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Abstract

PURPOSE—To compare glioblastoma and brain metastases using T1-weighted dynamic 

contrast-enhanced (DCE)-MRI perfusion technique.

METHODS—26 patients with glioblastoma and 32 patients with metastatic brain lesions with no 

treatment who underwent DCE-MRI were, retrospectively, analyzed. DCE perfusion parameters 

Ktrans and Vp were calculated for the whole tumor. Signal intensity time curves were quantified by 

calculating the area under the curve (AUC) and the logarithmic slope of the washout phase to 

explore the heterogeneous tumor characteristics.

RESULTS—Glioblastoma did not differ from all brain metastases in Ktrans (P = .34) or Vp (P = .

47). Glioblastoma and melanoma metastases differed from hypovascular metastases in AUC and 

log slope of the washout phase of the signal intensity time curve (P < .05); however, glioblastoma 

and melanoma metastases did not differ from each other (AUC: P = .78, Log slope: P = .77). 

Glioblastoma and melanoma metastases differed from hypovascular metastases in the ratio of 

Voxelneg/Voxelpos (P< .03); however, they did not differ from each other. Glioblastoma and 

melanoma metastases differed from each other in Voxelneg_threshold at higher negative log slope 

threshold.

CONCLUSION—DCE-MRI showed that it has a potential to differentiate glioblastomas, 

melanoma metastases and hypovascular brain tumors. Logarithmic slope of the washout phase and 

AUC of the signal intensity time curve were shown to be the best discriminator between 

hypervascular and hypovascular neoplasms.
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Introduction

Glioblastoma and metastatic brain tumors are the two most common malignant brain tumors. 

Clinical management and prognosis vary vastly between the two pathologies. However, it is 

often difficult to differentiate between these two entities on the conventional MR imaging.1 

Metastatic brain lesions can often be strongly suspected based on the presence of a 

malignant primary or multiplicity of lesions. However, many instances of brain metastases 

initially present as a single, isolated lesion. Glioblastomas can present as multiple lesions. 

Furthermore, previous studies suggest that patients with a primary cancer of nonbrain origin 

could genetically be at a higher risk of developing primary glioblastoma as compared to the 

general population risk thereby complicating the proper diagnosis.2–7 In addition, it is 

always preferable to establish an accurate diagnosis without having to resort to a brain 

biopsy, especially if the lesion is in an especially dangerous part of the brain or if treatment 

does not require resection. Therefore, a quantitative imaging biomarker that could 

differentiate primary glioblastoma from secondary metastatic tumor could provide 

substantial improvement in the clinical management of brain tumors.

Dynamic contrast-enhanced (DCE) MRI is an emerging advanced imaging technique that 

provides physiological information such as tumor vascularity and hemodynamic 

characteristics of the neoplasm that is unavailable with the conventional MR imaging. DCE-

MRI has been demonstrated to be a potentially useful biomarker that can differentiate low 

versus high-grade gliomas,8 evaluate the effects of antiangiogenic therapy9,10 and radiation 

therapy,11 and differentiate recurrent glioblastoma from radiation necrosis.12 

Semiquantitative analysis of the signal intensity time curve using DCE-MRI has also been 

shown to be an important clinical biomarker in differentiating benign from malignant lesions 

in the prostate13 and orbital masses.14 In breast neoplasms, Kuhl et al demonstrated that 

rapid washout of the contrast agent in DCE-MRI was characteristic of malignant lesions 

while benign neoplasms showed a slower washout of the contrast agent.15 The 

morphological analysis of the signal intensity time curve has also been applied to studying 

the neoplasms of the brain. Bagher-Ebadian et al proposed that there exists four different 

patterns of signal intensity time curve and that the different regions of the brain in 

glioblastoma patients showed a different pattern of signal intensity time curve.16 However, 

to our knowledge, there has not been a study that investigates the use of DCE-MRI 

pharmacokinetic parameters and semiquantitative analysis of the signal intensity time curve 

to characterize the perfusion differences between glioblastoma, hypervascular brain 

metastases, and hypovascular brain metastases.

In this study, our goal was to evaluate glioblastoma, melanoma, and other brain metastases 

using T1-weighted DCE-MRI perfusion technique. Since glioblastoma and melanoma 

metastases are both hypervascular tumors, we hypothesized that glioblastoma and melanoma 

metastases would differ from other hypovascular metastases on perfusion parameters, while 

glioblastoma and melanoma would not differ from each other.
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Methods

Patient Demographics

This retrospective study was authorized by the institutional review board. This was in full 

compliance with all Health Insurance Portability and Accountability Act regulations. As this 

was a retrospective review, informed consent was waived. Consecutive patients with known 

primary glioblastoma, and brain metastases who had completed a DCE-MRI examination 

between 2011 and 2014 were identified from an institutional database. Diagnosis was 

established by histopathology of the brain lesion. Patients who received surgical resection, 

radiation therapy, corticosteroids, or antiangiogenic therapy prior to their DCE-MRI scan 

were excluded. The final cohort of 58 patients consisted of patients with primary 

glioblastoma (n = 26), hypervascular brain metastases (of melanoma origin n = 16), and 

hypovascular brain metastases (n = 16, including nonsmall cell lung [n = 7], breast [n = 6], 

and colon [n = 3]).

MRI Acquisition

MRI sequences were acquired with a 1.5-T or 3.0-T scanner (GE Healthcare, Milwaukee, 

WI) and a standard eight-channel head coil. T1-weighted DCE-MRI of the brain was 

acquired as a part of standard clinical protocol. A bolus of gadobutrol (Gadavist, Bayer 

Healthcare, Leverkusen, Germany) at .1-mmol/kg was administered by a power injector at a 

rate of 2–3 mL/second.

The kinetic enhancement of tissue during and after injection of Gd-DTPA was obtained 

using a 3-D T1-weighted fast spoiled-gradient (SPGR) echo sequence: TR 4–5 ms; TE 1–2 

ms; slice thickness 3 mm; FA 25°; FOV 24 cm; matrix 256 × 128; temporal resolution (Δt) 

of 5–6 s. Ten to fourteen slices covering the lesion were scanned over 40 phases, with the 

injection occurring after the first ten phases. Matching T1-weighted (TR 600 ms; TE 8 ms; 

slice thickness 4.5 mm) and T2-weighted (TR 4000 ms; TE 102 ms; slice thickness 4.5 mm) 

spin-echo images were obtained.

Image Analysis

Data processing and the analysis of pharmacokinetic variables were conducted using 

NordicICE version 2 (NordicNeuroLab, Bergen, Norway). This applies a pharmacokinetic 

model of contrast uptake to the calculated signal intensity changes over time. Using a two-

compartment kinetic model, the contrast agent is presumed to be distributed in the blood 

plasma volume, leaking in a time-dependent manner into the interstitium.17 Time-dependent 

leakage (Ktrans) and the blood plasma volume (Vp) were calculated using Toft’s 

pharmacokinetic model analysis17 on a voxel-by-voxel basis. Preprocessing included 

removal of background noise and deconvolution with the arterial input function (AIF). 

Linear assumption was made between change in signal intensity and gadolinium 

concentration to convert signal intensity curve to concentration-time curve. The AIF was 

obtained from middle cerebral artery independently for every patient. Curves showing an 

optimal relationship between AIF and concentration-time curve were carefully selected.

Jung et al. Page 3

J Neuroimaging. Author manuscript; available in PMC 2016 March 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



All regions-of-interest (ROIs) were manually delineated by a trained operator, who was 

blind to patient data and tumor histology, on the axial T1 postcontrast scans. The borders of 

the lesions were defined as the edge of the contrast enhancement on the T1 postcontrast 

scan. ROI included the enhancing tumor tissue as well as the regions of cystic and/or 

necrotic change, but excluded adjacent vessels. Since tumors spanned across multiple axial 

slices, an ROI was drawn on each axial slice and the values were calculated for each slice, 

and then, averaged to create a volume of interest (VOI) for the whole tumor.

Permeability, Plasma Volume, and Tumor Response Signal Intensity Time 
Curve—Time-dependent leakage (Ktrans) and the blood plasma volume (Vp) were 

calculated using Tofts pharmacokinetic model analysis17 on a voxel-by-voxel basis using 

the NordicICE software. VOIs from the postcontrast scans were then transferred to the 

parametric maps (Ktrans and Vp) to calculate the mean of each perfusion parameter for the 

whole tumor.

To conduct a semiquantitative analysis, the tumor response signal intensity curve was 

analyzed. Signal intensity (SI) time curve measures the concentration of the contrast agent 

detected in each voxel with respect to time. To minimize the effect of noise, we calculated 

the mean SI time curve using a moving-average technique using proprietary software based 

in MATLAB (R2014a, Natick, MA). We used VOIs composed of 2×2×2 voxels and 

calculated the mean SI time curve only from VOIs that had at least 50% of the voxels (>4 

voxels) included inside the manually delineated VOI in order to minimize noise.

The VOI of maximal enhancement was then identified. The enhancement value was defined 

as the percent change in SI between the preinjection time point and the maximum signal 

intensity. Since some of the voxels showed a gradual increase in SI throughout the entire 

duration of the scan rather than a clear decay in signal in the washout phase, we determined 

the maximum SI value to be the maximum signal value between 90 and 130 seconds after 

the injection of contrast. This was based on the fact that all SI time curves included the 

maximum values within that range of time. All the SI time curves were then expressed as a 

function of % SI, with SI value at the time point of maximum enhancement as 100%. The 

washout phase of the SI time curve was determined as the time between the time point of 

maximal SI and the end of the scan acquisition.

To compare the morphology of the SI time curves between the different tumor types, we 

calculated the area under the curve (AUC) of the SI time curve and the logarithmic slope of 

the washout phase at the region of maximal enhancement. AUC of the SI time curve was 

computed using the trapezoidal numerical integration method (trapz.m, MATLAB R2014a). 

The washout phase was characterized using the logarithmic scale in order to account for the 

exponentially decaying nature of the washout phase (fast initial decay followed by a slower 

rate of decay in signal intensity). We used a first-order polynomial fit to determine the 

logarithmic slope. In regions that had poor linear fitting (P > .05), the logarithmic slope of 

washout phase of the region was assigned as 0.

We further semiquantitatively classified the morphology of the SI time curve into three 

subtypes. Type I was classified as the SI time curves that showed an increasing washout 
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phase (log slope of the washout phase > 1). Type III was classified as the SI time curves that 

demonstrated a decreasing washout phase (log slope of the washout phase < −1). The SI 

time curves that showed poor linear fitting (P > .05) in the washout phase or had log slope of 

the washout phase between −1 and 1 were classified as Type II (plateau washout phase).

Spatial Heterogeneity within the Different Tumor Types—To study the spatial 

heterogeneity within the different tumor types, we calculated the SI time curve for each 

voxel within the tumor. Only scans that covered the entire tumor in the cranio-caudad 

direction were analyzed. Each voxel within the tumor was then classified as either Voxelneg 

or Voxelpos based on the value of the logarithmic slope of the washout phase (log slope <0: 

Voxelneg; log slope >0: Voxelpos). As part of a post hoc analysis, we calculated the number 

of Voxelneg at different negative washout log slope thresholds. The different slope 

thresholds were chosen by first calculating the maximum absolute negative washout log 

slope from the entire sample pool, and then, setting the threshold at 40 equivalent 

increments from 0 to maximum absolute negative washout log slope. For each incremental 

slope threshold, we calculated Voxelneg_threshold, which was defined as the number of 

Voxelneg that had the washout log slope < threshold (the washout phase is decaying at a 

higher rate than the threshold). The same method was applied to calculate Voxelpos_threshold 

for the number of Voxelpos at different positive washout log slope thresholds. The ratio of 

Voxelneg_threshold/Voxelneg and Voxelpos_threshold/Voxelpos was plotted against the 

incremental changes in the slope threshold, and the AUC was calculated as an index to 

compare the heterogeneity between the different tumor pathologies. Mann-Whitney U test 

was used to compare the difference in Voxelneg_threshold and Voxelpos_threshold between the 

different disease groups.

Statistical Analysis

Intergroup differences in the pharmacokinetic variables (Ktrans and Vp) and the SI time curve 

characteristics (AUC and logarithmic slope of the washout phase) were compared using the 

Mann-Whitney U test. Receiver operating characteristic (ROC) curve analysis was used to 

assess the discriminatory power of each variable in differentiating between the different 

tumor pathologies.

Results

Permeability, Plasma Volume, and Tumor Response Signal Intensity Time Curve

As compared to the hypovascular metastases, the hypervascular tumors (glioblastoma and 

melanoma metastases) showed an increase in AUC of the SI time curve (Fig 1A) and the log 

slope of the washout phase (Fig 1B). Glioblastoma did not differ from melanoma metastases 

(melanoma) (AUC: P = .814; log slope: P = .972). Pharmacokinetic variables did not differ 

between the three tumor pathologies (Table 1).

ROC analysis of the pharmacokinetic variables and the SI time curve characteristics (Fig 2) 

showed that AUC of the SI time curve and the log slope of the washout phase could 

successfully differentiate hypovascular metastases from both types of hypervascular 

neoplasms (glioblastomas and melanoma metastases). AUC and the log slope of the washout 
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phase could not differentiate between glioblastoma and metastatic melanoma. Neither of the 

pharmacokinetic variables could discriminate between the three tumor pathologies. The 

optimal cutoff and AUC of the ROC analysis are listed in Table 2.

Consistent with the results of the Mann-Whitney U test, our semiquantitative analysis 

showed that at the region of maximal enhancement, hypovascular tumors demonstrated an 

increased number of Type III pattern (45.5% in hypovascular metastases, 8.7% in 

glioblastoma, and 7.1% in melanoma metastases). In contrast, glioblastoma and melanoma 

metastases showed an increased number of Type II pattern (glioblastoma: 60.9%, melanoma 

metastases: 64.3%, hypovascular metastases: 36.4%) or Type I pattern (glioblastoma: 

30.4%, melanoma metastases: 28.6%, hypovascular metastases: 18.2%) of the washout 

phase (Fig 3).

Spatial Heterogeneity within the Different Tumor Types

The scans that covered the entire height of the tumor included 23 glioblastomas, 14 

melanoma metastases, and 11 hypovascular metastases. A comparison of the ratio 

(Voxelneg/Voxelpos) showed that hypovascular metastases (x̄hypovascular = 13.9) had an 

increased proportion of voxels that were Voxelneg as compared to glioblastoma (x̄glioblastoma 

= 6.8, P = .03). Hypovascular metastases also showed an increased number of Voxelneg as 

compared to melanoma metastases (x̄melanoma = 4.2), however, this difference was not 

statistically significant (P = .11). Glioblastoma did not differ from melanoma metastases (P 

= .34).

We then repeated the analysis at different slope thresholds. We classified each voxel as 

Voxelneg_threshold if the log slope of the washout phase of the voxel was lower than the 

threshold value. A plot of the number of Voxelneg_threshold versus the change in the negative 

log slope threshold is shown in Figure 4. As expected, the number of Voxelneg_threshold and 

Voxelpos_threshold were lower at higher cutoff thresholds. The Mann-Whitney U test showed 

that at higher negative log slope thresholds (more negative log slope cutoff), glioblastoma 

trended towards having a greater number of Voxelneg_threshold as compared to melanoma (P 

= .07). Glioblastoma and melanoma metastases did not differ from the hypovascular 

metastases (P = .17). When Voxelneg_threshold/Voxelneg was plotted with respect to the 

different slope thresholds (Fig 4), we found that glioblastoma and melanoma metastases 

trended towards differing in the AUC of this curve (P = .07). Neither glioblastoma nor 

melanoma metastases differed from hypovascular metastases (P = .17 and P = .89, 

respectively).

Discussion

In this study, we evaluated the use of DCE-MRI in the differentiation of glioblastoma, 

melanoma brain metastases, and other hypovascular brain metastases. Our findings show 

that while pharmacokinetic variables cannot discriminate between the three tumor 

pathologies, quantitative assessment of the signal intensity time curve could differentiate 

hypovascular metastases from glioblastomas and melanoma metastases. Out of the four 

parameters we investigated, the log slope of the SI washout phase was shown to be the best 

discriminator between the three tumor pathologies. Our findings also showed that that there 
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may exist heterogeneity in the spatial pattern of the SI washout phase throughout the entire 

tumor.

Glioblastoma and Melanoma Metastases Differ from Hypovascular Tumors, but not from 
Each Other

Our findings demonstrate that at the region of maximal enhancement, glioblastoma and 

melanoma metastases both differed from hypovascular metastases in the pattern of SI time 

curve; however, glioblastoma and melanoma metastases did not differ from each other. This 

is consistent with previous findings in the spinal metastases, which show that DCE-MRI can 

differentiate between hypervascular and hypovascular tumors.18 The lack of difference 

between glioblastoma and melanoma metastases in DCE-MRI may indicate that despite the 

different process of angiogenesis thatmay occur, DCE-MRI lacks sensitivity to discriminate 

between the different types of hypervascular neoplasms.

More specifically, we found that the best discriminating factor in differentiating between 

hypervascular and hypovascular tumors are the morphological characteristics of the signal 

intensity time curves (AUC and log slope of the washout phase) at the region of maximal 

enhancement. It is yet unclear why different morphological types of signal intensity time 

curves exist. It has been hypothesized that the regions of the tumor that show a decaying 

pattern of washout is associated with an increased leakiness of the contrast agent, 

presumably caused by increased microvessel density and arteriovenous anastomoses.

While our results show that the morphology of the signal intensity time curve could serve as 

a biomarker to differentiate between tumor types, further study is necessary to investigate its 

prognostic power across different pathologies. Previous studies in breast cancer have 

demonstrated that tumors that are characterized by a decaying pattern of washout are more 

likely to be malignant as compared to tumors with an increasing pattern of washout phase.15 

However, comparing the prognosis across the different tumor types based on the 

morphology of the signal intensity time curve alone is beyond the scope of this study.

Unlike the previous study on breast cancer that studied a single homogenous pathology, our 

study sample included a heterogeneous group of mixed tumor types. It is possible that 

hypervascular and hypovascular tumors all lie in one spectrum and could be compared 

against each other based on the shape of the signal intensity time curve. On the contrary, it is 

also possible that there exists a separate spectrum for each different type of tumor and the 

comparison between different tumor types is not possible. Therefore, while we found more 

decaying pattern of washout phase in the hypovascular tumors, this may not necessarily be 

an indication of increased tumor malignancy in the hypovascular tumors as compared to the 

hypervascular neoplasms.

The Morphology of the Signal Intensity Time Curve is Spatially Heterogeneous

Qualitatively, we found that most tumors had both the regions of decaying washout and the 

regions of increasing washout pattern throughout the entire tumor volume. Interestingly, 

upon visual inspection, we observed that regions of increasing washout pattern were more 

concentrated towards the core of the tumor, whereas the regions of decaying washout pattern 

clustered towards the rim of the tumor. If decaying pattern of washout phase is indeed an 
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indicator of tumor malignancy and aggressiveness, it is possible that the regions of decaying 

washout pattern in the periphery of the tumor is responsible for the increase in tumor mass 

with the progression of disease. Longitudinal investigation of the morphology of the signal 

intensity time curve after surgical resection or radiation therapy could provide us with an 

insight into developing a probabilistic model of the tumor recurrence.

This spatial pattern of the signal intensity time curve is in contrast to the findings of Bagher-

Edbadian et al in glioblastoma patients, which showed an increasing washout pattern 

towards the rim of the tumor while central regions of necrosis showed a decaying washout 

pattern in the signal intensity time curve.16 This discrepancy could have occurred because 

while our analyses focused on the washout phase of the signal intensity time curve only, 

Bagher-Edbadian et al classified the regions based on the morphologic characteristics of 

both the wash-in and the washout phase of the signal intensity time curve. Furthermore, 

Bagher-Edbadian et al did not normalize the signal intensity time curve in their analyses. 

Therefore, the regions classified as increasing washout pattern by Bagher-Edbadian could 

have been a result of a combination of high peak enhancement as well as the increasing 

pattern of the washout phase. In contrast, our findings focused only on the morphology of 

the washout phase of the signal intensity time curve after normalizing the signal intensity 

time curve, which could have yielded contrasting results.

Our findings showed that at higher negative log slope thresholds for the washout phase of 

the signal intensity time curves, glioblastoma had a greater number of regions with decaying 

pattern of washout phase than melanoma metastases. This suggests that rather than 

classifying the brain region as either increasing or decreasing washout phase, future studies 

should focus on performing heterogeneity pattern analysis of the tumor to compare both the 

morphology of the signal intensity time curve as well as its spatial heterogeneity in order to 

differentiate between different pathologies.

Limitations of the Study

This study had several potential limitations. First, the study was conducted, retrospectively, 

and the post hoc moving average analyses were only performed on a subset of the patients. 

Nevertheless, we observed significant results that have prompted future prospective study. 

Second, the tumor volumes were manually delineated. Despite this, any potential variation 

in reproducibility was mitigated by having a single trained operator perform all VOIs. Third, 

although there are other hypervascular metastases such as thyroid, renal cell carcinoma 

(RCC), the hypervascular metastases group was limited to melanoma. This circumstance 

could not be avoided, because brain metastasis of melanoma origin are more common 

among the general population, and we recruited consecutive patients. Fourth, T1 mapping 

was not performed to estimate T1 values for each pixel during preinjection period. Instead, a 

fixed T1 (1000 ms) value was used assuming blood and tissue have a linear relationship. 

However, T1 mapping would be a proper approach if nonlinear relationship is considered, 

due to the heterogeneity of the enhancing lesions. Finally, in our study 1.5-T and 3-T 

scanners were used to acquire DCE data. Modeled variables in Tofts model are in theory 

independent of the scanning acquisition protocol including field strength, thus avoiding 

problems associated with signal intensity metrics.19,20
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Conclusion

DCE-MRI can be used to differentiate hypervascular neoplasms from hypovascular 

metastatic brain tumors. Logarithmic slope of the washout phase and the AUC of the signal 

intensity time curve were shown to be the best discriminator between hypervascular and 

hypovascular neoplasms. Our results showed that the pattern of the washout phase of the 

signal intensity time curve is spatially heterogeneous. This could aid in the differentiation of 

tumor types as well as in the clinical management of brain tumors.
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Fig 1. 
The morphology of the signal intensity time curve could differentiate hypervascular brain 

tumors from hypovascular brain tumors: Hypervascular brain tumors (glioblastoma and 

melanoma metastases) differed from hypovascular brain metastases in the AUC and the 

logarithmic slope of the washout phase of the signal intensity time curve; however, 

glioblastoma and melanoma metastases could not be differentiated from each other based on 

the morphological characteristics of the signal intensity time curve. Ktrans and Vp could not 

differentiate between the three pathologies.
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Fig 2. 
ROC curve shows that AUC and log slope of the washout phase could successfully 

discriminate between hypervascular neoplasms from hypovascular metastases: ROC 

analysis showed that the logarithmic slope of the washout phase had the highest 

discriminatory power in differentiating hypervascular tumors (glioblastoma and melanoma) 

from hypovascular metastases (AUC = .76), followed by the AUC of the signal intensity 

time curve (AUC = .70 and .74, respectively). Neither of these two variables could 

differentiate glioblastoma from metastatic melanoma (AUC ≤ .52).
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Fig 3. 
Perfusion characteristics at the region of maximal enhancement: At the region of maximal 

enhancement, hypovascular metastases showed an increased number of type III signal 

intensity time curves, while both types of hypervascular tumors showed greater number of 

type I and II morphology.
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Fig 4. 
Glioblastoma shows increased number of Voxelneg at higher negative log slope threshold: 

Logarithmic slope of the washout phase of the signal intensity time curve was calculated for 

each voxel within the tumor region. Arrow #1: Each voxel was then classified as Voxelneg 

or Voxelpos based on the value of the logarithmic slope (Voxelneg = [log slope < 0]; 

Voxelpox = [log slope > 0]). Voxels that showed poor linear correlation in the washout phase 

were excluded from the analysis. Arrow #2: All the Voxelneg were then selected for further 

analysis (total number of Voxelneg; threshold = 0). Arrow #3: The Voxelneg was then 

calculated at different negative slope thresholds (Voxelneg_threshold = [log slope < threshold], 

Voxelplateau_threshold = [threshold < log slope < 0], Voxelpox_threshold = [log slope > 

threshold]). The number of Voxelneg_threshold at different threshold (red filled pixels) was 

then expressed as a fraction of the total number of Voxelneg (black outline). At higher 

threshold values, glioblastoma showed an increased ratio of (Voxelneg_threshold/Voxelneg) 

than melanoma metastases. The ratio (Voxelneg_threshold/Voxelneg) was plotted against the 

negative washout log slope threshold. As compared to melanoma metastases, the AUC 

trended towards being increased in glioblastoma patients (P = .072). There was no 

difference in the AUC between glioblastoma and hypovascular metastases (P = .173) or 

between melanoma metastases and hypovascular metastases (P = .891).
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Table 1

AUC and the Washout Log Slope can Differentiate Glioblastoma and Melanoma Metastases from 

Hypovascular Metastases, but not from Each Other

AUC
Washout
Log Slope Ktrans Vp

GBM versus Melanoma .790 .772 .386 .614

GBM versus Hypovascular Mets .047* .019* .493 .493

Melanoma versus Hypovascular Mets .046* .024* .865 .955

Hypervascular tumors showed increased AUC and washout log slope in the signal intensity time curve as compared to hypovascular tumors. 
Pharmacokinetic variables (Ktrans and Vp) did not differ between the two pathologies. Glioblastoma and melanoma did not differ from each other 

in all four parameters.

*
Significant results (P < .05).
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Table 2

The Optimal Cutoff Value for ROC Analysis

AUC
Washout
Log Slope

GBM versus Hypovascular Mets 22.15 −0.04

Melanoma versus Hypovascular Mets 22.11 0.01

ROC analysis of the AUC showed that for GBM versus hypovascular metastases, sensitivity and specificity were optimized by a cutoff point at 
22.15, while the cutoff point was 22.11 for melanoma metastases versus hypovascular metastases. The optimal cutoff point for the washout log 
slope was –0.04 for GBM versus hypovascular metastases and 0.01 for melanoma metastases versus hypovascular metastases.
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