bSSFP) sequence was used, and as this type of sequence is known to be 

sensitive to T1, T2, and off-resonance [24], these parameters were used in the calculation of 

the dictionary. Recently, an inversion recovery FISP-based sequence was also used to 

quantify T1 and T2 in the MRF framework [25]. We consider both sequences in this work.

Denote the dictionary by D ∈ ℂn×t where n is the number of parameter combinations and t is 

the number of time points. Denote by dj, j = 1,…, n the jth row of D, or the jth dictionary 

entry. As described in [1], for an observed signal evolution, its dictionary match is 

determined by a process similar to query or template matching: the observed signal 

evolution, denoted x, is compared to each dictionary entry by using the complex inner 

product to determine which entry it matches with highest probability, thereby assigning to it 

the values for T1, T2 and off-resonance unique to that entry. The dictionary entry dℝ is 

chosen that satisfies

(1)

where x∗ denotes the conjugate transpose of the vector x and | · | represents the modulus. The 

dictionary entries and measured signal evolutions are normalized to have unit length, i.e., 

∥x∥ = ∥dj∥ = 1, j = 1, …, n, with ∥ · ∥ denoting the usual Euclidean norm. Once we have 

recovered the match, the signal is assigned the values for the parameters T1, T2, and off-

resonance corresponding to the matching entry.

III. SVD background

Every matrix A ∈ ℂp×q can be written using the SVD [2], which is given by
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where U ∈ ℂp×p and V ∈ ℂq×q are unitary matrices, and Σ ∈ ℝp×q is a diagonal matrix 

containing the nonincreasing singular values σi, i = 1,…, min{p, q}. The columns of U, 

denoted u1,…, up are called the left singular vectors, and similarly, the columns of V, 

denoted v1,…, vq are called the right singular vectors.

A rank-k approximation of A is given by a truncated sum of rank-one matrices, written as

(2)

and it can be shown [26] that this is the “best” low-rank approximation of A, that is,

where the infimum is taken over all p × q matrices B with rank less than or equal to k.

The total energy of A is defined to be the sum of the squares of its singular values,

(3)

and the energy ratio [6] represents the fraction of the energy retained in the rank-k 

approximation A (k),

(4)

The energy ratio can be useful in determining an appropriate truncation index for a low-rank 

approximation that retains as much of the information from the original matrix as desired.

IV. Methodology

We will use a pattern recognition algorithm similar to the eigenface method presented by 

Turk and Pentland in [15], in which facial recognition is performed using the projection of 

images onto the lower dimensional subspace spanned by the eigenvectors corresponding to 

the largest eigenvalues.

We apply the SVD to the MRF dictionary, writing

(5)

where U, V, and Σ are as described in the previous section. Let r = rank(D) and note that in 

this article, we assume that n > t.

For a given index k, 1 ≤ k ≤ r, the truncated SVD (2) can be written in matrix form, yielding 

the low-rank approximation of the dictionary,
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where Uk = [u1,…, uk] denotes the matrix containing the first k left singular vectors and 

similarly for Σk, Vk.

Another property of the SVD is that the first r right singular vectors {v1,…, vr } form an 

orthonormal basis for the rows of D, that is, each dictionary entry can be written as a linear 

combination of these orthogonal vectors. By projecting the dictionary onto the subspace 

spanned by the first k singular vectors {v1,…, vk }, we have a representation of the 

dictionary in the lower-dimensional space ℂk, by multiplying

We will call this lower dimensional space the “SVD space” for simplicity.

A. Template Matching in the SVD space

An observed MR signal x is projected onto the same subspace spanned by the vectors in Vk 

by multiplying

and now the template match in equation (1) can be computed in the SVD space. We search 

for the dictionary entry so that

Note that since V is a unitary matrix, the product Vk Vk
∗ will approach the identity matrix as 

the truncation index k increases, thus approaching the original template matching scheme 

(1). We outline the steps for template matching in the SVD space in Algorithm 1.
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Though there is the added step of projecting the observed signals onto the SVD space, the 

number of computations required in the template match will be reduced, thereby reducing 

the amount of time required to compute the parameters. The signal is first projected, 

requiring ~ 2kt complex operations, and then the inner product is computed in ℂk, requiring 

~ 2nk complex operations for ~ 2k(n + t) total complex operations. Comparing this with the 

~ 2nt complex operations required per pixel for the inner product in the full template match, 

the number of computations can be significantly reduced depending on the choice of k. Note 

that in both the SVD and full template matches, the result of computing the inner product in 

step 3 of the algorithm is an n × 1 vector giving the uncentered correlation between the 

signal and each dictionary entry. The final step in both is to compute the modulus of each 

entry from this vector and locate the maximum. We use the operation count as an indication 

that the SVD method will result in decreased computation time, though due to discrepancies 

in implementations, memory requirements, etc., we do not expect operation count to 

translate linearly to computation time.

B. Projecting the k-space data

Alternatively, instead of projecting the data after image reconstruction as in step (2) of 

Algorithm 1, we can project the raw k-space data prior to gridding the nonuniform spiral 

data and applying the inverse Fourier transform [27] to obtain equivalent results. The 

general idea of our proposed method is shown in Fig. 1. On the top is the procedure as 

outlined in Algorithm 1, in which the raw data are undersampled in k-space as in [1] and 

then gridding and image reconstruction are performed at each time point to produce t images 

corrupted with significant errors as a result of the undersampling. Taking advantage of the 

fact that the Fourier transform is linear, it is possible to switch the order of operations and 

project the undersampled k-space data before performing gridding and image reconstruction, 

without significantly changing the resulting parameter maps. Using the SVD, the 

information from the dictionary simulated over t points is condensed down to k < t points, 

and as a result, k images are reconstructed. The resulting images are called the singular 

images. This schematic is shown on the bottom of Fig. 1. Errors between parameter maps 
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computed with the SVD applied before and after image reconstruction are noted in less than 

1% of pixels.

V. Dictionary Analysis

The dictionary for MRF is simulated by solving the Bloch equations given a particular 

acquisition sequence while varying the inputs for MR parameters such as T1 and T2 

relaxation times and off-resonance frequencies. In the present work, we consider MRF 

dictionaries formed from two different types of sequences, an inversion recovery bSSFP 

sequence, as is used in [1], and an inversion recovery FISP sequence, used with MRF more 

recently in [25]. Both sequences are sensitive to T1 and T2 relaxation times, though only the 

bSSFP sequence is sensitive to off-resonance frequencies.

Since the dictionary is precomputed and stored before scanning or data acquisition, the time 

to compute the dictionary is not a significant factor, allowing for different dictionaries to be 

used depending on the sequence and application. The step sizes for T1 and T2 relaxation 

times can be varied to modify the dictionary; a smaller step size will allow for greater 

accuracy and precision in the resulting parameter maps while a larger step size can control 

the dictionary size. The addition of the off-resonance parameter in the bSSFP sequence 

means that the relaxation time step sizes will need to be larger to keep the size of the 

dictionary under control; in Tables I and II, we outline the T1 and T2 step sizes and ranges 

for a bSSFP dictionary and a FISP dictionary that we will use in this work.

All computations and results presented here were performed using Matlab (The MathWorks, 

Inc.) on a standard desktop computer. Computation of the right singular vectors of a 

complex dictionary of size 363 624 × 1000 took about 2 and a half minutes using the built in 

function in Matlab. Please note that this computation needs to be done only once for each 

dictionary so that this step can be performed without significant time constraints.

A. bSSFP dictionary

We consider first a bSSFP dictionary created for a phantom data set containing n = 363 624 

combinations of T1, T2, and off-resonance, simulated at each of t = 1000 time points. 3336 

different combinations of T1 and T2 values are used, with the ranges and step sizes outlined 

in Table I. 109 different off-resonance frequencies are used, in 1 Hz increments from −50 to 

50 Hz and also containing the values −250, −230, −210, −190, 180, 200, 220, and 240 Hz, 

resulting in a complex matrix of size 363 624 × 1000.

Plotted in Fig. 2, are the singular values of this particular dictionary and the associated 

energy ratio for the first 200 values, enforcing the idea that most of the information is 

concentrated in the first 200 singular values and vectors. Table III displays the energy ratio 

for a selected number of k singular values.

The projection of the observed signal x gives a k-dimensional weight vector xk = [xv1, xv2,

…, xvk ], which can be used to approximate x as a linear combination of the first k right 

singular vectors, i.e.,
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In Fig. 3 are plotted an observed signal evolution gathered from undersampled data 

compared to its match from the dictionary as found from template matching, and its 

approximation using k = 200, 100, and 25 singular vectors.

Using fewer singular vectors in the approximation has the effect of damping the oscillations 

in the signal, though there is a trade off between controlling the fluctuations in the signal and 

maintaining the accuracy of the dictionary match. This kind of filtering effect from 

excluding the smallest singular values is well known and is discussed, for example, in [28].

To assess the performance of the SVD basis compression and template matching, the signal-

to-noise ratio (SNR) of the output is computed as the mean value divided by the standard 

deviation of the values using various levels of noise. We draw a dictionary entry at random 

and add to it simulated Gaussian white noise and then perform the SVD basis compression 

and template match using Algorithm 1 to predict the T1, T2 and off-resonance values and 

compare these with the true values. The process is repeated 1000 times and the SNR is 

computed; results of output SNR versus input SNR are shown in Figure 4 using 25, 50, 100, 

and 200 singular vectors. We note that both aliasing due to undersampling and additive 

noise contribute to the oscillations and fluctuations seen in the observed signal. Though 

aliasing will dominate the effect of the noise, the sequence was designed using randomized 

spatial encoding so that the effects of aliasing will mimic high levels of Gaussian noise, 

hence we only consider Gaussian noise in our SNR simulations. At high levels of simulated 

Gaussian noise, this can serve as an approximation of the observed noise and aliasing for 

purposes of the SNR calculation. In the case of off-resonance, the SNR of the full and SVD 

methods are approximately equal using as few as 100 singular vectors at all levels of input 

SNR. For T1 and T2, 200 singular vectors are more appropriate, implying that the data can 

be compressed to approximately 20% of the original length and still retain much of the 

information inherent to the original signal. For each of the parameters, the output SNR tends 

to increase with higher levels of input SNR, but as fewer singular vectors are used, a 

reduction in output SNR is seen, indicating that with low levels of noise, using too few 

singular vectors results in an overdamping of the observed signals.

In Fig. 5 are the plots of output SNR versus the energy ratio for each of the three parameters, 

at a fixed input SNR level of approximately 10, demonstrating that including more singular 

vectors in the approximation will improve the output SNR of the process.

B. FISP dictionary

More recently, MRF has been applied to other types of sequences, including an inversion 

recovery FISP sequence [25], which displays different sensitivities than the bSSFP sequence 

from the previous section. Most noticeably, the FISP sequence is not sensitive to off-

resonance, so the dictionary is constructed using only combinations of T1 and T2 relaxation 

times, allowing for a finer dictionary with smaller time steps.

McGivney et al. Page 8

IEEE Trans Med Imaging. Author manuscript; available in PMC 2016 February 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We consider here a dictionary containing n = 10 169 combinations of T1 and T2; see Table 

II. The dictionary is simulated over t = 1500 time points, resulting in a matrix of size 10 169 

× 1500.

Removal of the off-resonance parameter allows for a more distinct dictionary structure, 

which is noticeable in the rapid decay of the singular values, as shown in the left of Fig. 6. 

Plotted on the right in Fig. 6 are the energy ratios associated with the first 50 singular values, 

which very quickly reach 1, as shown in Table IV, indicating that the dictionary is highly 

compressible.

Performing a simulation to test the SNR of the FISP dictionary as in the previous section 

yields similar results, but shows that the FISP dictionary is much more compressible due to 

the removal of the off-resonance parameter. In Fig. 7, we show the SNR of the FISP 

dictionary for k = 2, 5, 8, 10 and 25 singular vectors. The SNR of the full template match is 

achieved with as few as 10 singular vectors, implying that the signal can be compressed to 1 

– 2% of its the original length.

VI. Examples

We present examples of the methods discussed in the previous sections using both phantom 

and in vivo data, using appropriate dictionaries as noted.

A. Phantom Data

We first test Algorithm 1 on undersampled data collected using a phantom with the bSSFP 

sequence and dictionary described in the Section V-A. Data were collected using the same 

protocol as in [1] and are highly undersampled using a one-shot spiral trajectory in k-space. 

The SVD was then applied to the reconstructed images to obtain projections in the SVD 

space and template matching was performed to retrieve T1 and T2 values. A diagram of the 

phantom is shown in Fig. 8 to indicate one region we will reference later. The resolution of 

the reconstructed images is 128 × 128 pixels.

In Fig. 9, we show the T1 and T2 maps computed using the SVD compression and template 

match with k = 200 singular vectors; comparisons of the SVD computed results with the full 

template match are shown in Fig. 10. Both the SVD and full methods are consistent in that 

they predict the same T1 and T2 values for this data set. More variations between the two 

methods are evident as the number of singular vectors used is reduced; see Fig. 11.

Assuming that the true T1 and T2 values are fairly constant through individual regions within 

the phantom, we expect the variation of the predicted parameters to be quite small for both 

methods. This is seen in Figs. 10 and 11 where the error bars represent one standard 

deviation of the predicted pixel-wise values. In the case of T1, the error bars are very small 

except within region A of the phantom; this is likely due to the effect of the highly 

undersampled spiral data. The mean values of both T1 and T2 are virtually indistinguishable 

for k = 200, and in the case of k = 25, the SVD method appears to predict slightly lower 

values, particularly for T2.
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In Fig. 12 we display the Bland-Altman plots to compare T1 and T2 values computed using 

the full template match with the SVD method. The horizontal dashed lines show a 95% 

confidence interval for the difference between the computed and standard values. In the case 

where k = 200, the SVD results differ from the full template match results in only three 

pixels for T1 and two pixels for T2. In both of these cases, the difference is exactly equal to 

one step size, suggesting that using a finer dictionary may improve the results. In the case 

where k = 25, the SVD results differ, though note that the differences between the two 

methods are within 1–2 steps of the dictionary resolution. Reconstructions of the parameters 

took just 7.3 seconds using 200 singular vectors in the compression, whereas the full 

template match took 31 seconds, allowing for a factor of approximately 4 increase in speed 

for the parameter mapping without loss of accuracy.

Computation times for various values of k are shown in Table V.

B. Volunteer Data: bSSFP sequence

We apply the SVD method to raw volunteer data, collected on a 1.5 T whole body scanner 

(Siemens Espree, Siemens Healthcare) using a spiral trajectory with 48 spiral arms.

1) Singular Images—Previously, the data in k-space were reconstructed to obtain a set of 

1000 undersampled images each formed from the data collected from one spiral arm; see 

Fig. 13 for an example of one of these images. By applying the SVD of the dictionary to the 

raw data, we instead reconstruct k images by combining the data from each of the 48 spiral 

arms at each of the 1000 time points. The first three of these singular images are shown in 

Fig. 14. The image resolution is 128 × 128 pixels. We point out that since we do not center 

the dictionary prior to computing the SVD, the first singular image is a close approximation 

of the mean [5]. The template matching algorithm is then applied at each pixel location 

using the sequence of singular images as the SVD compressed signals.

2) Volunteer Results—After obtaining the compressed signals from the previous section, 

we perform the template match in the SVD space to produce the quantitative maps for T1, T2 

and off-resonance. To perform the full template match on the masked image took 167 

seconds, whereas the template match in the SVD space took 24 seconds using 25 singular 

vectors and 49 seconds using 200 singular vectors. In Fig. 15 are plotted the computed 

parameter maps for k = 200, which was chosen based on the energy ratio of the dictionary 

singular values.

The percent difference maps are computed at each pixel, for example for T1, by

where  denotes the computed T1 value at pixel j using the SVD method and 

 denotes the computed T1 value at pixel j using the full template match. The 

percent difference maps are shown in Fig. 16 as compared to the full template match for k = 

200 singular vectors, shown on a scale of ±10% for T1 and T2, and a scale of ±2% for off-
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resonance. The mean percent differences over the entire brain are 0.6%, 1.8%, and 1.1% for 

T1, T2 and off-resonance, respectively. These results demonstrate the effectiveness of our 

algorithm at reducing the computation time while producing good approximations of the 

parameter maps.

C. Volunteer Data: FISP sequence

We next apply the SVD algorithm to a set of data acquired from a volunteer scan on a 1.5 T 

whole body scanner (Siemens Espree, Siemens Healthcare) using again a spiral trajectory 

with 48 spiral arms. We use the FISP dictionary as described in Section V-B, and by 

considering the energy ratios plotted in Fig. 6 and shown in Table IV, we use k = 25 singular 

vectors for the projection and template matching. The reconstructed images are 256 × 256 

pixels. Computation time for the T1 and T2 parameter maps was 31.9 seconds for the full 

template match and 6.6 seconds for the SVD match with 25 singular vectors. Parameter 

maps for T1 and T2 computed using the SVD method are shown in Fig. 17.

The percent difference maps are shown in Fig. 18, on a scale of ±5% as compared with the 

full template match. The mean percent differences over the brain are 0.2% for T1 and 0.4% 

for T2, demonstrating an even closer match of the SVD and full methods using the FISP 

dictionary as opposed to the original bSSFP sequence, likely due in part to the smaller step 

sizes used in the dictionary and the exclusion of the off-resonance parameter.

D. Motion Tolerance

An important property of the MRF method that was shown in [1] is motion error tolerance. 

We use the same data set acquired using a bSSFP sequence in [1], in which the volunteer 

was instructed to move their head during the last 3 seconds of the 15 second scan. The 

parameter maps were reconstructed two times, initially using the first 1000 time points of 

the acquired data that were free of motion, and then by adding on the next 200 time points to 

obtain a data set that includes both the stationary and motion-corrupted data. The 

dictionaries and data were projected onto the SVD space using k = 200 singular vectors. 

Note that the dictionaries between the stationary and motion-corrupted experiments differ 

only in the number of time points, the first 1000 time points of each are the same.

Results of the stationary and motion-corrupted T1 and T2 maps are shown in Fig. 19 with no 

significant difference seen in the results. The percent difference over the brain between the 

stationary and motion-corrupted data for T1 is 0.5% and for T2 it is 2.7%, indicating that the 

SVD method is also robust to the motion-corrupted data.

As before, we compute the percent differences between the parameter maps as computed 

with the SVD using 200 singular vectors compared to those obtained using the full template 

match. For the stationary data, the percent difference for T1 between the two methods is 

−0.2% and for T2 it is −0.01%. For the motion corrupted data, the differences between the 

SVD and full results are similar: −0.2% for T1 and −0.03% for T2.
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VII. Discussion

The advantage of the SVD template match over the full template match is in the reduced 

computation time; in the case of the phantom data, the SVD method was about 4 times faster 

than the full template match using k = 200 singular vectors, and in the volunteer data, the 

SVD method was about 3.4 times faster with the bSSFP sequence using k = 200 singular 

vectors, and 4.8 times faster with the FISP sequence using k = 25 singular vectors. In each 

case, the parameter maps produced by the two methods were very similar, and in the case of 

the phantom data, 200 singular vectors produced almost exactly the same results with 

differences in only a few pixels, indicating that the quality of the parameter reconstructions 

shown in [1] are maintained using considerably less information.

However, in clinical application, one will desire an even faster reconstruction still, and using 

too few singular vectors will certainly degrade the results.

Currently, computing the matrix V from (5) of a dictionary of size 363 624 × 1000 takes 

approximately 157 seconds on a standard desktop computer. To increase the accuracy of 

MRF, one will need an even finer dictionary with more elements and it will become 

increasingly more expensive to compute the SVD of such a dictionary. Methods such as the 

randomized SVD [29], [30] can be considered as a less expensive alternative to computing 

the SVD of a large matrix and have been shown to provide accurate decompositions for 

large matrices [31], [32]. However, it is worth emphasizing that this calculation only needs 

to be performed once for each imaging sequence, and thus computational speed is not as 

important in this step as in the pattern matching steps.

Choosing the number of singular vectors to include in the approximation of the dictionary 

and observed signals can be done in different ways, such as by looking at the energy ratio or 

by producing an approximate L-curve [33]. As discussed in Section III, the energy ratio (4) 

provides one method to determine how much information from the original dictionary is 

retained in the low-rank approximation. Values of the energy ratio for a bSSFP dictionary 

are shown in Table III, which suggests that, for example, 99.89% of the bSSFP dictionary 

energy is maintained in an approximation using the first 200 singular vectors as a basis, and 

reducing the number of singular vectors further to only 25 will still maintain 97% of the 

original energy. An even more dramatic compression is possible with the FISP dictionary, as 

using as few as 10 singular vectors retains almost all of the energy of the dictionary, as 

shown in Table II.

Finally, an important consideration is the number of time points used for the construction of 

the dictionaries and the corresponding data acquisitions. As pointed out in both [1] and [25] 

for the respective bSSFP and FISP sequences, the accuracy of the MRF method will increase 

as more time points are acquired. Due to the randomized nature of the signal evolution no 

steady state is achieved. This means that longer sequences will produce more accurate 

results, showing that compression over this dimension is necessary.
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VIII. Conclusions

In this paper, we have presented an SVD based compression scheme to be applied to the 

template matching algorithm for magnetic resonance fingerprinting. This compression 

occurs in the time domain, allowing for fewer computations required to produce the 

parameter maps, despite an extra projection step added to the process. Future work will 

involve looking more closely at the projection onto SVD space taken before image 

reconstruction to save additional computation time. We have shown that the signal 

evolutions can be compressed to at least 10 − 20% of the length of the originals, without 

sacrificing the SNR of the full template match. The advantage of the SVD based 

compression scheme presented here is that it reduces the number of computations without 

sacrificing the signal-to-noise enjoyed by the full template matching.
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Fig. 1. 
On the top is a schematic of the current MRF image reconstruction step followed by a 

projection onto SVD space and template matching. Data are undersampled in k-space at 

each of t time points and then reconstructed to produce images that are corrupted with 

significant errors due to the undersampling. On the bottom is a schematic of projecting the 

raw k-space data prior to image reconstruction, resulting in the singular images which are 

then used in template matching in the SVD space.
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Fig. 2. 
The singular values of a bSSFP dictionary of size 363 624 × 1000 (left) and the energy ratio 

of the first 200 singular values (right). The energy ratio quickly approaches 1.
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Fig. 3. 
Observed signal evolution and its dictionary match from template matching (upper left) and 

approximations using the basis of the singular vectors in Vk, with k = 200, 100 and 25. 

Damping of the oscillations in the original signal is observed as fewer singular vectors are 

used.
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Fig. 4. 
Output versus input SNR of SVD compression combined with template matching for a 

bSSFP dictionary using 25, 50, 100, and 200 singular vectors, compared with the SNR of the 

template matching using the full dictionary. On the left is the SNR for T1, T2 is in the center, 

and off-resonance is on the right.
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Fig. 5. 
Output SNR plotted as a function of selected values of the energy ratio of the singular 

vectors for a bSSFP dictionary. The input SNR is chosen to be approximately 10, and the 

number of singular vectors used ranges from 1 up to 300.
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Fig. 6. 
Singular values of the FISP MRF dictionary (left) and the energy ratio of the first 50 

singular values (right). The dimensions of the dictionary are 10 169 × 1500.
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Fig. 7. 
Output versus input SNR of SVD compression combined with template matching for a FISP 

dictionary using 2, 5, 8, 10, and 25 singular vectors, compared with the SNR of the full 

template matching scheme. On the left is the SNR for T1 and on the right is the SNR for T2.
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Fig. 8. 
Diagram of the phantom. Region A is indicated, as it is referred to in the text
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Fig. 9. 
Parameter maps showing T1 (left) and T2 (right) for the phantom data from Section VI-A 

using k = 200 singular vectors. The units for T1 and T2 are in ms.
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Fig. 10. 
Correlation plots to compare the computed T1 and T2 values using the full template match 

and the SVD template match with 200 singular vectors. Note that the mean values of the two 

methods are virtually indistinguishable. The error bars represent one standard deviation of 

the measured data.
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Fig. 11. 
Correlation plots to compare the computed T1 and T2 values using the full template match 

and the SVD template match with 25 singular vectors. The error bars represent one standard 

deviation of the measured data.
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Fig. 12. 
Bland-Altman plots of the computed SVD using 200 (top) and 25 (bottom) singular vectors 

compared to the full template match. The dashed lines indicate a 95% confidence interval 

for the difference between the SVD and full methods. For k = 200, there are only three and 

two pixels for T1 and T2, respectively, that do not match up exactly with the results from the 

full template match, and these differences are only one step in the dictionary resolution. 

While there are points that lie outside of the 95% confidence interval for both T1 and T2 in 

the case where k = 25, the differences are small and are within 1 – 2 steps in the dictionary 

resolution.
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Fig. 13. 
Reconstructed image from undersampled data collected using a one-shot spiral trajectory. 

This is the 2nd image out of 1000 reconstructions; all have similar spiral artifacts due to the 

undersampling in k-space.
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Fig. 14. 
First three singular images.
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Fig. 15. 
Parameter maps for T1 (left), T2 (middle), and off-resonance (right) using k = 200 singular 

vectors for template matching for the example in Section VI-B with the bSSFP dictionary. 

The scales for T1 and T2 are in ms, the scale for off-resonance is in Hz.
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Fig. 16. 
Percent differences of the parameter maps shown in Fig. 15 computed using the SVD 

method as compared to the maps produced using the full template match. On the left is 

shown the percent difference for T1, in the middle, T2, and on the right, off-resonance. The 

scales for T1 and T2 are ±10% and for off-resonance, the scale is ±2%.
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Fig. 17. 
Parameter maps for T1 (left) and T2 (right) using k = 25 singular vectors for template 

matching with a FISP sequence applied to the example in Section VI-C. The scales for both 

are in ms.
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Fig. 18. 
Percent differences of the parameter maps shown in Fig. 17 computed using the SVD 

method with k = 25 singular vectors as compared to the maps produced using the full 

template match. The percent difference for T1 is on the left and T2 on the right. The scales 

for both are ±5%.
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Fig. 19. 
T1 and T2 maps to demonstrate robustness of the SVD method to motion. Plots (a) and (c) 

are the T1 and T2 maps, respectively, computed using the SVD method with the motion-free 

data. Plots (b) and (d) are the corresponding T1 and T2 maps computed using the SVD 

method with the motion-corrupted data. 200 singular vectors were used in the SVD template 

matching.
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TABLE 1

STEP SIZES AND RANGES FOR T1 AND T2 IN THE BSSFP DICTIONARY. ALL TIMES ARE IN MS.

bSSFP Range Step size

T 1
[100, 2000]
[2000, 5000]

20
300

T 2
[20, 100]
[100, 200]
[300, 1900]

5
10
200
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TABLE II

STEP SIZES AND RANGES FOR T1 AND T2 IN THE FISP DICTIONARY. ALL TIMES ARE IN MS.

FISP Range Step size

T 1
[20, 3000]

[3000, 5000]
20
200

T 2
[10, 300]
[300, 500]
[500, 900]

5
50
200
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TABLE III

ENERGY RATIO OF THE FIRST k SINGULAR VALUES OF THE BSSFP DICTIONARY OF SIZE 363 624 × 1000.

k 10 25 50 100 200

e(k) 0.9422 0.9700 0.9840 0.9939 0.9989
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TABLE IV

ENERGY RATIO ASSOCIATED WITH THE FISP DICTIONARY OF DIMENSION 10 169 × 1500.

k 1 2 5 10 25 50

e(k) 0.9023 0.9543 0.9990 1 1 1
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TABLE V

COMPUTATION TIME (IN SECONDS) OF THE SVD TEMPLATE MATCHING LGORITHM FOR VARIOUS VALUES OF k IN THE REGION OF INTEREST FOR THE PHANTOM DATA OF 

SECTION VI-A USING THE BSSFP SEQUENCE.

k 10 25 50 100 125 150 175 200

time (s) 3.4 3.5 4.1 5.2 5.8 6.3 6.9 7.3
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